Correction Exercice I.

1. Existence de $\int_0^{+\infty} \left(x+2-\sqrt{x^2+4x+1}\right) dx$

Pour $x\geqslant 0, x^2+4x+1\geqslant 0$ et donc la fonction $f:x\mapsto x+2-\sqrt{x^2+4x+1}$ est continue sur $[0,+\infty[$. Quand x tend vers $+\infty, x+2-\sqrt{x^2+4x+1}=\frac{3}{x+2+\sqrt{x^2+4x+1}}\sim 32x$. Comme la fonction $x\mapsto \frac{3}{2x}$ est positive et non intégrable au voisinage de $+\infty$, f n'est pas intégrable sur $[0;+\infty[$.

2. Existence de $\int_0^{+\infty} \frac{\ln x}{x + e^x} dx$

La fonction $f: x \mapsto \frac{\ln x}{x+e^x}$ est continue et positive sur $]0, +\infty[$.

- En 0, $\frac{\ln x}{x+e^x} \sim \ln x$ et donc $f(x) = o\left(\frac{1}{\sqrt{x}}\right)$. Comme $\frac{1}{2} < 1$, la fonction $x \mapsto \frac{1}{\sqrt{x}}$ est intégrable sur un voisinage de 0 et il en est de même de la fonction f.
- En $+\infty$, $f(x) \sim \frac{\ln x}{e^x} = o\left(\frac{1}{x^2}\right)$. Comme 2 > 1, la fonction $x \mapsto \frac{1}{x^2}$ est intégrable sur un voisinage de $+\infty$ et il en est de même de la fonction f.

Finalement, f est intégrable sur $]0, +\infty[$.

3. Existence de $\int_0^{+\infty} x^{-\ln x} dx$

La fonction $f: x \mapsto x^{-\ln x}$ est continue sur $]0, +\infty[$.

- Quand x tend vers 0, $x^{-\ln x} = e^{-\ln^2 x} \to 0$. La fonction f se prolonge par continuité en 0 et est en particulier intégrable sur un voisinage de 0.
- Quand x tend vers $+\infty$, $x^2f(x) = \exp\left(-\ln^2 x + 2\ln x\right) \to 0$. Donc f est négligeable devant $\frac{1}{x^2}$ quand x tend vers $+\infty$ et f est intégrable sur un voisinage de $+\infty$.

Finalement, f est intégrable sur $]0, +\infty[$.

4. Existence de $\int_0^{\pi/2} (\tan x)^a dx$

Pour tout réel a, la fonction $f: x \mapsto (\tan x)^a$ est continue et strictement positive sur $\left]0, \frac{\pi}{2}\right[$. De plus, pour tout réel x de $\left]0, \frac{\pi}{2}\right[$, on a $f\left(\frac{\pi}{2} - x\right) = \frac{1}{f(x)}$.

- Etude en 0 à droite. $f(x) \sim x^a$. Donc f est intégrable sur un voisinage de 0 à droite si et seulement si a > -1.
- Etude en $\frac{\pi}{2}$ à gauche. $f(x) = \frac{1}{f(\frac{\pi}{2} x)} \sim_{x \to \frac{\pi}{2}} (\frac{\pi}{2} x)^{-a}$. Donc f est intégrable sur un voisinage de $\frac{\pi}{2}$ à gauche si et seulement si a < 1.

En résumé, f est intégrable sur $\left]0,\frac{\pi}{2}\right[$ si et seulement si -1 < a < 1.

Correction Exercice II.

1. Convergence de l'intégrale impropre $\int_1^{+\infty} \frac{\sin x}{x^a} dx$ suivant la valeur de $a \in RM_+^*$.

La fonction $f: x \mapsto \frac{\sin x}{x^a}$ est continue sur $[1, +\infty[$.

Soit X > 1. Les deux fonction $x \mapsto -\cos x$ et $x \mapsto \frac{1}{x^a}$ sont de classe C^1 sur le segment [1, X]. On peut donc effectuer une intégration par parties et on obtient

$$\int_{1}^{X} \frac{\sin x}{x^{a}} dx = \left[\frac{-\cos x}{x^{a}} \right]_{1}^{X} - a \int_{1}^{X} \frac{\cos x}{x^{a+1}} dx = -\frac{\cos X}{X^{a}} + \cos 1 - a \int_{1}^{X} \frac{\cos x}{x^{a+1}} dx.$$

Maintenant, $\left|\frac{\cos x}{x^{a+1}}\right| \leqslant \frac{1}{x^{a+1}}$ et puisque a+1>1, la fonction $x\mapsto \frac{\cos x}{x^{a+1}}$ est intégrable sur un voisinage de $+\infty$. On en déduit que la fonction $X\mapsto \int_1^X \frac{\cos x}{x^{a+1}}\,dx$ a une limite réelle quand X tend vers $+\infty$. Comme d'autre part, la fonction $X\mapsto -\frac{\cos X}{X^a}+\cos 1$ a une limite réelle quand X tend vers $+\infty$, on a montré que l'intégrale impropre $\int_1^{+\infty} f(x)\,dx$ converge en $+\infty$.

Finalement, l'intégrale $\int_1^{+\infty} \frac{\sin x}{x^a} dx$ converge pour tout a > 0.

2. Convergence de l'intégrale impropre $\int_0^{+\infty} e^{ix^2} dx$

Soit X un réel strictement positif. Le changement de variables $t=x^2$ suivi d'une intégration par parties fournit :

$$\int_{1}^{X} e^{ix^{2}} dx = \int_{1}^{X^{2}} \frac{e^{it}}{2\sqrt{t}} dt = \frac{i}{2} \left(-\frac{e^{iX}}{\sqrt{X}} + e^{i} - \frac{1}{2} \int_{1}^{X} \frac{e^{it}}{t^{3/2}} dt \right)$$

Maintenant, $\lim_{X\to +\infty} \frac{e^{iX}}{\sqrt{X}} = 0$ car $\left|\frac{e^{iX}}{\sqrt{X}}\right| = \frac{1}{\sqrt{X}}$. D'autre part, la fonction $t\mapsto \frac{e^{it}}{t^{3/2}}$ est intégrable sur $[1,+\infty[$ car $\left|\frac{e^{it}}{t^{3/2}}\right| = \frac{1}{t^{3/2}}$. Ainsi, $\int_1^{+\infty} e^{ix^2} dx$ est une intégrale convergente et puisque d'autre part la fonction $x\mapsto e^{ix^2}$ est continue sur $[0,+\infty[$, on a montré que l'intégrale $\int_0^{+\infty} e^{ix^2} dx$ converge.

Remarque: On en déduit que les intégrales $\int_0^{+\infty} \cos(x^2) dx$ et $\int_0^{+\infty} \sin(x^2) dx$ sont des intégrales convergentes (intégrales de Fresnel).

Correction Exercice III.

1. Existence et calcul de $\int_0^{+\infty} \frac{1}{x^3+1} dx$

Existence: On pose $f(x) = \frac{1}{x^3+1}$. La fonction f est continue, positive sur $]0, +\infty[$, continue en 0, et intégrable en $+\infty$ en vertu du critère de Riemann. Elle est donc intégrable sur $]0, +\infty[$.

Calcul : Pour calculer la valeur de l'intégrale, on la décompose en éléments simples. Après calculs, on trouve :

$$f(x) = \frac{1}{3} \left(\frac{1}{x+1} - \frac{x-2}{x^2 - x + 1} \right)$$

Les termes ne sont pas intégrables indépendament sur $]0, +\infty[$, donc pour intégrer cela, on intègre sur]0, X[pour X > 0, puis on fait tendre X vers $+\infty$.

Soit maintenant X > 0. On a :

$$\int_0^X \frac{dx}{x+1} = \ln|X+1|$$

$$\int_0^X \frac{x-2}{x^2-x+1} dx = \int_0^X \frac{2x-1-3}{2(x^2-x+1)} dx = \frac{1}{2} \int_0^X \frac{2x-1}{x^2-x+1} dx - \frac{3}{2} \int_0^X \frac{1}{x^2-x+1} dx$$
Puis
$$\int_0^X \frac{2x-1}{x^2-x+1} dx = [\ln|x^2-x+1|]_0^X = \ln|X^2-X+1|$$

Et

$$\int_0^X \frac{1}{x^2 - x + 1} dx = \int_0^X \frac{1}{(x - \frac{1}{2})^2 + \frac{3}{4}} dx = \int_{-\frac{\sqrt{3}}{3}}^{\frac{2X - 1}{\sqrt{3}}} \frac{1}{\frac{3}{4}u^2 + \frac{3}{4}} \sqrt{\frac{3}{4}} du = \frac{2\sqrt{3}}{3} \int_{-\frac{\sqrt{3}}{3}}^{\frac{2X - 1}{\sqrt{3}}} \frac{1}{u^2 + 1} du$$

Cette dernière expression vaut :
$$\frac{2\sqrt{3}}{3}\left(\arctan\left(\frac{2X-1}{\sqrt{3}}\right) - \arctan\left(-\frac{\sqrt{3}}{3}\right)\right)$$

Ainsi,
$$\int_0^{+\infty} \frac{1}{x^3 + 1} dx$$
 vaut

$$\lim_{X\to +\infty}\frac{1}{3}\left(\ln|X+1|-\left(\frac{1}{2}\ln|X^2-X+1|-\frac{3}{2}\cdot\frac{2\sqrt{3}}{3}\left(\arctan\left(\frac{2X-1}{\sqrt{3}}\right)-\arctan\left(-\frac{\sqrt{3}}{3}\right)\right)\right)\right)$$

Mais:
$$\ln |X+1| - \frac{1}{2} \ln |X^2 - X + 1| = \ln \left(\frac{|X+1|}{\sqrt{|X^2 - X + 1|}} \right) \to 0 \text{ en } +\infty.$$

Donc:

$$\int_0^{+\infty} \frac{1}{x^3+1} \ dx = \lim_{X \to +\infty} \frac{\sqrt{3}}{3} \left(\arctan\left(\frac{2X-1}{\sqrt{3}}\right) + \arctan\left(\frac{\sqrt{3}}{3}\right) \right) = \frac{\sqrt{3}}{3} \left(\frac{\pi}{2} + \arctan\left(\frac{\sqrt{3}}{3}\right) \right)$$

Remarque : $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$ pour tout x > 0.

Ainsi,
$$\arctan \frac{\sqrt{3}}{3} = \frac{\pi}{2} - \arctan \sqrt{3} = \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6} \text{ et}$$

$$\int_0^{+\infty} \frac{1}{x^3 + 1} dx = \frac{\sqrt{3}}{3} \cdot \frac{2\pi}{3} = \frac{2\pi\sqrt{3}}{9}$$

2. Existence et calcul de $\int_0^{+\infty} \frac{x \arctan x}{(1+x^2)^2} dx$

Existence: On pose $f(x) = \frac{x \arctan x}{(1+x^2)^2}$. Cette fonction est continue et positive sur $]0, +\infty[$. Elle est définie en 0 et est intégrable en $+\infty$ par critère de Riemann. Elle est donc intégrable sur $]0, +\infty[$.

Calcul: On commence par une intégration par parties avec

$$u'(x) = \frac{x}{(1+x^2)^2} \qquad v(x) = \arctan x$$

$$u(x) = -\frac{1}{2(1+x^2)}$$
 $v'(x) = \frac{1}{1+x^2}$

Cela donne:

$$\int_0^{+\infty} \frac{x \arctan x}{(1+x^2)^2} dx = \left[-\frac{1}{2(1+x^2)} \arctan x \right]_0^{+\infty} + \int_0^{+\infty} \frac{1}{2(1+x^2)^2} dx$$

Le premier terme est nul et il suffit de calculer le second. En effectuant le changement de variable $x = \tan t$, on obtient :

$$\int_0^{+\infty} \frac{1}{2(1+x^2)^2} dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{1+\tan^2 t}{(1+\tan^2 t)^2} dt = \frac{1}{2} \int_0^{\frac{\pi}{2}} \cos^2 t dt = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{1+\cos 2t}{2} dt = \frac{\pi}{8}$$

D'où :
$$\int_0^{+\infty} \frac{x \arctan x}{(1+x^2)^2} dx = \frac{\pi}{8}$$

3. Existence et calcul de $\int_0^{\pi/2} \sqrt{\tan x} \ dx$

Existence: On pose $f(x) = \sqrt{\tan x}$. Cette fonction est continue et positive sur $]0, \frac{\pi}{2}[$. Elle est définie en 0 et en posant $u = \frac{\pi}{2} - x$, on obtient $\sqrt{\tan x} = \sqrt{\frac{\cos u}{\sin u}} \sim \frac{1}{\sqrt{u}}$ qui est intégrable en 0^+ . La fonction f est donc intégrable sur l'intervalle souhaité. Calcul: On effectue tout d'abord le changement de variable $x = \arctan u$:

$$\int_0^{\pi/2} \sqrt{\tan x} \, dx = \int_0^{+\infty} \sqrt{u} \cdot \frac{du}{1 + u^2}$$

On pose ensuite $\sqrt{u} = t : \int_0^{+\infty} \sqrt{u} \cdot \frac{du}{1+u^2} = \int_0^{+\infty} \frac{2t^2}{1+t^4} dt$

Puis on décompose en éléments simples. Le dénominateur se factorise en :

$$1 + t^4 = t^4 + 2t^2 + 1 - 2t^2 = (t^2 + 1)^2 - (\sqrt{2}t)^2 = (t^2 + 1 - \sqrt{2}t)(t^2 + 1 + \sqrt{2}t)$$

Après calculs, on obtient :

$$\frac{2t^2}{1+t^4} = \frac{1}{\sqrt{2}} \left(\frac{t}{t^2 - \sqrt{2}t + 1} - \frac{t}{t^2 + \sqrt{2}t + 1} \right)$$

Les termes ne sont pas intégrables indépendament sur $]0, +\infty[$, donc pour intégrer cela, on calcule une primitive de chacun des termes, on intègre sur]0, X[pour X > 0, et on fait tendre X vers $+\infty$.

On calcule tout d'abord $\int \frac{t}{t^2 - \sqrt{2}t + 1} dt$:

$$\int \frac{t}{t^2 - \sqrt{2}t + 1} dt = \int \frac{1}{2} \cdot \frac{2t - \sqrt{2}t + \sqrt{2}}{t^2 - \sqrt{2}t + 1} dt = \frac{1}{2} \left(\ln(t^2 - \sqrt{2}t + 1) + \int \frac{\sqrt{2}}{t^2 - \sqrt{2}t + 1} dt \right)$$

Puis

$$\int \frac{1}{t^2 - \sqrt{2}t + 1} dt = \int \frac{1}{(t - \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} dt = \int \frac{1}{\frac{s^2}{\sqrt{2}} = t - \frac{\sqrt{2}}{2}} \int \frac{1}{\frac{s^2}{2} + \frac{1}{2}} \frac{ds}{\sqrt{2}} = \sqrt{2} \int \frac{1}{s^2 + 1} ds = \sqrt{2} \arctan s + K$$

Soit
$$\int \frac{t}{t^2 - \sqrt{2}t + 1} dt = \frac{1}{2} \left(\ln(t^2 - \sqrt{2}t + 1) + 2 \arctan(\sqrt{2}t - 1) \right) + K'.$$

De même :
$$\int \frac{t}{t^2 + \sqrt{2}t + 1} dt = \frac{1}{2} \left(\ln(t^2 + \sqrt{2}t + 1) - 2 \arctan(\sqrt{2}t + 1) \right) + L.$$

 Ainsi

$$\int \frac{2t^2}{1+t^4} = \frac{1}{\sqrt{2}} \cdot \frac{1}{2} \left(\ln \left(\frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1} \right) + 2 \arctan(\sqrt{2}t - 1) + 2 \arctan(\sqrt{2}t + 1) + M \right)$$

Et

$$\int_0^{\pi/2} \sqrt{\tan x} \ dx = \int_0^{+\infty} \frac{2t^2}{1 + t^4} = \frac{\pi\sqrt{2}}{2}$$

Correction Exercice IV.

1. Existence et calcul de $\int_0^1 \frac{1}{\sqrt{(1-x)(1+ax)}} dx$

Existence:

On note $\phi_a(x) = (1-x)(1+ax)$ et $f_a(x) = \frac{1}{\sqrt{(1-x)(1+ax)}}$.

Pour que l'intégrale soit définie, il faut tout d'abord que ϕ_a soit strictement positive sur [0,1[. Pour étudier cela, on distingue deux cas : a=0 et $a\neq 0$.

Si a = 0, $\phi_a(x) = (1 - x)$ qui est bien strictement positive sur]0, 1[.

Si $a \neq 0$, ϕ_a est un trinôme du second degré de racines 1 et -1/a. Si a < 0, ϕ_a est positive hors de l'intervalle formé par ses racines, et ϕ_a est strictement positive sur]0,1[lorsque $-1/a \geq 1$, c'est-à-dire $a \geq -1$. Si a > 0, ϕ_a est positif dans l'intervalle formé par ses racines, et ϕ_a est strictement positive sur]0,1[lorsque $-1/a \leq 0$, ce qui est satisfait.

On suppose donc désormais $a \ge -1$ et on peut passer à l'étude de l'intégrabilité. En 0^+ , f_a est définie.

En 1⁻, il faut encore distinguer les cas a=0 et $a\neq 0$. Si a=0, alors $f_a(x) \sim \frac{1}{\sqrt{1-x}}$, qui est intégrable en 1⁻ par le critère de Riemann. Si $a\neq 0$, $f_a(x) \sim \frac{1}{\sqrt{(1-x)(1-a)}}$ si $a\neq -1$, et ceci est intégrable par critère de Riemann. Si en revanche a=-1, alors $f_a(x)=\frac{1}{\sqrt{(1-x)^2}}=\frac{1}{|1-x|}$ qui n'est pas intégrable en 1⁻.

En conclusion, l'intégrale est bien définie pour $a \in]-1, +\infty[$.

Calcul:

On suppose ici que $a \neq 0$ car le cas a = 0 est (presque) évident.

On met ϕ_a sous forme canonique. Après calcul, on obtient

$$\phi_a(x) = -a\left(\left(x + \frac{1-a}{2a}\right)^2 - \left(\frac{1+a}{2a}\right)^2\right)$$

On note $\alpha = \frac{1+a}{2a}$ et on effectue le changement de variable $u = x + \frac{1-a}{2a}$. Alors :

$$\int_0^1 f_a(x)dx = \int_{\frac{1-a}{2a}}^{\frac{1+a}{2a}} \frac{du}{\sqrt{-a(u^2 - \alpha^2)}}$$

La suite du calcul dépend du signe de a.

Si a > 0, alors

$$\int_{0}^{1} f_{a}(x)dx = \frac{1}{\sqrt{a}} \int_{\frac{1-a}{2a}}^{\frac{1+a}{2a}} \frac{du}{\sqrt{\alpha^{2} - u^{2}}}$$

Puis, en posant $u = \alpha v$, on obtient

$$\int_0^1 f_a(x)dx = \frac{1}{\sqrt{a}} \int_{\frac{1-a}{1+a}}^1 \frac{\alpha dv}{|\alpha|\sqrt{1-v^2}} = \frac{1}{\sqrt{a}} \left[\arcsin v\right]_{\frac{1-a}{1+a}}^1 = \frac{1}{\sqrt{a}} \left(\frac{\pi}{2} - \arcsin\left(\frac{1-a}{1+a}\right)\right)$$

Si a < 0, alors

$$\int_{0}^{1} f_{a}(x)dx = \frac{1}{\sqrt{-a}} \int_{\frac{1-a}{2a}}^{\frac{1+a}{2a}} \frac{du}{\sqrt{u^{2} - \alpha^{2}}}$$

Puis, en posant $u = \alpha v$, on obtient

$$\int_0^1 f_a(x)dx = \frac{1}{\sqrt{-a}} \int_{\frac{1-a}{1+a}}^1 \frac{\alpha dv}{|\alpha|\sqrt{v^2 - 1}} = -\frac{1}{\sqrt{-a}} \left[\ln(v + \sqrt{v^2 - 1}) \right]_{\frac{1-a}{1+a}}^1$$

Soit

$$\int_0^1 f_a(x)dx = \frac{1}{\sqrt{-a}} \ln \left(\frac{1-a}{1+a} + \sqrt{\left(\frac{1-a^2}{1+a}\right) - 1} \right)$$

2. Existence et calcul de $\int_0^{+\infty} \frac{1}{(e^x+1)(e^{-x}+1)} dx$

Existence : Pas de problème d'intégrabilité : l'intégrande est continue et positive ; elle admet une limite finie en 0, et est intégrable en $+\infty$ grâce au critère de Riemann. Calcul :

$$\int_0^{+\infty} \frac{1}{(e^x + 1)(e^{-x} + 1)} dx = \int_0^{+\infty} \frac{1}{1 + e^x + e^{-x} + 1} dx = \int_0^{+\infty} \frac{e^x}{e^{2x} + 2e^x + 1} dx$$

Avec $u = e^x$, cette dernière intégrale devient :

$$\int_{1}^{+\infty} \frac{1}{u^2 + 2u + 1} \, du = \int_{1}^{+\infty} \frac{1}{(u+1)^2} \, du = \left[-\frac{1}{u+1} \right]_{1}^{+\infty} = \frac{1}{2}$$

3. Existence et calcul de $\int_0^{+\infty} \frac{1}{5 \operatorname{ch} x + 3 \operatorname{sh} x + 4} dx$

Existence: Pas de problème d'intégrabilité: l'intégrande est continue et positive; elle admet une limite finie en 0, et est intégrable en $+\infty$ grâce au critère de Riemann. Calcul: On commence par revenir à une écriture exponentielle:

$$5\operatorname{ch} x + 3\operatorname{sh} x + 4 = \frac{1}{2}(5e^x + 5e^{-x} + 3e^x - 3e^{-x} + 8) = \frac{1}{2}(8e^x + 2e^{-x} + 8) = e^{-x}(4e^{2x} + 4e^x + 1)$$

L'intégrale cherchée vaut donc $\int_0^{+\infty}\frac{e^x}{4e^{2x}+4e^x+1}dx,$ qui, après le changement de variable $u=e^x$, devient

$$\int_{1}^{+\infty} \frac{1}{4u^2 + 4u + 1} du = \int_{1}^{+\infty} \frac{du}{4(u + \frac{1}{2})^2} = \left[-\frac{1}{4(u + \frac{1}{2})} \right]_{1}^{+\infty} = \frac{1}{6}$$

Correction Exercice V.

Equivalent simple quand x tend vers $+\infty$ de $e^{x^2} \int_x^{+\infty} e^{-t^2} dt$:

La fonction $t\mapsto e^{-t^2}$ est continue, positive et intégrable sur $[0,+\infty[$. En écrivant $e^{-t^2}=-\frac{1}{2t}(-2t)e^{-t^2}$ et en intégrant par parties, on obtient :

$$\int_{x}^{+\infty} e^{-t^{2}} dt = \left[-\frac{1}{2t} e^{-t^{2}} \right]_{x}^{+\infty} - \int_{x}^{+\infty} \frac{1}{2t^{2}} e^{-t^{2}} dt = \frac{1}{2x} e^{-x^{2}} - \int_{x}^{+\infty} \frac{1}{2t^{2}} e^{-t^{2}} dt$$

Par théorème de sommation des relations de comparaison,

$$\int_{x}^{+\infty} \frac{1}{2t^{2}} e^{-t^{2}} dt = o_{x \to +\infty} \left(\int_{x}^{+\infty} e^{-t^{2}} dt \right)$$

Donc,

$$\int_{x}^{+\infty} e^{-t^2} dt \underset{x \to +\infty}{\sim} \frac{1}{2x} e^{-x^2}$$

et donc

$$e^{x^2} \int_x^{+\infty} e^{-t^2} dt \underset{x \to +\infty}{\sim} \frac{1}{2x}$$