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Abstrac t .  We propose timed automata to model the behavior of real-time systems 
over time. Our definition provides a simple, and yet powerful, way to annotate state- 
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A timed automaton accepts timed words - -  strings in which a real-valued time 
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problems, and subclasses. We discuss the application of this theory to automatic 
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1 I n t r o d u c t i o n  

Modal logics and w-automata for qualitative temporal reasoning about concurrent systems 
have been studied in great detail (selected references: [Pnu77, MP81, EC82, LamB3, 
WVS83, Vat87, Pnu86, CES86]) These formalisms abstract away from time, retaining 
only the sequencing of events. In the linear time model, it is assumed that an execution 
can be completely modeled as a linear sequence of states or system events, called an 
execution trace (or just trace). The behavior of the system is a set of execution sequences. 
Since a set of sequences is a formal language, this leads naturally to the use of automata 
for the specification and verification of systems. When the systems are finite-state, as 
many are, we can use finite automata, leading to effective constructions and decision 
procedures for automatically manipulating and analyzing system behavior. Even when 
automata are not used directly, they are never far away; for example, automata theory 
proves useful in developing the basic decision procedures for propositional linear temporal 
logic. 

1Supported by the NSF under grant MIP-8858807. 
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Although the decision to abstract away from quantitative time has had many ad- 
vantages, it is ultimately counterproductive when reasoning about systems that must 
interact with physical processes; the correct functioning of the control system of airplanes 
and toasters depends crucially upon real t ime considerations. We would like to be able to 
specify and verify models of real-time systems as easily as qualitative models. Our goal 
is to modify finite automata for this task. 

For simplicity, we discuss models that consider executions to be infinite sequences of 
events, not states (the theory with state-based models differs only in details). Within this 
framework, it is possible to add timing to an execution trace by pairing it with a sequence 
of times, where the i 'th element of the time sequence gives the time of occurrence of the 
i ' th event. At this point, however, a fundamental question arises: what is the nature of 
time? 

One alternative, which leads to the discrete-t ime model, requires the time sequence to 
be a monotonically increasing sequence of integers. This model is appropriate for certain 
kinds of synchronous digital circuits, where signal changes are considered to have changed 
exactly when a clock signal arrives. One of the advantages of this model is that it can be 
transformed easily into an ordinary formal language. Each timed trace can be expanded 
into a trace where the times increase by exactly one at each step, by inserting a special 
silent event as many times as necessary between events in the original trace. Once this 
transformation has been performed, the time of each event is the same as its position, 
so the time sequence can be discarded, leaving an ordinary string. Hence, discrete time 
behaviors can be manipulated using ordinary finite automata. Of course, in physical 
processes events do not always happen at integer-valued times. The discrete-time model 
requires that continuous time be approximated by choosing some fixed quantum a priori, 
which limits the accuracy with which physical systems can be modeled. 

The f ictitious-clock model is similar to the discrete time model, except that it only 
requires the sequence of integer times to be non-decreasing. The interpretation of a timed 
execution trace in this model is that events occur in the specified order at real-valued 
times, but only the (integer) readings of the actual times with respect to a digital clock 
are recorded in the trace. This model is also easily transformed into a conventional 
formal language. First, add to the set of events a new one, called tick. The untimed 
trace corresponding to a timed trace will include all of the events from the timed trace, 
in the same order, but with ti+a - tl number of ticks inserted between the i 'th and the 
(i + 1)'th events (note that this number may be 0). Once again, it is conceptually simple 
to manipulate these behaviors using finite automata, but the compensating disadvantage 
is that it represents time only in an approximate sense. 

We prefer a dense-t ime model, in which time is a dense set, because it is more realistic 
physically. In this model, the times of events are real numbers, which increase monoton- 
ically without bound. Dealing with dense time in a finite-automata framework is more 
difficult than the other two cases, because it is not obvious how to transform a set of 
dense-time traces into an ordinary formal language. Instead, we have developed a theory 
of t imed formal languages and t imed automata to support automated reasoning about 
such systems. 
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Figure 1: B~chi automaton accepting (a + b)*a ~ 

2 c o - a u t o m a t a  

In this section we will briefly review the relevant aspects of the theory of w-regular lan- 
guages. 

The more familiar definition of a formal language is as a set of finite words over some 
given alphabet (see, for example, [HU79]). As opposed to this, an w-language consists 
of infinite words. Thus an w-language over an alphabet E is a subset of E ~ - -  the set 
of all infinite words over E. w-automata provide a finite representation for certain types 
of w-languages. An w-automaton is essentially the same as a nondeterministic finite- 
state automaton,  but  with the acceptance condition modified suitably so as to handle 
infinite input words. Various types of w-automata have been studied in the literature 
[Btic62, McN66, Cho74, Tho90]. We will mainly consider two types of w-automata: B/ichi 
automata  and Muller automata.  

A transition table ,4 is a tuple (E, S, So, E), where E is an input alphabet, S is a finite 
set of automaton states, So c S is a set of start states, and E C S • S • E is a set of 
edges. The automaton starts in an initial state, and if (s, s', a} E E then the automaton 
can change its state from s to s' reading the input symbol a. 

For a E E ~, we say that 

~'1 a3  
r : s 0 ~ S 1 . a 2 )  s 2  ) . . .  

is a run of A over a, provided So E So, and (Si-l,Si, a~) E E for all i > 1. For such a run, 
the set inf(r)  consists of the states s E S such that s = s~ for infinitely many / _> 0. 

Different types of w-automata are defined by adding an acceptance condition to the 
definition of the transition tables. A Biichi automaton A is a transition table (E, S, So, E) 
with an additional set F C S of accepting states. A run r of `4 over a word a E E ~ is an 
accepting run iff inf(r)  M F ~ (3. In other words, a run r is accepting iff some state from 
the set F repeats infinitely often along r. The language L(A) accepted by A consists~ of 
the words (r E E ~ such that  .4 has an accepting run over a. 

E x a m p l e  2.1 Consider the 2-state automaton of Figure 1 over the alphabet {a, b}. The 
state So is the start state and Sl is the accepting state. Every accepting run of the 
automaton has the form 

F ; .S O ~ o'r, a a a 
) SO a 2 )  . . ,  > S o  ) S 1  ) S l  ) . . .  

The automaton accepts all words with only a finite number of b's; that is, the language 
Lo = (a + b)* a% m 
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Figure 2: Deterministic Muller automaton accepting (a + b)*a ~ 

An w-language is called w-regular iff it is accepted by some Bfichi automaton. Thus 
the language L0 of Example 2.1 is an w-regular language. 

The class of w-regular languages is closed under all the Boolean operations. Lan- 
guage intersection is implemented by a product construction for Bfichi automata [Cho74, 
WVS83]. There are known constructions for complementing Bfichi automata [SVW87, 
Saf88]. 

When Bfichi automata are used for modeling finite-state concurrent processes, the 
verification problem reduces to that of language inclusion. The inclusion problem for 
w-regular languages is decidable. To test whether the language of one automaton is 
contained in the other, we check for emptiness of the intersection of the first automaton 
with the complement of the second. Testing for emptiness is easy; we only need to search 
for a cycle that is reachable from a start state and includes at least one accepting state. 
In general, complementing a Bfichi automaton involves an exponential blow-up in the 
number of states, and the language inclusion problem is known to be PSPACE-complete 
[SVW87]. However, checking whether the language of one automaton is contained in the 
language of a deterministic automaton can be done in polynomial time [Kur87]. 

A transition table ,4 = (E, S, So, E} is deterministic iff (i) there is a single start state, 
that is, IS0[ = 1, and (ii) the number of a-labeled edges starting at s is at most one 
for all states s E S and for all symbols a E E. Thus, for a deterministic transition 
table, the current state and the next input symbol determine the next state uniquely. 
Consequently, a deterministic automaton has at most one run over a given word. Unlike 
the automata on finite words, the class o~ languages accepted by deterministic Bfichi 
automata is strictly smaller than the class of w-regular languages. For instance, there is 
no deterministic Bfichi automaton which accepts the language L0 of Example 2. I. Muller 
automata (defined below) avoid this problem at the cost of a more powerful acceptance 
condition. 

A Muller automaton ~A is a transition table (E, S, So, E) with an acceptance family 
f C_ 2 s. A run r of A over a word a E E ~ is an accepting run iff inf(r).E j z  That  is, a 
run r is accepting iff the set of states repeating infinitely often along r equals some set in 
~'. The language accepted by A is defined as in case of Bfichi automata. 

The class of languages accepted by Muller automata is the same as that accepted 
by Bfichi automata, and, more importantly, also equals that  accepted by deterministic 
Muller automata. 

E x a m p l e  2.2 The deterministic Muller automaton of Figure 2 accepts the language L0 
consisting of all words over {a, b} with only a finite number of b's. The Muller acceptance 
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family is {{st}}. Thus every accepting run can visit the state So only finitely often. �9 

Thus deterministic Muller automata  form a strong candidate for representing w-regular 
languages: they are as expressive as their nondeterministic counterpart,  and they can be 
complemented in polynomial time. Algorithms for constructing the intersection of two 
Muller automata  and for checking the language inclusion are known [CDK89]. 

3 T i m e d  a u t o m a t a  

In this section we define t imed words by coupling a real-valued t ime with each symbol in 
a word. Then we augment the definition of w-automata so that  they accept t imed words, 
and use them to develop a theory of t imed regular languages analogous to the theory of 
w-regular languages. 

3 . 1  T i m e d  l a n g u a g e s  

We define t imed words so that a behavior of a real-time system corresponds to a t imed 
word over the alphabet of events. As in the case of the dense-time model, the set of 
nonnegative real numbers, R, is chosen as the t ime domain. A word cr is coupled with a 
t ime sequence 7 as defined below: 

D e f i n i t i o n  3.1 A t ime sequence 7 = r172. . ,  is an infinite sequence of t ime values 71 E R 
with T, > 0, satisfying the following constraints: 

1. Monoton ic i t y :  7 increases strictly monotonically; that  is, 7, < T,+1 for all i > 1. 

2. Progress: For every t E R, there is some i _> 1 such that ~', > t. 

A t imed word over an alphabet E is a pair (a, 7) where a = a l a 2 . . ,  is an infinite word 
over E and ~- is a t ime sequence. A t imed language over E is a set of t imed words over E. 

If a t imed word (a, T) is viewed as an input to an automaton, it presents the symbol 
a, at t ime 71. If each symbol ai is interpreted to denote an event occurrence then the 
corresponding component 7i is interpreted as the t ime of occurrence of al. Let us consider 
some examples of t imed languages. 

E x a m p l e  3.2 Let the alphabet be {a, b}. Define a t imed language L1 to consist of all 
t imed words (~r, r )  such that  there is no b after t ime 5.6. Thus the language L1 is given 
by 

L, = I Vi. ((7, > 5.6) (, ,  = a ) ) ) .  

Another example is the language L2 consisting of t imed words in which a and b alter- 
hate, and the t ime difference between the successive pairs of a and b keeps increasing. L2 
is given as 

L2 = {((ab) ~, 7) I Yi. ((72, - 72,-1) < (T~,+2 -- T2,+1))}. 
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a, x:=O 

b, (x<2) ? 

Figure 3: Example of a t imed transition table 

The language-theoretic operations such as intersection, union, complementation are 
defined for t imed languages as usual. In addition wedefine the Untime operation which 
discards the t ime values associated with the symbols, that is, it considers the projection 
of a t imed trace (~r, r )  on the first component. 

Definit ion 3.3 For a t imed language L over E, Untime(L) is the w-language consisting 
of cr E E ~ such that (a, ~-) E L for some time sequence r.  ! 

For instance, referring to Example 3.2, Untime(L1) is the w-language (a + b)*a ~, and 
Vntime(L2) consists of a single word (ab)% 

3.2 Transition tables with t iming constraints 

Now we extend transition tables to timed transition tables so that they can read timed 
words. When an automaton makes a state-transition, the choice of the next state depends 
upon the input symbol read. In case of a t imed transition table, we want this choice to 
depend also upon the t ime of the input symbol relative to the times of the previously 
read symbols. For this purpose, we associate a finite set of (real-valued) clocks with each 
transition table. A clock can be set to zero simultaneously with any transition. At any 
instant, the reading of a clock equals the t ime elapsed since the last t ime it was reset. 
With each transition we associate a clock constraint, and require that the transition may 
be taken only if the current values of the clocks satisfy this constraint. Before we define 
the t imed transition tables formally, let us consider some examples. 

E x a m p l e  3.4 Consider the t imed transition table of Figure 3. The start state is So. 
There is a single clock x. An annotation of the form x := 0 on an edge corresponds to 
the action of resetting the clock x when the edge is traversed. Similarly an annotation of 
the form (x < 2)? on an edge gives the clock constraint associated with the edge. 

The automaton starts in state So, and moves to state sl reading the input symbol a. 
The clock x gets set to 0 along with this transition. While in state sl,  the value of the 
clock x shows the t ime elapsed since the occurrence of the last a symbol. The transition 
from state sl to So is enabled only if this value is less than 2. The whole cycle repeats 
when the automaton moves back to state So. Thus the timing constraint expressed by 
this transition table is that  the delay between a and the following b is always less than 2; 
more formally, the language is 

{((ab) ") I Vi. < + 2)}. 
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d, (y>2) ? 

.'--=0 y: =0 ( 

Figure 4: Timed transition table with 2 clocks 

Thus to constrain the delay between two transitions el and e2, we require a particular 
clock to be reset on el, and associate an appropriate clock constraint with e2. Note that 
clocks can be set asynchronously of each other. This means that  different clocks can 
be restarted at different times, and there is no lower bound on the difference between 
their readings. Having multiple clocks allows multiple concurrent delays, as in the next 
example. 

E x a m p l e  3.5 The t imed transition table of Figure 4 uses two clocks x and y, and accepts 
the language 

= {((abed) I Vj. <  4;+1 + 1) A > + 2))}.  

The automaton loops between the states So, sl, s~ and sa. The clock x gets set to 
0 each t ime it moves from So to sl reading a. The check (x < 1)? associated with the 
c-transition from s2 to sa ensures that c happens within t ime 1 of the preceding a. A 
similar mechanism of resetting another independent clock y while reading b and checking 
its value while reading d, ensures that  the delay between b and the following d is always 
greater than 2. �9 

Notice that  in the above example, to constrain the delay between a and c and between 
b and d the automaton does not put  any bounds on the t ime difference between a and the 
following b, or c and the following d. This is an important  advantage of having access to 
multiple clocks which can be set independently of each other. The above language L3 is 
the intersection of the two languages L 1 and L~ defined as 

L 1 = {((abcd)", T) I Vj. (r4j+3 < T4j+I + 1)}, 

L23 = {((abcd) '~, T) I Vj. (T4j+4 > T4j+2 -t- 2)}. 

Each of the languages L~ and L~ can be expressed by an automaton which uses just one 
clock; however to express their intersection we need two clocks. 

We remark that  the clocks of the automaton do not correspond to the local clocks 
of different components in a distributed system. All the clocks increase at the uniform 
rate counting t ime with respect to a fixed global time frame. They are fictitious clocks 
invented to express the timing properties of the system. Alternatively, we can view the 
automaton to be equipped with a finite number of stop-watches which can be started and 
checked independently of one another, but all stop-watches refer to the same clock. 
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3.3 Clock constraints  and clock interpretat ions  

To define t imed automata  formally, we need to say what type of clock constraints are 
allowed on the edges. The simplest form of a constraint compares a clock value with a 
t ime constant. We allow only the Boolean combinations of such simple constraints. Any 
value from Q, the set of nonnegative rationals, can be used as a t ime constant. Allowing 
more complex constraints, such as those involving addition of clock values, makes any 
sort of analysis impossible, for instance, the emptiness problem becomes undecidable. 

D e f i n i t i o n  3.6 For a set X of clocks, the set r  of clock constraints 5 is defined 
inductively by 

5 : =  x < c I c<_ z1-~51~1A~2,  

where x is a clock in X and c is a constant in Q. �9 

Observe that constraints such as t r ue ,  (x = c), x E [2, 5) can be defined as abbrevia- 
tions. 

A clock interpretation v for a set X of clocks assigns a real value to each clock; that 
is, it is a mapping from X to R. We say that a clock interpretation y for X satisfies a 
clock constraint 5 over X iff 5 evaluates to true using the values given by v. 

For t E R, t, + t  denotes the clock interpretation which maps every clock x to the value 
~,(x) + t, and the clock interpretation t . v  assigns to each clock x the value t.~/(x). For 
Y C_ X ,  [Y H t]~, denotes the clock interpretation for X which assigns t to each x E Y, 
and agrees with v over the rest of the clocks. 

3.4 T imed  transi t ion tables  

Now we give the precise definition of t imed transition tables. 

D e f i n i t i o n  3.7 A t imed transition table is a tuple (E, S, S0, C, E), where 

* E is a finite alphabet, 
. S is a finite set of states, 
. So c S is a set of start states, 
. C is a finite set of clocks, and 
. E C S x S x E x 2 c x r  gives the set of transitions. An edge (s, s', a, 1, 5} 

represents a transition from state s to state s ~ on input symbol a. The set 
I C C gives the clocks to be reset with this transition, and 5 is a clock 
constraint over C. 

Given a t imed word (a, ~-), the t imed transition table .A starts in one of its start states 
at t ime 0 with all its clocks initialized to 0. As time advances the values of all clocks 
change, reflecting the elapsed time. At time Ti, .A changes state from s to s p using some 
transition of the form (s, s ~, c% t ,  5/ reading the input c% if the current values of clocks 
satisfy 5. With this transition the clocks in 1 are reset to 0, and thus start counting time 
with respect to it. This behavior is captured by defining runs of timed transition tables. 
A run records the state and the values of all the clocks at the transition points. For a 
t ime sequence T = rlT2 . . .  we define r0 = 0. 
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Def in i t i on  3.8 A run r, denoted by (5, F), of a timed transition table (H, S, So, C, E} over 
a t imed word (a, r) is an infinite sequence of the form 

"rl "/'2 "/'3 

with sl E S and ul E [C ~ R], for all i > 0, satisfying the following requirements: 

�9 Initiation: So E So, and v0(z) = 0 for all x E C. 

�9 Consecution: for all i _> 1, there is an edge in E of the form ( s i - , , s~ ,a i ,  Ai, Si} such 
that  (vi_~ + rl -- ri-1) satisfies 81 and u~ equals [A~ ~-* 0](ui_~ + ~'i - ri-1). 

The set in f ( r )  consists of s E S such that s = si for infinitely many i >_ 0. �9 

E x a m p l e  3.9 Consider the timed transition table of Example 3.5. Consider a timed 
word 

(a, 2) -* (b, 2.7) --* (c, 2.8) -~ (d, 5) ~ . . .  

Below we give the initial segment of the run. A clock interpretation is represented by 
listing the values [x, y]. 

(s0,[0,0 D - ~  ( s , , [ 0 , 2 ] ) ~  (s2, [0.7,0]} ~-+ { s 3 , [ 0 . 8 , 0 . 1 ] ) ~  (s0,[3,2.3]}... 
2 2 .7  2 .8  5 

Along a run r = (5, F) over (a, r), the values of the clocks at time t between r; and 
Ti+, are given by the interpretation (vi + t - ri). When the transition from state sl to si+l 
occurs, we use the value (ul + ri+l - ri) to check the clock constraint; however, at time 
ri+l, the value of a clock that  gets reset is defined to be 0. 

Note that  a transition table A = (E, S, So, E) can be considered to be a timed transition 
table A'.  We choose the set of clocks to be the empty set, and replace every edge (s, s', a} 
by (s, J ,  a, 0, true}.  The runs of A' are in an obvious correspondence with the runs of A. 

3.5 Timed regular languages 

We can couple acceptance criteria with timed transition tables, and use them to define 
timed languages. 

Def in i t ion  3.10 A t imed Biichi automaton (in short TBA) is a tuple (E, S, So, C, E, F), 
where (P,, S, So, C, E) is a timed transition table, and F __C_ S is a set of accepting states. 

A run r = (5,p) of a TBA over a timed word (a, ~-) is called an accepting run iff 
in f ( r )  M F # 0. 

For a TBA A, the language L(A) of timed words it accepts is defined to be the set 
{(a, T) I A has an accepting run over (a, r)}. �9 

In analogy with the class of languages accepted by B/ichi automata,  we call the class 
of timed languages accepted by TBAs timed regular languages. 

Def in i t i on  3.11 A timed language L is a t imed regular language iff L = L(~4) for some 
TBA A. �9 
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a 

ar X:~O 
b ,  (x<2)  ? 

a~ x : ~ O  

Figure 5: Timed Bfichi automaton accepting Lcrt 

Example  3.12 The language L3 of Example 3.5 is a timed regular language. The timed 
transition table of Figure 4 is coupled with the acceptance set consisting of all the states. 

For every w-regular language L over ~, the timed language {(c~, r) t a E L} is regular. 
A typical example of a nonregular timed language is the language L~ of Example 3.2. It 

requires that the time difference between the successive pairs of a and b form an increasing 
sequence. 

Another nonregular language is {(a ~, T) I Yi. (ri = 2i)}. " 

The automaton of Example 3.13 combines the Bfichi acceptance condition with the 
timing constraints to specify an interesting convergent response property: 

Ex ample  3.13 The automaton of Figure 5 accepts the timed language Lcrt over  the 
alphabet {a, b}. 

Lcrt = {((ab)~,r) [ 3i. Y j  > i. (r2j < ~2j-1 + 2)}. 

The start state is so, the accepting state is s2, and there is a single, clock x. The 
automaton starts in state s0, and loops between the states So and sl for a while. Then, 
nondeterministically, it moves to state s2 setting its clock x to 0. While in the loop between 
the states s2 and s3, the automaton resets its clock while reading a, and ensures that the 
next b is within 2 time units. Interpreting th e symbol b as a response to a request denoted 
by the symbol a, the automaton models a system with a convergent response time; the 
response time is "eventually" always less than 2 time units. [] 

The next example shows that timed automata can specify periodic behavior also. 

Example  3.14 The automaton of Figure 6 accepts the following language over the al- 
phabet {a, b}. 

{(a, r) I Vi. 32. (rj = 3i A aj = a)} 

The automaton has a single state So, and a single clock x. The clock gets reset at 
regular intervals of period 3 time units. The automaton requires that whenever the clock 
equals 3 there is an a symbol. Thus it  expresses the property that a happens at all time 
values that are multiples of 3. I 
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a ,b ,  (x<3) ? 

a, (x--3) ?,x:=O 

Figure 6: Timed automaton specifying periodic behavior 

3 . 6  P r o p e r t i e s  o f  t i m e d  r e g u l a r  l a n g u a g e s  

The study of formal languages has been greatly enriched by the consideration of closure 
properties and decision problems. Here, we summarize the answers to some of the basic 
questions of these types, especially those that are relevant to verification. 

The next theorem considers some closure properties of timed regular languages. 

T h e o r e m  3.15 The class of timed regular languages is closed under (finite) union and 
intersection. �9 

The construction for union is trivial, since 'we are considering nondeterministic au- 
tomata. The construction for intersection is a straightforward product of automata. While 
constructing the product of n TBAs .A4 = IN, Si, S0i, Ci, Ei, Fi), i = 1, 2 . . .  n, the number 
of states of the resulting automaton is  -I]ils, I. The number of clocks is r ,lc  l, and the 
size of the edge set is n.IIdE~ I. Note that IE[ includes the length of the clock constraints 
assuming binary encoding for the constants. 

The main result on timed automata is an algorithm for checking the emptiness of the 
language. The existence of an infinite accepting path in the underlying transition table is 
clearly a necessary condition for the language of an automaton to be nonempty. However, 
the timing constraints of the automaton rule out certain additional behaviors. We show 
that a Bfichi automaton can be constructed that accepts exactly the set of untimed words 
that are consistent with the timed words accepted by a timed automaton (see [Alu91] for 
a detailed description of this construction). 

T h e o r e m  3.16 Given a TBA A = (~, S, So, C, E, F}, there exists a Bfichi automaton 
over N which accepts Untime[L(.A)]. m 

Theorem 3.16 says that the timing information in a timed automaton is "regular" 
in character; its consistency can be checked by a finite-state automaton. An equivalent 
formulation of the theorem is 

I f  a timed language L is timed regular then Ui~time(L) is w-regular. 

The untiming construction is interesting by itself, but also gives an immediate solution 
to the problem of testing a timed automaton for emptiness, since the timed language is 
empty iff the untimed language is empty. For a timed automaton A = (P~, S, So, C, E, F), 



56 

the B/ichi automaton constructed by Theorem 3.16 has size O[(IS I + IEI)-26(~)], where 
~(~4) denotes the length of the timing constraints labeling the edges of ,4 (assuming binary 
encoding for the constants). Consequently, the complexity of the algorithm for deciding 
emptiness of a TBA is exponential in the number of clocks and the length of the constants 
in the timing constraints. One need not construct the untimed automaton explicitly, and 
the emptiness test can be implemented in polynomial space. This blow-up in complexity 
seems unavoidable; we reduce the acceptance problem for linear bounded automata, a 
known PSPACE-complete problem [HU79], to the emptiness question for TBAs to prove 
the PSPACE lower bound for the emptiness problem. This gives the following theorem. 

T h e o r e m  3.17 The problem of deciding the emptiness of the language of a given timed 
automaton r is PSPACE-complete. " 

Note that the source of this complexity is not the choice of R to model time. The 
PSPACE-hardness result can be proved if we leave the syntax of timed automata un- 
changed, but use the discrete domain N to model time. Also this complexity is insensitive 
to the encoding of the constants; the problem is PSPACE-complete even if we encode all 
constants in unary. 

Surprisingly, several problems that are decidable for finite automata are undecidable 
for timed automata. The most basic of these is the universality problem: Does the lan- 
guage of a given automaton over E comprise of all the timed words over E? Equivalently: 
Is the complement of the language of the automaton empty? The next theorem gives this 
undecidability result. 

T h e o r e m  3.18 Given a timed automaton over an alphabet E the problem of deciding 
whether it accepts all timed words over E is IIl-hard. �9 

The above theorem is proved by reducing a Hl-hard problem of 2-counter machines to 
the universality question. The class HI consists of highly undecidable problems, includ- 
ing some nonaxithmetical sets (for an exposition of the analytical hierarchy consult, for 
instance, [Rog67]). Part of the surprise value of this result is the continuous versions of 
many other problems are easier to solve than the discrete versions: for example, number 
theory is undecidable but the theory of the reals is decidable, and linear programming 
can be solved in polynomial time, but integer programming is NP-complete 2. 

Recall that the language inclusion problem for B/ichi automata can be solved in 
PSPACE. However, it follows from Theorem 3.18 that there is no decision procedure 
to check whether the language of one TBA is a subset of the other. This result is an 
obstacle in using timed automata as a specification language for automatic verification of 
finite-state real-time systems. 

Coro l la ry  3.19 Given two TBAs A1 and r over an alphabet E, the problem of checking 
L(A1) G L(A2) is H~-hard. �9 

It is equally difficult to decide whether the languages of two timed automata are the 
same. It can be proved by using these decidability results that, unlike regular languages, 
timed regular languages are not closed under complementation. The (non-constructive) 
proof depends on the IIl-hardness of the inclusion problem. 

2Thanks to Moshe Verdi for this observation 
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a a a 

x: =0 x=l? 

Figure 7: Noncomplementable automaton 

C o r o l l a r y  3.20 The class of timed regular languages is not closed under complementa- 
tion. �9 

The following example provides some insight regarding the nonclosure under comple- 
mentation. 

E x a m p l e  3.21 The language accepted by the automaton of Figure 7 o~er {a} is 

{(a ~, r) I 3i > 1. Bj > i. (Tj = rl + 1)}. 

The complement of this language cannot be characterized using a TBA. The comple- 
ment needs to make sure that  no pair of a's is separated by distance 1. Since there is no 
bound on the number of a's that  can happen in a time period of length 1, keeping track 
of the times of all the a's within past 1 time unit, would require an unbounded number 
of clocks. �9 

3 . 7  C o m p a r i s o n  o f  d e n s e  a n d  d i s c r e t e  t i m e  

For the t imed regular languages arbitrarily many symbols can occur in a finite interval 
of time. Furthermore, the symbols can be arbitrarily close to each other. The following 
example shows that  there is a timed regular language L such that  for every (~r, ~-) C L, 
there exists some r > 0 such that  the sequence of time differences ('q+l - ~'~) converges to 
the limit ~. 

E x a m p l e  3.22 The language accepted by the automaton in Figure 8 is 

L . . . . .  **~ = {((ab) ~, ~') I Vi. (~-2~-1 = i h (T2~ -- V2i-1 > T2~+2 -- v2~+1))). 

Every word accepted by this automaton has the property that  the sequence of time 
differences between a and the following b converges. A sample word accepted by the 
automaton is 

(a,1) ---+ (b, 1.5) ~ (a,2) ~ (b, 2.25) ~ (a, 3) ~ (b, 3.125) --~ --- 
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a,x:=O ~@ 
@ (x--l) ? 

a, (x=l) ?,x:=O 

y:=O 
b, (y<l) ?, y:=O 

Figure 8: Timed automaton accepting L . . . . .  ~9~ 

(x<5) ? ~ a, (x<2) ? a, 

b,x:=O c~x:=O 

Figure 9: Timed Muller automaton 

This example illustrates that the model of reals is indeed different from the discrete- 
time model. If we require all the time values rl to be multiples of some fixed constant e, 
however small, the language accepted by the automaton of Figure 8 will be empty. 

On the other hand, timed automata do not distinguish between the set of reals R and 
the set of rationals Q. Only the denseness of the underlying domain plays a crucial role. 
In particular, Theorem 3.23 shows that if we require all the time values in time sequences 
to be rational numbers, the untimed language Untime[L(A)] of a timed automaton A 
stays unchanged. 

T h e o r e m  3.23 Let L be a timed regular language. For every word ~, cr E Untime(L) iff 
there exists a time sequence r SUCh that vi E Q for all i > 1, and (c~, T) E L. �9 

3 . 8  T i m e d  M u l l e r  a u t o m a t a  

We can define timed automata with Muller acceptance conditions also. 

Def in i t ion  3.24 A timed Muller automaton (TMA) is a tuple (E, S, So, C, E, 9c), where 
(E, S, So, C, E) is a timed transition table, and Y C_ 2 s specifies an acceptance family. 

A run r = (~,F) of the automaton over a timed word (or, T) is an accepting run iff 
inf(r) 7.  

For a TMA A, the language L(A) of timed words it accepts is defined to be the set 
{(~, T) ] ~4 has an accepting run over (a, T)}. m 

E x a m p l e  3.25 Consider the automaton of Figure 9 over the alphabet {a,b,c}. The 
start state is so, and the Muller acceptance family consists of a single set {so, s2}. So any 
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accepting run should loop between states So and sl only finitely many times, and between 
states so and s2 infinitely many times. Every word (a, r) accepted by the automaton 
satisfies: (1) a e (a(b + c))*(ac) ~', and (2) for all i > 1, the difference (T2i-1 - r2i-2) is less 
than 2 if the (2i)-th symbol is c, and less than 5 otherwise. �9 

Recall that  Bfichi automata and Muller automata have the same expressive power. 
The following theorem states that  the same holds true for TBAs and TMAs. Thus the 
class of t imed languages accepted by TMAs is the same as the class of timed regular 
languages. The proof of the following theorem closely follows the standard argument that 
an w-regular language is accepted by a Bfichi automaton iff it is accepted by some Muller 
automaton. 

T h e o r e m  3.26 A timed language is accepted by some timed B~chi automaton iff it is 
accepted by some timed Muller automaton. �9 

4 D e t e r m i n i s t i c  t i m e d  a u t o m a t a  

The results of Section 3 show that the class of timed automata is not closed under com- 
plement, and one cannot automatically compare the languages of two automata. In this 
section we define deterministic timed automata, and show that  the class of deterministic 
timed Muller automata (DTMA) is closed under all the Boolean operations. 

4 . 1  D e f i n i t i o n  

Recall that  in the untimed case a deterministic transition table has a single start state, 
and from each state, given the next input symbol, the next state is uniquely determined. 
We want a similar criterion for determinism for the timed automata: given a state, the 
values for all the clocks, and the next input symbol along with its time of occurrence, the 
next transition should be uniquely determined. So we allow multiple transitions starting 
at the same state with the same label, but require their clock constraints to be mutually 
exclusive so that  at any time only one of these transitions is enabled. 

Def in i t i on  4.1 A timed transition table (E, S, S0, C, E) is called deterministic iff 

1. it has only one start state, [So[ = 1, and 

. for all s C S, for all a E E, for every pair of edges of the form (s, - ,  a, - ,  51) and 
( s , - ,  a , - ,  ~2), the clock constraints ~1 and ~2 are mutually exclusive (i.e., 51 A (~2 is 
unsatisfiable). 

A timed automaton is deterministic iff its timed transition table is deterministic, m 

Note that  in absence of clocks the above definition matches with the definition of 
determinism for transition tables. Thus every deterministic transition table is also a 
deterministic timed transition table. Let us consider an example of a DTMA. 
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a,x:=O 

b, (x>21 ? 

arx:=O 

b, (x_<2) ? 

arx:=O 

Figure 10: Deterministic timed Muller automaton 

Example  4.2 The DTMA of Figure 10 accepts the language Lcrt of Example 3.13 

Left = {( (ab)~,T)13i .  Vj  > i.(r2j+2 <__ r2j+l +2)} 

The Muller acceptance family is given by {{s2, 83}}. The state ~2 has two mutually 
exclusive outgoing transitions on b. The acceptance condition requires that the transition 
with the clock constraint (x > 2) is taken only finitely often. �9 

Observe that a deterministic timed transition table has at most one run over a given 
timed word. Consequently, deterministic timed automata can be easily complemented. 

4.2 Closure properties 

Now we consider the closure properties for deterministic timed automata. Like determin- 
istic Muller automata, DTMAs are also closed under all Boolean operations. 

Theorem 4.3 The class of timed languages accepted by deterministic timed Muller au- 
tomata is closed under union, intersection, and complementation. �9 

Now let us consider the closure properties of deterministic timed Bfichi automata 
(DTBA). Recall that deterministic B(ichi automata (DBA) are not closed under com- 
plement. The property that "there are infinitely many a's" is specifiable by a DBA, 
however, the complement property, "there are only finitely many a's" cannot be ex- 
pressed by a DBA. Consequently we do not expect the class of DTBAs to be closed under 
complementation. However, since every DTBA is also a DTMA, the complement of a 
DTBA-language is accepted by a DTMA. The next theorem states the closure properties. 

Theorem 4.4 The class of timed languages accepted by DTBAs is closed under union 
and intersection, but not closed under complement. The complement of a DTBA language 
is accepted by some DTMA. �9 
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4.3 Decision problems 

In this section we examine the complexity of the emptiness problem and the language 
inclusion problem for deterministic timed automata. 

The emptiness of a timed automaton does not depend on the symbols labeling its 
edges. Consequently, checking emptiness of deterministic automata is no simpler; it is 
PSPACE-complete. 

Since deterministic automata can be complemented, checking for language inclusion 
is decidable. In fact, while checking L(Aa) C L(.A2), only 2,2 need be deterministic, A1 
can be nondeterministic. The problem can be solved in PSPACE: 

Theorem 4.5 For a timed automaton .A1 and a deterministic timed automaton ,A2, the 
problem of deciding whether L(A1) is contained in L(A2) is PSPACE-complete. �9 

4.4 Expressiveness 

In this section we compare the expressive power of the various types of timed automata. 
Every DTBA can be expressed as a DTMA simply by rewriting its acceptance condi- 

tion. However the converse does not hold. First observe that every w-regular language 
is expressible as a DMA, and hence as a DTMA. On the other hand, since deterministic 
Bfichi automata are strictly less expressive than deterministic Muller automata, certain 
w-regular languages are not specifiable by DBAs. The next lemma shows that such lan- 
guages cannot be expressed using DTBAs either. It follows that DTBAs are strictly less 
expressive than DTMAs. In fact, DTMAs are closed under complement, whereas DTBAs 
are not. 

L e m m a  4.6 For an w-language L, the timed language {(a,~') [ a e L} is accepted by 
some DTBA iff L is accepted by some DBA. �9 

From the above discussion one may conjecture that a DTMA language L is a DTBA 
language if Untime(L) is a DBA language. To answer this let us consider the convergent 
response property Lcrt specifiable using a DTMA (see Example 4.2). This language in- 
volves a combination of liveness and timing. We conjecture that no DTBA can specify 
this property. 

Along the lines of the above proof we can also show that for an w-language L, the 
timed language {(a, T) I a E L} is accepted by some DTMA (or TMA, or TBA) iff L is 
accepted by some DMA (or MA, or BA, respectively). 

Since DTMAs are closed under complement, whereas TMAs are not, it follows that the 
class of languages accepted by DTMAs is strictly smaller than that accepted by TMAs. 
In particular, the language of Example 3.21, ("some pair of a's is distance 1 apart") is 
not representable as a DTMA; it relies on nondeterminism in a crucial way. 

We summarize the discussion on various types of automata in the table of Figure 11 
which shows the inclusions between various classes and the closure properties of various 
classes. Compare this with the corresponding results for the various classes of w-automata 
shown in Figure 12. 
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Class of t imed languages Operations closed under 
TMA = TBA 

(2 
DTMA 

U 
DTBA 

union, intersection 

union, intersection, complement 

union, intersection 

Figure 11: Classes of t imed au tomata  

Class of w-languages Operations closed under 
MA = BA = DMA union, intersection, complement 

U 
DBA union, intersection 

Figure 12: Classes of w-automata  

5 Ver i f i ca t ion  

In this section we discuss how to use the theory of t imed au tomata  to prove correctness 
of finite-state real-t ime systems. We start  by introducing t ime in linear trace semantics 
for concurrent processes. 

5.1 Trace s e m a n t i c s  

In trace semantics, we associate a set of observable events with each process, and model 
the process by the set of all its traces. A trace is a (linear) sequence of events that  may 
be observed when the process runs. For example, an event may denote an assignment of a 
value to a variable, or pressing a but ton on the control panel, or arrival of a message. All 
events are assumed to occur instantaneously. Actions with duration are modeled using 
events marking the beginning and the end of the action. Hoare originally proposed such 
a model for CSP [Hoa78]. In our model, we allow several events to happen simultane- 
ously. Also we consider only infinite sequences, which model nonterminat ing interaction 
of reactive systems with their environments.  

Formally, given a set A of events, a trace ~r = chore.., is an infinite word over :P+(A) 
- -  the set of nonempty  subsets of A. An untimed process is a pair (A, X)  comprising of 
the set A of its observable events and the set X of its possible traces. 

E x a m p l e  5.1 Consider a channel P connecting two components.  Let a represent the 
arrival of a message at one end of P,  and let b stand for the delivery of the message at the 
other end of the channel. The channel cannot receive a new message until the previous 
one has reached the other end. Consequently the two events a and b alternate. Assuming 
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that  the messages keep arriving, the only possible trace is 

ap : {a} ---+ {b} ~ {a} ~ {b} -~ . . . .  

Often we will denote the singleton set {a} by the symbol a. The process P is represented 
by ({a, b}, (ab)~). �9 

Various operations can be defined on processes; these are useful for describing com- 
plex systems using the simpler ones. We will consider only the most important of these 
operations, namely, parallel composition. The parallel composition of a set of processes 
describes the joint behavior of all the processes running concurrently. 

The parallel composition operator can be conveniently defined using the projection 
operation. The projection of ~r G "P+(A) ~ onto B C A (written a [B)  is formed by 
intersecting each event set in a with B and deleting all the empty sets from the sequence. 
For instance, in Example 5.1 ap [{a} is the trace a ~. Notice that the projection operation 
may result in a finite sequence; but we will consider the projection of a tr~ce ~ onto B 
only when el fq B is nonempty for infinitely many i. 

For a set of processes {Pi = (Ai, Xi) I i = 1, 2 , . . .  n}, their parallel composition Ill Pi 
is a process with the event set OiAi and the trace set 

{~r e P+(U,A,) ~ I A, a[A, e X,}. 

Thus cr is a trace of iff  FA, is a trace of Pi for each i --= 1 , . . . n .  When there are 
no common events the above definition corresponds to the unconstrained interleavings of 
all the traces. On the other hand, if all event sets are identical then the trace set of the 
composition process is simply the set-theoretic intersection of all the component trace 
sets. 

E x a m p l e  5.2 Consider another channel Q connected to the channel P of Example 5.1. 
The event of message arrival for Q is same as the event b. Let c denote the delivery of 
the message at the other end of Q. The process Q is given by ({b, c}, (bc)~). 

When P and Q are composed we require them to synchronize on the common event 
b, and between every pair of b's we allow the possibility of the event a happening before 
the event c, the event c happening before a, and both occurring simultaneously. Thus 
[P  I[ Q] has the event set {a, b, c}, and has an infinite number of traces. �9 

In this framework, the verification question is presented as an inclusion problem. Both 
the implementation and the specification are given as untimed processes. The implemen- 
tation process is typicMly a composition of several smaller component processes. We 
say that  an implementation (A, X~) is correct with respect to a specification (A, Xs) iff 
XI C_ Xs. 

E x a m p l e  5.3 Consider the channels of Example 5.2. The implementation process is 
IF  II Q]. The specification is given as the process S = ({a,b,c},(abc)~). Thus the 
specification requires the message to reach the other end of Q before the next message 
arrives at P. In this case, [P I] Q] does not meet the specification S, for it has too many 
other traces, specifically, the trace ab(acb)% �9 
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5.2 Adding  t iming  to traces 

An untimed process models the sequencing of events but not the actual times at which 
the events occur. Thus the description of the channel in Example 5.1 gives only the 
sequencing of the events a and b, and not the delays between them. Timing can be added 
to a trace by coupling it with a sequence of time values. We choose the set of reals to 
model time. 

Recall that a time sequence T = rlT2.. ,  is an infinite sequence of time values 7~ E R 
satisfying the monotonicity and progress constraints. A timed trace over a set of events 
A is a pair (a, T) where a is a trace over A, and 7 is a t ime sequence. 

In a t imed trace (cr, T), each 7i gives the time at which the events in ~r4 occur. In 
particular, 71 gives the time of the first observable event; we always assume rl > 0, and 
define To = 0. Observe that the progress condition implies that only a finite number of 
events can happen in a bounded interval of time. In particular, it rules out convergent t ime 
sequences such as 1/2, 3/4, 7 / 8 , . . .  representing the possibility that the system participates 
in infinitely many events before t ime 1. 

A timed process is a pair (A, L) where A is a finite set of events, and L is a set of 
t imed traces over A. 

E x a m p l e  5.4 Consider the channel P of Example 5.1 again. Assume that the first 
message arrives at t ime 1, and the subsequent messages arrive at fixed intervals of length 
3 time units. Furthermore, it takes 1 time unit for every message to traverse the channel. 
The process has a single t imed trace 

pp = (a, 1) -~ (b, 2) -~ (a,4) -~ (b, 5) -~ . . .  

and it is represented as a t imed process pT = ({a, b}, (pp}). n 

The operations on untimed processes are extended in the obvious way to t imed pro- 
cesses. To get the projection of (~r, 7) onto B _C A, we first intersect each event set in 
a with B and then delete all the empty sets along with the associated t ime values. The 
definition of parallel composition remains unchanged, except that it uses the projection 
for t imed traces. Thus in parallel composition of two processes, we require that both the 
processes should participate in the common events at the same time. This rules out the 
possibility of interleaving: parallel composition of two timed traces is either a single timed 
trace or is empty. 

E x a m p l e  5.5 As in Example 5.2 consider another channel Q connected to P. For Q, 
as before, the only possible trace is crQ = (be)% In addition, the timing specification of 
O says that  the t ime taken by a message for traversing the channel, that is, the delay 
between b and the following c, is some real value between 1 and 2. The t imed process QT 
has infinitely many t imed traces, and it is given by 

[{b, c}, f vi .  + 1 < < + 2))1. 

The description of [pT II QT] is obtained by composing pp with each timed trace of QT. 
The composition process has uncountably many timed traces. An example trace is 

(a,1) -+ (b, 2) -+ (c, 3.8) --~ (a,4) ~ (b, 5) ~ (c, 6.02) --~ . . .  
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The time values associated with the events can be discarded by the Untime operation. 
For a timed process P = (A, L), Untime[(A, L)] is the untimed process with the event set 
A and the trace set consisting of traces a such that (a, r) E L for some time sequence r. 

Note that  
Vntime(P1 [[ P2) C Untime(P~) I[ Untime(P2). 

However, as Example 5.6 shows, the two sides are not necessarily equal. In other words, 
the timing information retained in the timed traces constrains the set of possible traces 
when two processes are composed. 

E x a m p l e  5.6 Consider the channels of Example 5.5. Observe that Untime(P T) = P and 
Untime(Qr) = Q. [pT ]1 QT] has a unique untimed trace (abe)% On the other hand, 
[P  [I Q] has infinitely many traces; between every pair of b events all possible orderings 
of an event a and an event c are admissible. �9 

The verification problem is again posed as an inclusion problem. Now the implemen- 
tation is given as a composition of several t imed processes, and the specification is also 
given as a timed process. 

E x a m p l e  5.7 Consider the verification problem of Example 5.3 again. If we model the 
implementation as the t imed process [pT I[ QT] then it meets the specification S. The 
specification S is now a timed process ({a, b, c}, {((abe) ~, ~-)}). Observe that,  though the 
specification S constrains only the sequencing of events, the correctness of [pT ll QT] 
with respect to S crucially depends on the timing constraints of the two channels. [] 

5 . 3  a ; - a u t o m a t a  a n d  v e r i f i c a t i o n  

We start with an overview of the application of Bfichi automata to verify untimed pro- 
cesses [VW86, Var87]. Observe that for an untimed process A,X), X is an w-language 
over the alphabet 7~+(A). If it is a regular language it can be represented by a Bfichi 
automaton. 

We model a finite-state (untimed) process P with event set A using a Bfichi automaton 
~Ap over the alphabet 7~+(A). The states of the automaton correspond to the internal 
states of the process. The automaton Ap has a transition (s, s', a}, with a C_ A, if the 
process can change its state from s to s' participating in the events from a. The acceptance 
conditions of the automaton correspond to the fairness constraints on the process. The 
automaton fl, p accepts (or generates) precisely the traces of P; that is, the process P is 
given by (A, L(,4p)). Such a process P is caned an  -r gula  Voc ss. 

The user describes a system consisting of various components by specifying each in- 
dividual component as a Bfichi automaton. In particular, consider a system I com- 
prising of n components, where each component is modeled as an w-regular process 
P~ = (A~, L(A~)). The implementation process is [It~ ~] .  We can automatically con- 
struct the automaton for I using the construction for language intersection for Biichi 
automata. Since the event sets of various components may be different, before we apply 
the product construction, we need to make the alphabets of various automata identical. 
Let A = UiA~. From each fl<, we construct an automaton r over the alphabet 7~+(A) 
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such that L(`4~) = {~ E 7~+(A) ~ l a[Ai E L(.4i)}. Now the desired automaton .4z is the 
product of the automata .4~. 

The specification is given as an co-regular language S over 7~+(A). The implementation 
meets the specification iff L(AI) C S. The property S can presented as a Bfichi automaton 
`4s. In this case, the verification problem reduces to checking emptiness of L(Az)AL(`4s) c. 

The verification problem is PSPACE-complete. The size of `4I is exponential in the 
description of its individual components. If `4s is nondeterministic, taking the comple- 
ment involves an exponential blow-up, and thus the complexity of verification problem is 
exponential in the size of the specification also. However, if .As is deterministic, then the 
complexity is only polynomial in the size of the specification. 

Even if the size of the specification and the sizes of the automata for the individual 
components are small, the number of components in most systems of interest is large, 
and in the above method the complexity is exponential in this number. Thus the product 
automaton .4z has prohibitively large number of states, and this limits the applicability 
of this approach. Alternative methods which avoid enumeration of all the states in .4• 
have been proposed, and shown to be applicable to verification of some moderately sized 
systems [BCD+90, GW91]. 

5.4 Verification using t imed automata 

For a timed process (A, L), L is a timed language over T~+(A). A timed regular process 
is the one for which the set L is a timed regular language, and can be represented by a 
timed automaton. 

Finite-state systems are modeled by TBAs. The underlying transition table gives the 
state-transition graph of the system. We have already seen how the clocks can be used 
to represent the timing delays of various physical components. As before, the acceptance 
conditions correspond to the fairness conditions. Notice that the progress requirement 
imposes certain fairness requirements implicitly. Thus, with a finite-state process P, we 
associate a TBA Ap such that L(Ap) consists of precisely the timed traces of P. 

Typically, an implementation is described as a composition of several components. 
Each component should be modeled as a timed regular process Pi = (Ai, L(Ai)). The first 
step in the verification process is to construct a TBA AI which represents the composite 
process [Hi Pi]. To implement this, first we need to make the alphabets of various automata 
identical, and then take the intersection. Combining the two steps, however, reduces the 
size of the implementation automaton. 

T h e o r e m  5.8 Given timed processes P~ = (A~, L(Ai)), i = 1, . . .  n, represented by timed 
automata eli, there is a TBA .4 over the alphabet 7v+(UiAi) which represents the timed 
process Ill, P,]. 

The number of states in .4I is [(n + 1). H,[SI]]. The number of clocks for .41 is E~]Ci], 
and for all clocks x, the value of c~, the largest constant it gets compared with, remains 
the same. 

The specification of the system is given as another timed regular language S over the 
alphabet 7~+(A). The system is correct iff L(.4~) C S. If S is given as a TBA, then in 
general, it is undecidable to test for correctness. However, if S is given as a DTMA As, 
then we can solve this as outlined in Section 4.3. 
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Putting together all the pieces, we conclude: 

T h e o r e m  5.9 Given timed regular processes Pi = (AI, L(Ai)), i = 1 , . . .n ,  modeled 
by timed automata Ai, and a specification as a deterministic timed automaton .As, the 
inclusion of the trace set of [lli P~] in L(As) can be checked in PSPACE. �9 

The verification algorithm checks for a cycle with several desired properties in the 
untimed graph of the product of all the automata. The number of vertices in this graph 
is o[]Asl, rlil.,r 216(.~)0+~,1,~(~,)1]. 

There are mainly three sources of exponential blow-up: 

. 

. 

. 

The complexity is proportional to the number of states in the global timed automa- 
ton describing the implementation [lli Pi]. This is exponential in the number of 
components. 

The complexity is proportional to the product of the constants c~, the largest con- 
stant x is compared with, over all the clocks x involved. 

The complexity is proportional to the number of permutations over the set of all 
docks. 

The first factor is present in the simplest of verification problems, even in the untimed 
case. Since the number of components is typically large, this exponential factor has been 
a major obstacle in implementing model-checking algorithms. 

The second factor is typical of any formalism to reason about quantitative time. The 
blow-up by actual constants is observed even for simpler, discrete models. Note that if 
the bounds on the delays of different components are relatively prime then this factor 
leads to a major blow-up in the complexity. 

Lastly, in the untiming construction, we need to account for all the possible order- 
ings of the fractional parts of different clocks, and this is the source of the third factor. 
We remark that switching to a simpler, say discrete-time, model will avoid this blow-up 
in complexity. However since the total number of clocks is linear in the number of in- 
dependent components, this blow-up is same as contributed by the first factor, namely, 
exponential in the number of components. 

5.5 Verification example 

We consider an example of a gate controller at a railroad crossing. The system is composed 
of three components: TRAIN, GATE and CONTROLLER. 

The automaton modeling the train is shown in Figure 13. The event set is {approach, 
exit, in, out, idT}. The train starts in state So. The event idT represents its idling event; 
the train is not required to enter the gate. The train communicates with the controller 
with two events approach and exit. The events in and out mark the events of entry 
and exit of the train from the railroad crossing. The train is required to send the signal 
approach at least 2 minutes before it enters the crossing. Thus the minimum delay between 
approach and in is 2 minutes. Furthermore, we know that the maximum delay between 
the signals approach and exit is 5 minutes. This is a liveness requirement on the train. 
Both the timing requirements are expressed using a single clock x. 
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The automaton modeling the gate component is shown in Figure 14. The event set 
is {raise, lower, up, down, ida}. The gate is open in state so and closed in state s2. It 
communicates with the controller through the signals lower and raise. The events up and 
down denote the opening and the closing of the gate. The gate responds to the signal 
lower by closing within 1 minute, and responds to the signal raise within 1 to 2 minutes. 
The gate can take its idling transition ida in states so or s2 forever. 

Finally, Figure 15 shows the automaton modeling the controller. The event set is 
{approach, exit, raise, lower~ idc}. The controller idle state is So. Whenever it receives 
the signal approach from the train, it responds by sending the signal lower to the gate. 
The response time is 1 minute. Whenever it receives the signal exit, it responds with a 
signal raise to the gate within 1 minute. 

The entire system is then 

[TRAIN I[ GATE II CONTROLLER]. 

The event set is the union of the event sets of all the three components. In this example, 
all the automata are particularly simple; they are deterministic, and do not have any 
fairness constraints (every run is an accepting run). The timed automaton .Az specifying 
the entire system is obtained by composing the above three automata. 

The correctness requirements for the system are the following: 

1. Safety: Whenever the train is inside the gate, the gate should be closed. 

2. Real-time Liveness: The gate is never closed at a stretch for more than 10 minutes. 

The specification refers to only the events in, out, up, down. The safety property 
is specified by the automaton of Figure 16. An edge label in stands for any event set 
containing in, and an edge label "in, .~ out" means any event set not containing out, 
but containing in. The automaton disallows in before down, and up before out. All the 
states are accepting states. 
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The real-time liveness property is specified by the timed automaton of Figure 17. The 
automaton requires that every down be followed by up within 10 minutes. 

Note that the automaton is deterministic, and hence can be complemented. Further- 
more, observe that the acceptance condition is not necessary; we can include state sl 
also in the acceptance set. This is because the progress of time ensures that the self- 
loop on state sl with the clock constraint (x < 10) cannot be taken indefinitely, and the 
automaton will eventually visit state so. 

The correctness of AI against the two specifications can be checked separately as 
outlined in Section 5. Observe that though the safety property is purely a qualitative 
property, it does not hold if we discard the timing requirements. 

6 R e l a t e d  re su l t s  

Timed automata provide a natural way of expressing timing delays of a real-time system. 
In this presentation, we have studied them from the perspective of formal language theory. 
Now we briefly review other results about timed automata. We warn the reader that the 
precise formulation of timed automata is different in different papers, but the underlying 
idea remains the same. 

Timed automata are useful for developing a decision procedure for the logic MITL, 
a real-time extension of the linear temporal logic PTL [AFH91]. The decision procedure 
constructs a timed automaton At from a given MITL-formula ~, such that Ar accepts 
precisely the satisfying models of ~b; thereby reducing the satisfiability question for ~b to 
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the emptiness question for .Ar This construction can also be used to check the correctness 
of a system modeled as a product of timed automata against MITL-specification. 

Alternatively, specifications can be written in branching-time temporal logics also. In 
[ACD90], we develop a model-checking algorithm for specifications written in TCTL - -  a 
real-time extension of the branching-time temporal logic CTL of [EC82]. 

Timed automata is a fairly low-level representation, and automatic translations from 
more structured representations such as process algebras, timed Petri nets, or high-level 
real-time programming languages, should exist. Recently, Sifakis et.al, have shown how 
to translate a term of the real-time process algebra ATP to a timed automaton (see the 
article From ATP to Timed Graphs and Hybrid Systems in this issue). 

One promising direction of extending the process model discussed here is to incorpo- 
rate probabilistic information. This is particularly relevant for systems that control and 
interact with physical processes. We add probabilities to timed automata by associating 
fixed distributions with the delays. This extension makes our processes generalized semi- 
Markov processes. Surprisingly, the untiming construction used to test for emptiness of 
a timed automaton can be used to analyze the behavior of GSMPs also. In [ACD91], we 
present an algorithm that combines model-checking for TCTL with model-checking for 
discrete-time Markov chains. The method can also be adopted to check properties speci- 
fied using deterministic timed automata (see the article Verifying Automata Specifications 
of Probabilistic Real-Time Systems in this issue). 

Questions other than verification can also be studied using timed automata. For ex- 
ample, Wong-Toi and Hoffmann study the problem of supervisory control of discrete event 
systems when the plant and specification behaviors are represented by timed automata 
[WH91]. The problem of synthesizing schedulers from timed automata specifications is 
addressed in [DW90]. Courcoubetis and Yannakakis use timed automata to solve certain 
minimum and maximum delay problems for real-time systems ICY91]. For instance, they 
show how to compute the earliest and the latest time a target state can appear along the 
runs of an automaton from a given initial state. 
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