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a b s t r a c t

Deterministic Boolean networks have been used as models of gene regulation and other biological net-
works. One key element in these models is the update schedule, which indicates the order in which states
are to be updated. We study the robustness of the dynamical behavior of a Boolean network with respect
to different update schedules (synchronous, block-sequential, sequential), which can provide modelers
eywords:
oolean network
pdate schedule
obustness
ttractor
ynamical cycle

with a better understanding of the consequences of changes in this aspect of the model. For a given
Boolean network, we define equivalence classes of update schedules with the same dynamical behavior,
introducing a labeled graph which helps to understand the dependence of the dynamics with respect
to the update, and to identify interactions whose timing may be crucial for the presence of a particular
attractor of the system. Several other results on the robustness of update schedules and of dynamical
cycles with respect to update schedules are presented. Finally, we prove that our equivalence classes

sequ
generalize those found in

. Introduction

Robustness is a ubiquitously observed and necessary property
f biological systems (Kitano, 2004), and is therefore a key aspect
n the analysis of biological models, and in particular of regulatory
etworks. A dynamical property is said to be robust when it is not
ffected by small perturbations. When we talk about a real system,
hese perturbations model the noise which is intrinsic to reality,
nd apply to the states of the system. When we are dealing with
model instead, they can refer to changes in the state variables

in which case the word stability may be more appropriate) or to
hanges in the specification of the model itself.

The kinds of model in which we are interested are Boolean net-
orks, first introduced by Kauffman as a mathematical tool to study

he dynamics of gene regulatory networks (Kauffman, 1969, 1993).
n this case a gene expression level is modeled by binary values, 0
r 1, indicating two transcriptional states, either active or inactive,
espectively, and this level changes in time according to some local

ctivation function which depends on the states of a set of nodes
genes). The joint effect of the local activation functions defines a
lobal transition function; thus, the other element required in the
escription of the model is an update schedule which determines
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ential dynamical systems.
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when each node has to be updated, and hence, how the local func-
tions combine into the global one (in other words, it must describe
the relative timings of the regulatory activities).

Given those elements, there are mainly three kinds of perturba-
tions for a BN: perturbations of the states of the nodes (the state
variables), changes of the local activation functions, and modifica-
tions of the update schedule. The last two are changes to the model
itself and therefore can cause variations in the dynamical trajec-
tories. Importantly, they can change the set of attractors, which is
of great interest when modeling genetic regulatory networks. The
reason for this interest is twofold: on one hand, the attractors are
usually identified with distinct types of cells defined by patterns
of gene activity. In particular, the fixed points are often associated
with phenomena such as cell proliferation and apoptosis, and the
dynamical cycles with cellular cycle, division, etc. (Huang, 1999;
Aracena et al., 2006). On the other hand, the attractors of the sys-
tem are the most easily obtained information in the laboratory, and
the most reliable one (being less prone to the noise that creates
difficulty in time series analysis).

The first kind of robustness (which we prefer to call stability)
has been widely studied, mostly from a statistical point of view, in
random BNs (RBN), where the local activation functions are proba-

bilistically chosen. The topic at large has been the relation between
parameters and topological features describing the network, and
the stability of its dynamics and the structure of its phase space.
Unfortunately, there exist only a few analytical studies. Aldana and
Cluzel (2003) show that RBNs with scale-free architecture, where

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:jaracena@ing-mat.udec.cl
mailto:eric.chacc@uai.cl
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small set of nodes are highly connected and the rest poorly con-
ected, are robust. Shmulevich et al. (2003) study the robustness
f RBNs whose local functions belong to certain Post classes. The
ffect of function perturbation has been studied by Gershenson
t al. (2006), but without emphasis on the attractors. Xiao and
ougherty (2007) study the impact of function perturbations on
ttractors in synchronous BNs.

Update schedules have been a slightly neglected topic, in par-
icular when it comes to the robustness with respect to changes
n them. An early introduction of strongly asynchronous timing in
enetic models is due to (Thomas, 1973), through the use of time
elays and the elimination of simultaneity. Since real time delays
re difficult to determine (and are probably stochastic), the model is
nalyzed in probabilistic terms, or by studying the set of all admissi-
le transitions; only when all time delays are fixed and known do we
ave a deterministic update schedule, which falls in case 5 of the list
iven below. For a long time the simpler synchronous update was
he default choice for RBN researchers (Kauffman et al., 2003), in
art because of the scarcity of actual models of real networks; when
he need for asynchrony was recognized, it was usually introduced
hrough stochasticity. Yet deterministic, non-synchronous update
chedules have appeared in the literature (Mendoza and Alvarez-
uylla, 1998; Albert and Othmer, 2003), and are a necessary part of
ur understanding of Boolean network dynamics.

One reason for this slow introduction of asynchronous deter-
inism into actual models is the difficulty of really knowing the

rder (if any) in which events take place in the cell; there may be
patial reasons determining the timings of regulatory activities, or
he asynchrony may be needed to accommodate different speeds in
eaction times. This makes an understanding of model robustness
ith respect to update schedules specially important: we need to

now, for instance, what set of update schedules may produce a
ertain observed attractor.

Regarding perturbations of the update schedule, Chaves et al.
2005) study the effect of different asynchronous updates of the
odes on the dynamics of BNs for the Drosophila melanogaster seg-
ent polarity genes. Fauré et al. (2006) analyze the dynamics of
generic Boolean model for control of the mammalian cell cycle,

onsidering different update schedules and their effects on the
ttractors. Willadsen and Wiles (2007) propose a method for quan-
ifying robustness and dynamics in terms of state-space structures,
or Boolean models of known genetic regulatory systems.

To the best of our knowledge, little analytical work has been
one about this kind of perturbations. One of the exceptions, which
as will be seen in Section 5) comes close to the approach presented
n this manuscript, is the study of a particular class of discrete
ynamical system where the connection digraph is symmetric (or
quivalently, an undirected graph). For this class of networks, the
eam of Mortveit and Reidys studied the set of update schedules
reserving the whole dynamical behavior of the network (Mortveit
nd Reidys, 2001) and the set of attractors in a certain class of
ellular automata (Hansson et al., 2005).

We focus our attention on the robustness of Boolean networks
ith respect to different deterministic update schedules. The choice

f deterministic update schedules is given by the fact that infor-
ation processing performed in the living cell has to be extremely

obust and therefore requires a quasi-deterministic dynamics, what
chrödinger (1948) called a “clockwork mode”. Another reason for
eterminism is the need to model some periodical behaviors; when
andomness is introduced, attractors become regions of the phase
pace, but are no longer exact dynamical cycles. Both stochastic

nd deterministic models are common in the biological literature,
nd a frequent strategy is to consider a deterministic dynamics and
ook at its robustness under small random perturbations. Here, we
ook at the robustness of deterministic update schedules within the
pace of deterministic models.
ms 97 (2009) 1–8

There exist different kinds of deterministic update schedules for
a Boolean network, some of which are particular cases of another.
The best known are:

1. Parallel or synchronous: every node is updated at the same time.
2. Sequential: in every time step, every node is updated in a defined

sequence.
3. Block-sequential: the set of nodes is partitioned into blocks;

nodes in a same block are updated in parallel, but blocks follow
each other sequentially.

4. Asynchronous deterministic: in every time step only one node is
updated following a defined sequence.

5. Asynchronous generalized: in every time step only one node is
updated following a defined sequence, where every node can
appear several times.

Here we consider the first three kinds, i.e., the classes where
every node is updated once in every step. Nevertheless, note that the
last two cases can be reduced to the third one through a simple net-
work transformation (which duplicates nodes when necessary and
considers the least common multiple of the periods). Thus, some
results presented here may still be of interest for those models after
an appropriate translation.

The structure of the paper is as follows. Section 2 introduces the
basic definitions and notations. Section 3 studies the equivalence
classes of update schedules, both through an easily checked equiv-
alence condition introduced below, and through the equivalence
of dynamical behavior; the connection between these two notions
is discussed. Section 4 looks at the robustness of dynamical cycles
of a network with respect to changes in its update schedule, see-
ing when cycles can be shared under different update regimes and
how interactions whose timing is critical to a certain attractor can
be identified. Section 5 deals with the relation of our results with
those of Mortveit and Reidys. Finally, in Section 6 we discuss the
insights that can be gained from the present results and the open
problems of interest.

2. Definitions and Notation

A BN N = (F, s) is defined by a finite set of variable states
x ∈ {0, 1}n, a global activation function F : {0, 1}n → {0, 1}n, where
F(x) = (f1(x), . . . , fn(x)) (fi are called local activation functions), and
an update schedule s.

An update schedule is defined by an update function that
we denote s : {1, . . . , n} → {1, . . . , n}, such that s({1, . . . , n}) =
{1, . . . , m} for some m ≤ n. A synchronous or parallel update is given
by an update function s such that ∀i ∈ {1, . . . , n}, s(i) = 1. A sequen-
tial update corresponds to a permutation function over {1, . . . , n}.
Others kinds of update functions can be considered as a block-
sequential update.

The iteration of the BN with an update function s is given by:

xr+1
i

= fi(x
l1
1 , . . . , xln

n ), (1)

where lj = r if s(i) ≤ s(j) and lj = r + 1 if s(i) > s(j).
This is equivalent to applying a function Fs : {0, 1}n → {0, 1}n in

a parallel way, with Fs(x) = (f s
1(x), . . . , f s

n(x)) defined by:

f s
i (x) = fi(g

s
i,1(x), . . . , gs

i,n(x)),

where the function gs
i,j

is defined by gs
i,j

(x) = xj if s(i) ≤ s(j) and
gs

i,j
(x) = f s

j
(x) if s(i) > s(j). Thus, the function Fs corresponds to the
dynamical behavior of the network N = (F, s).
We say that two BNs N1 = (F1, s1) and N2 = (F2, s2) have the

same dynamical behavior if Fs1
1 = Fs2

2 .
Since {0, 1}n is a finite set, we have two limit behaviors for the

iteration of a network:
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Fig. 1. Example of a labeled digraph.

Fixed point: We define a fixed point as x ∈ {0, 1}n such that Fs(x) =
x.
Cycle: We define a cycle of length p > 1 as the sequence
[x0, . . . , xp−1, x0] such that xj ∈ {0, 1}n, xj are pairwise distinct and
Fs(xj) = xj+1, for all j = 0, . . . , p − 2 and Fs(xp−1) = x0.

Fixed points and cycles are called attractors of the network.
We say that a node is frozen for a cycle if its state is constant on

t (Greil et al., 2007; Kauffman, 1990).
The digraph associated to a BN N = (F, s), called connection

igraph, is the directed graph GF = (V, A), where V = {1 . . . , n} and
i, j) ∈ A if and only if fj depends on xi, i.e., if there exists x ∈ {0, 1}n

uch that

j(x1, . . . , xi−1, 0, xi+1, . . . , xn) /= fj(x1, . . . , xi−1, 1, xi+1, . . . , xn).

he node set of GF is referred to as V(GF ), its arc set as A(GF ). An arc
i, i) ∈ A(GF ) is called a loop of GF .

A function f : {0, 1}n → {0, 1} is monotonic on input i if for every
∈ {0, 1}n

(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≤ f (x1, . . . , xi−1, 1, xi+1, . . . , xn).

A loop (i, i) is monotonic if fi is monotonic on input i. A monotonic
oop is the simplest network motif built out of a transcription fac-
or activating its own transcription. Monotonic loops (also known
s positive loops) are often found in gene regulatory networks
Kiełbasa and Vingron, 2008).

We define the labeled digraph associated to a BN N = (F, s)as:
F
s = (GF , labs), where every arc has associated a label given by the

unction defined as:

xample 1. See an example of a labeled digraph in Fig. 1. Note
hat the label on a loop will always be .

We define the following sequential schedules which correspond
o elementary permutations, very useful in the sequel.

i,j(k) =
{

j if k = i
i if k = j
k otherwise.

lso we denote by �0 the schedule function such that �0(i) = i.
bserve that ∀i, �i,i = �0.

We denote I(j) = {i ∈ {1, . . . , n}/(i, j) ∈ A}. Thus, we can say fj(x) =
j(xi : i ∈ I(j)).
. Equivalent Update Schedules

Two different update schedules may induce the same or a dif-
erent labeled graph. On the other hand, they may (in combination
ms 97 (2009) 1–8 3

with a given activation function) generate the same or a differ-
ent dynamics of the system. The results in this section explore the
connection between these two equivalence relations.

Theorem 1. Let N1 = (F, s1) and N2 = (F, s2) be two BNs which are
different only in the update schedule. If GF

s1
= GF

s2
, then both dynamical

behaviors are identical.

Proof. Without loss of generality, we suppose s1 is such that, for
all i ∈ {1, . . . , n}, s1(i + 1) ≥ s1(i) and s1(1) = 1. Now, we prove by
induction that ∀j = 1, . . . , n, f s1

j
(x) = f s2

j
(x).

Basis. After the assumptions, if f1 depends on xi, then s1(i) ≥
s1(1), and by the condition GF

s1
= GF

s2
, s2(i) ≥ s2(1). Thus:

f s1
1 (x)=f1(gs1

1,j(x) : j ∈ I(1))=f1(xj : j ∈ I(1))=f1(gs2
1,j(x) : j ∈ I(1))=f s2

1 (x).

Induction hypothesis. For all j ≤ k

f s1
j (x) = f s2

j (x).

Case k + 1. By definition,

f s1
k+1(x) = fk+1(gs1

k+1,j(x) : j ∈ I(k + 1)).

On the other hand, since GF
s1

= GF
s2

,

∀j ∈ I(k + 1) : s1(j) ≥ s1(k + 1) ⇔ s2(j) ≥ s2(k + 1).

Thus, ∀j ∈ I(k + 1) such that :

gs1
k+1,j(x) = xj = gs2

k+1,j(x).

And ∀j ∈ I(k + 1) such that :

gs1
k+1,j(x) = f s1

j (x) and gs2
k+1,j(x) = f s2

j (x).

Because of s1,∀j ∈ I(k + 1), if and only if j < k + 1. Hence, according
to the induction hypothesis: f s1

j
(x) = f s1

j
(x) for all j ∈ I(k + 1) such

that .
Therefore, for all j ∈ I(k + 1), gs1

k+1,j
(x) = gs2

k+1,j
(x), and thus,

f s1
k+1(x) = f s2

k+1(x). �

A corollary of this theorem is this result proved by Tchuente
(1988):

Theorem 2. Let N be a BN such that ∀i = 1, . . . , n, ∀j ∈ I(i), s(i) ≤ s(j).
Then the dynamics of N with the update schedule s and with the parallel
update schedule are identical.

Proof. It is easy to see that a parallel update is equivalent to
having a schedule function sp : V → {1, . . . , n} such that sp(i) = 1,
∀i = 1, . . . , n, and in this case , ∀(i, j) ∈ A and if for all
i = 1, . . . , n, s(i) ≤ s(j), ∀j ∈ I(i), , ∀(i, j) ∈ A, then GF

sp
= GF

s .
�

For a given global activation function F , we would like to classify
the schedules that yield the same dynamical behavior. If we con-
sider the relation between updates schedules s1 and s2 defined by
having GF

s1
= GF

s2
, Theorem 1 shows that it yields a partition which

is finer than the partition of identical dynamical behavior. In fact,
the partition is strictly finer, since the converse of Theorem 1 turns
out to be false in general.

Example 2. Fig. 2 shows two different labeled digraphs, without
loops and strongly connected, associated to BNs N1 = (F, �0) and
N2 = (F, �2,3) respectively, where f1(x) = x2 ∨ x4, f2(x) = x4,f3(x) =
x1 ∨ x2 and f4(x) = x3. Both BNs have the same dynamical behavior,
shown in Fig. 3.
However, in the following Proposition we show that, when two
update schedules are dynamically equivalent but with different
labeled graphs, then a small perturbation of the activation func-
tion can be found which preserves the connectivity and the labeled
graphs, while causing a different dynamical behavior. Thus, while
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ig. 2. BNs from Example 2, with two non-equivalent schedules with different labe
giving the same labeled graphs) are {1234, 1123} and {1324, 1323, 1223}. The unio

heorem 1 shows that the classes of update schedules with equal
abeled graphs are the “atoms” that any particular global function

will group into classes with identical dynamical behavior, the
ext Proposition shows that this grouping will finely depend on
he details of F .

roposition 3. Let N1 = (F, s1) and N2 = (F, s2) be two BNs such that
F
s1

/= GF
s2

and their dynamical behavior are identical. Then there exists
˜ , different from F in at most two local activation functions, such that

F̃ = GF and the dynamical behavior of Ñ1 = (F̃, s1) and Ñ2 = (F̃, s2)
re different.

roof. Without loss of generality, we suppose s1 is such that, for
ll i ∈ {1, . . . , n}, s1(i + 1) ≥ s1(i) and s1(1) = 1. Let be:

∗ = min{i ∈ {1, . . . , n} : ∃j ∈ I(i), labs1 (j, i) /= labs2 (j, i)},

hich is well defined, because by hypothesis GF
s1

/= GF
s2

. Let
s suppose that there exists j∗ ∈ I(i∗) and x∗ ∈ {0, 1}n such that

abs1 (j∗, i∗) /= labs2 (j∗, i∗) and f s1
j∗ (x∗) /= x∗

j∗ .

Let y1, y2 ∈ {0, 1}n defined by y1
k

= x∗
k

if s1(k) ≥ s1(i∗) and y1
k

=
s1
k

(x∗), and y2
k

= x∗
k

if s2(k) ≥ s2(i∗) and y2
k

= f s2
k

(x∗). Hence, f s1
i∗ (x∗) =

i∗ (y1) and f s2
i∗ (x∗) = fi∗ (y2). Observe that f s1

j∗ (x∗) /= x∗
j∗ implies

1 2 2,k n

/= y . Besides, for each k ∈ I(i∗) we denote the vector y ∈ {0, 1}

uch that y2,k
j

= ¬y2
j

if j = k and y2,k
j

= y2
j

if j /= k. Then, we define

he function F̃ = (f̃1, . . . , f̃n) as:

ĩ(x) = fi(x) ∀i /= i∗

Fig. 3. Dynamical behavior of the net
raphs that have the same dynamical behavior. Their respective equivalence classes
em gives the class of update schedules that yield this dynamical behavior.

f̃i∗ (x) =
{¬fi∗ (y2) if x = y2

fi∗ (y2) if x = y2,k, k ∈ I(i∗)
fi∗ (x) otherwise.

Thus, F̃ s1
i∗ (x∗) = f̃ s1

i∗ (x∗) = f̃i∗ (y1) = fi∗ (y1) and F̃ s2
i∗ (x∗) = f̃ s2

i∗ (x∗) =
f̃i∗ (y2) = fi∗ (y2). Since by hypothesis fi∗ (y1) /= fi∗ (y2), then
F̃ s1

i∗ (x∗) /= F̃ s2
i∗ (x∗).

On the other hand, ∀k ∈ I(i∗), f̃ s1
i∗ (y2,k) /= f̃ s1

i∗ (y2). Therefore, GF =
GF̃ .

If for all x ∈ {0, 1}n and for every j ∈ I(i∗) such that
labs1 (j, i∗) /= labs2 (j, i∗) verify f s1

j
(x) = xj , then we can define f̂j∗ =

¬fj∗ and f̂i = fi, ∀i /= j∗, where j∗ ∈ I(i∗) and labs1 (j∗, i∗) /= labs2 (j∗, i∗).
Since

fj∗ (x1, . . . , xk−1, 0, xk+1, . . . , xn) /= fj∗ (x1, . . . , xk−1, 1, xk+1, . . . , xn)

if and only if

f̂j∗ (x1, . . . , xk−1, 0, xk+1, . . . , xn) /= f̂j∗ (x1, . . . , xj−1, 1, xj+1, . . . , xn),

then GF̂ = GF . If F̂ s1 /= F̂ s2 we obtain the result of this proposition.
Otherwise, we can apply the above reduction from N̂ = (F̂, s1). �

Example 2, continued. If we apply the previous Proposition to
the example given in Fig 2, we obtain that i = 3 and j = 2. Thus,
∗ ∗
for x∗ = (0, 0, 0, 1): y1 = (1, 1), y2 = (1, 0), f̃3(y1) = f3(y1) = y1

1 ∨
y1

2 = 1 ∨ 1 = 1; f̃3(y2) = f3(y2) = ¬(y2
1 ∨ y2

2) = ¬(1 ∨ 0) = 0. Besides,
y2,1 = (0, 0) and y2,2 = (1, 1). Hence, f̃3(y2,1) = 1 = f̃3(y2,2) and
f̃3(x) = f3(x), otherwise.

works N1 and N2 in Example 2.
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Fig. 4. (a) Critical and non-critical arcs for the cycle C0.

. Robustness of Attractors

In this section, we study different changes in the update sched-
le of a BN which keep or change its attractors. It is known that
he set of fixed points of a discrete network does not change with
espect to different update schedules. Therefore, the focus here is
n the dynamical cycles.

Critical arcs: Given N = (F, s) a BN and [x0, . . . , xp−1, x0] a dynam-
cal cycle of length p ≥ 1, we will say that the arc (i, j) ∈ A(GF ) is
ritical for the cycle if either there exists r ∈ {0, . . . , p − 2} such
hat Fsi,j (xr) /= xr+1 or Fsi,j (xp−1) /= x0, where si,j denote the update
chedule defined by si,j = s ◦ �i,j (in particular si,i = s). In other
ords, the arc (i, j) is critical for a dynamical cycle if the BN with
pdate schedule si,j does not preserve the cycle. Hence, a loop
i, i) ∈ A(GF ) is never a critical arc.

xample 3. Fig. 4a shows an example of a BN N = (F, s = �0),
here F : {0, 1}8 → {0, 1}8 is defined by:

f1(x) = x8 f2(x) = x5 f3(x) = x6 f4(x) = (x1 ∧ x2) ∨ x7
f5(x) = x1 f6(x) = x2 f7(x) = x3 f8(x) = x4

has a cycle

0 = [(10001000), (01000100), (00100010), (00010001),

(10001000)].

or this cycle the arc (2,4) is non-critical, since C0 is also a cycle of the
N N1 = (F, s2,4). On the other hand, the arc (7, 4) is a critical one,
ecause the BN N2 = (F, s7,4) does not have the cycle C0 as attractor.

heorem 4. Let N = (F, s) be a BN and C = [x0, . . . , xp−1, x0] a
ynamical cycle of length p > 1. If i is a non-frozen node in C such
hat ∃!q, s(q) = max{s(j) : j ∈ I(i) ∪ {i}}, then there exists a critical arc
j, i) for C.

roof. Let C = [x0, . . . , xp−1, x0] a dynamical cycle of length p > 1
f N = (F, s).

Let us now prove the result by contradiction. Let us suppose
hat ∃q, r ∈ I(i) ∪ {i}, ∀j ∈ I(i), si,q(j) ≥ si,q(i) and si,r(j) < si,r(i), and C
s cycle of N = (F, si,q) and N = (F, si,r). Hence, ∀l = 0, . . . , p − 1 :
s
i (xl

j : j ∈ I(i)) = f si,q
i (xl

j : j ∈ I(i)) = f si,r
i (xl

j : j ∈ I(i)).

ut

si,q
i (xl

j : j ∈ I(i)) = fi(x
l
j : j ∈ I(i))
plication of conditions of Theorem 4 on the node i = 4.

and

f si,r
i (xl

j : j ∈ I(i)) = fi(x
l+1
j

: j ∈ I(i)).

From here,

fi(x
l+1
j

: j ∈ I(i)) = fi(x
l
j : j ∈ I(i)), ∀ l = 0, . . . , p − 1,

where xp ≡ x0. Thus, f s
i
(xl) = xl

i
= a, a ∈ {0, 1} ∀l = 1, . . . , p − 1,

which is a contradiction with the hypothesis of xi being non-
constant. �

Example 3, continued. An example of application of Theorem 4
is shown in Fig 4b.

Observe from the above proof that if ∀j ∈ I(i), s(j) ≥ s(i) and
∃r ∈ I(i), si,r(j) < si,r(i) or ∀j ∈ I(i), s(j) < s(i) and ∃r ∈ I(i), si,r(j) ≥
si,r(i), then (r, i) is a critical arc. Besides, the condition: ∃r ∈ I(i) ∪ {i},
∀j ∈ I(i), si,r(j) < si,r(i) is not satisfied by a node j with a loop asso-
ciated. However, it is easy to show that the result is also valid if
a monotonic loop in the node is allowed. Thus, the following is a
direct corollary of Theorem 4.

Corollary 5. Let N = (F, s) and N′ = (F, s′) be two BNs with different
update schedules, and j a node without a loop or with a monotonic
loop, such that , ∀i ∈ I(j) and , ∀i ∈ I(j) \ {j}. If C is a dynamical cycle
for N and N′ then j is a frozen node for C.

Observe from Theorem 4 and Corollary 5 that non-frozen nodes
are important to the robustness of the cycle with respect to the
change of the update schedule.

The following result allows us to define a new update schedule
for a given BN such that the dynamical cycles are not kept.

Theorem 6. Let N = (F, s) be a BN where the loops are monotonic.
There exists an update schedule s′ such that the dynamical cycles of
N′ = (F, s′) and N = (F, s) are different.

Proof. Let {i1, i2, . . . , in} be a labeling of the nodes of GF so that
ij ≤ ik ⇔ s(ij) ≤ s(ik). We define s′ by: s′(ij) = n + 1 − j, ∀j = 1, . . . , n.
Thus, s′(i1) > s′(i2) > · · · > s′(in).

Given [x0, . . . , xp−1, x0] a dynamical cycle of length p > 1 of N,
let i∗ be the node of GF such that s′(i∗) = max{s′(i) : ∃l ∈ {0, . . . , p −

l l+1
1}, x
i

/= x
i

}.
Suppose that [x0, . . . , xp−1, x0] is also a dynamical cycle of N′.

Then, ∀r = 0, . . . , p − 1:

f s
i∗ (xr

j : j ∈ I(i)) = f s′
i∗ (xr

j : j ∈ I(i)),
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ig. 5. This BN N = (F, s) has a dynamical cycle C = [(0, 1, 1), (1, 1, 1), (0, 1, 1)],
hich is invariant against any change in the update schedule s. Here, (1,1) is a
on-monotonic loop of GF .

ith

s′
i∗ (xr

j : j ∈ I(i)) = fi∗ (xr+1
j

: j ∈ I(i) \ I∗(i∗); aj : j ∈ I∗(i∗)),

here I∗(i∗) = {j ∈ I(i) : xr
j

= aj, aj ∈ {0, 1}, ∀r = 0, . . . , p − 1}.
Let us suppose that fi∗ does not depend on i∗, i.e. there does not

xist the loop (i∗, i∗) in GF . Then,

r+1
i∗ = f s

i∗ (xr
j : j ∈ I(i)) = fi∗ (xr

j : j ∈ I(i) \ I∗(i∗); aj : j ∈ I∗(i∗)),

ence,

fi∗ (xr
j : j ∈ I(i) \ I∗(i∗); aj : j ∈ I∗(i∗))

= fi∗ (xr+1
j

: j ∈ I(i) \ I∗(i∗); aj : j ∈ I∗(i∗)).

herefore, xi∗ has constant value in the dynamical cycle, which is a
ontradiction with the definition of i∗.

Suppose now that fi∗ depends on i∗.
Observe that if there exists l = 0, . . . , p − 1 such that xl−1

i∗ = xl
i∗

hen

xl
i∗ = f s′

i∗ (xl−1
j

: j ∈ I(i)) = fi∗ (xl
j

: j ∈ I(i) \ I∗(i∗); aj : j ∈ I∗(i∗))

xl+1
i∗ = f s

i∗ (xl
j

: j ∈ I(i)) = fi∗ (xl
j

: j ∈ I(i) \ I∗(i∗); aj : j ∈ I∗(i∗))

hus xl
i∗ = xl+1

i∗ and by induction we obtain that the i∗ th component
f the vectors in the cycle is constant, which contradicts again the
efinition of i∗.

Now, we suppose that fi∗ depends on xi∗ and xl
i∗ /= xl+1

i∗ , ∀l =
, . . . , p − 1. Then, there exists l = 0, . . . , p − 1, such that xl−1

i∗ =
, xl

i∗ = 0 and xl+1
i∗ = 1:

xl
i∗ = 0 = fi∗ (xl

j
: j ∈ I(i) \ {i∗}; xl

i∗ = 1)

xl+1
i∗ = 1 = fi∗ (xl

j
: j ∈ I(i) \ {i∗}; xl

i∗ = 1)

his is a contradiction with the monotonicity of fi∗ with respect
o xi∗ . Therefore, [x0, . . . , xp−1, x0] is not a dynamical cycle of N′ =
F, s′). �

The hypothesis of monotonicity in the loops is essential in the
revious theorem, which is noteworthy. The theorem says that if
o negative loops are present, then all dynamical cycles can be
estroyed by a change in the update schedule. If a negative loop
oes exist, then there may exist indestructible dynamical cycles.
he simplest way to think about it is to imagine an isolated node
ith a negative loop: it will be a dynamical cycle by itself, and since

oops are not affected by changes in the update schedule, it is an
ndestructible one. When the node is not isolated, this may still
e true, but the conditions under which this will happen are not
asily precised. Negative feedback loops have been associated with
he existence of periodic behaviors (originally by Thomas, 1980;
ee also Thomas et al., 1995 and some recent work and references
n Remy et al., 2008, Sontag et al., 2008, and specially Remy and
uet, 2008). It is important here to bear in mind that we use the

ord “loop” in its restricted graph-theoretic sense (a node with a
on-mediated influence on itself); thus negative circuits of greater

ength (often called loops too in the literature) are not excluded
y the hypotheses. The relevance of negative loops in the previous
roof is an indication of their importance not only for the existence,
ms 97 (2009) 1–8

but also for the robustness of periodic behavior: they are responsi-
ble for making dynamical cycles immune to changes in the update
schedule.

Example 4. Fig. 5 shows a BN with a non-monotonic loop, for
which a dynamical cycle exists that cannot be destroyed by any
change in the update schedule.

Observe that if s is a synchronous update schedule in the proof
of the previous theorem, then each sequential update schedule s′

verifies that s′(i1) > s′(i2) > · · · > s′(in) with i1, . . . , in nodes of GF .
Thus, no sequential update schedule can share a dynamical cycle
with the synchronous one (for a given BN without non-monotonic
loops). This result was previously obtained by Goles and Salinas
(2008).

5. Update Schedules in Symmetric Networks

One of the main studies of equivalent update schedules in
discrete networks has been made in sequential dynamical sys-
tems (SDS) (Hansson et al., 2005; Mortveit and Reidys, 2001).
These networks correspond to BNs with sequential schedules and
where the connection digraph is symmetric, that is (i, j) ∈ A(GF ) ⇔
(j, i) ∈ A(GF ). Besides, each node has also a loop.

While genetic regulatory networks are directed graphs, there
exist some other biological networks where relations are symmet-
ric (for instance, contact networks in epidemics, associative models
of neural dynamics, and protein interaction networks—see Képès,
2007). In such cases it is worth considering this additional math-
ematical structure, which allows further theoretical results. One
example of such a study, which deals with the topic of the present
work, is Mortveit and Reidys (2001), who used the symmetric struc-
ture to provide an upper bound on the number of non-equivalent
dynamics of SDS (something not yet available for the more general
case considered here).

In the following, we work with BNs where the update schedule
is sequential and GF is a symmetric digraph.

Hansson et al. (2005); Mortveit and Reidys (2001) character-
ized the set of equivalent sequential schedules yielding a same
dynamical behavior of a given SDS N = (F, s1), through the following
relation: s1∼s2 if and only if:

∃{i1, . . . , il} ⊆ V(GF ), (s1 = s2 ◦ �i1,i2 ◦ �i2,i3 ◦ · · · ◦ �il−1,il
)

and

∀1 ≤ j < 1, |s1(ij) − s1(ij+1)| = 1 ∧ (ij, il) /∈ A(GF ) ∧ (il, ij) /∈ A(GF )

They also estimated the number of schedules in each class.
In this section, we prove that the equivalence classes, deter-

mined by the relation ‘∼’ defined above, coincide, in this particular
family of BNs, with those defined in Section 3.

Theorem 7. Let N1 = (F, s1) and N2 = (F, s2) be two BNs with sym-
metric connection digraph and s1, s2 sequential update functions.
Then, s1∼s2 if and only if GF

s1
= GF

s2
.

Proof. Sufficient Condition. It is easy to see that if s1 = s2 ◦ �i1,i2
with |s1(i1) − s1(i2)| = 1 and such that (i1, i2) /∈ A(GF ) and (i2, i1) /∈
A(GF ), then GF

s1
= GF

s2
. Thus, by using induction on the number of

permutations needed to transform s2 into s1, GF
s1

= GF
s2

.

Necessary Condition. We prove now that if GF
s1

= GF
s2

, then there

exists a sequence of permutations �i,j such that the update schedule
s1 is the composition of these permutations with s2, that is s1 =
s2 ◦ �i1,i2 ◦ �i2,i3 ◦ · · · ◦ �il−1,il

.
Without loss of generality, we suppose s1 = �0, and therefore

for all (i, j) ∈ A if i ≥ j then s1(i) ≥ s1(j), and if i < j then s1(i) < s1(j).
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Now we proceed by induction on k to prove that ∀k ∈ {1, . . . , n},
i1, . . . il , ∀j ≤ k, s1(j) = j = s2 ◦ �i1,i2 ◦ · · · ◦ �il−1,il

(j) and
F
s2◦�i1,i2

◦···◦�il−1,il
= GF

s1
.

Basis. Let us suppose that s2(1) = l /= 1, since ∀j ∈ I(1), s1(j) = j >
and by hypothesis GF

s1
= GF

s2
, so that s2(j) > s2(1) = l, ∀j ∈ I(1).

Therefore, ∀j ∈ {1, . . . , n} such that s2(j) < l, (j, l) /∈ A and (l, j) /∈
. Thus,

1(1) = 1 = s2 ◦ �i1,i2 ◦ · · · ◦ �il−1,il
(1)

here ij is such that s2(ij) = j, ∀j = 1, . . . , l. In particular, i1 = 1 and
l = l. Besides, by Sufficient Condition result, GF

s2◦�i1,i2
◦···◦�il−1,il

= GF
s .

Induction hypothesis. There exists a sequence of permutations
uch that, for all j ≤ k:

1(j) = j = s′(j),

ith s′ = s2 ◦ �i1,i2 ◦ · · · ◦ �ip−1,ip and GF
s′ = GF

s .
Case k + 1. If s′(k + 1) = k + 1 = s1(k + 1), then the result is

irect.
Suppose that s′(k + 1) = l /= k + 1. Thus, l > k + 1. Let

k+1, ik+2, . . . , il−1 be such that s′(ij) = j, ∀j = k + 1, . . . , l. Hence,
j > k + 1, ∀j = k + 1, . . . , l − 1 and il = k + 1.

Let us suppose that (ij, il) ∈ A. Then, . Since by hypothesis GF
s′ =

F
s , . This implies that ij < il = k + 1 and hence s′(ij) = ij < k + 1,
hich contradicts s′(ij) = j ≥ k + 1.

Therefore, (ij, il) /∈ A(GF ) and (il, ij) /∈ A(GF ) for all j = k +
, . . . , l − 1.

And by Sufficient Condition result, GF
s = GF

s′ =
F
s′◦�ik+1,ik+2

◦···◦�il−1,il
and

1(j) = s′ ◦ �ik+1,ik+2
◦ · · · ◦ �il−1,il

(j), ∀j = 1, . . . , k + 1.

�

Note that the relation ‘∼’ defined above, as well as the proof
f Theorem 7, are valid in any BN, not only for those with sym-
etric connection digraphs. Therefore, the results of Mortveit and

eidys (2001) relative to the equivalence relation ‘∼’ are also valid
n another family of BNs different from SDSs. However, the prob-
em of determining whether two update functions are equivalent is

uch more simple when the characterization given by their labeled
igraphs is used.

. Discussion

The use of non-trivial deterministic update schedules, though
ar from prevalent, has already appeared in models in the literature
nd as an option in modeling software (the last version of GIN-
im, for instance, makes them available through the use of priority
lasses Gonzalez et al. (2006); Fauré et al. (2006)). As more infor-
ation flows in regarding reaction speeds and spatial constrains

f the regulatory interactions, they are likely to continue surfacing,
s they are one of the elements that define deterministic dynam-
cal models (or even stochastic, since stochasticity, in the form of
oise, needs a schedule of reference). Modelers of gene regulation
r other biological networks must be aware of the role of this ele-
ent, which may, for instance, explain the presence or absence of

ynamical cycles in the observed dynamics of a system where the
nteractions are known but their timing is unclear. The results pre-
ented here are a first step toward understanding the flexibility or
igidity (in short, the robustness) of Boolean models with respect to

heir update schedules; a number of further questions of theoretical
nd practical interest remain open.

The labeling of graphs introduced here seems to be a useful way
f looking at the relation between update schedules and dynam-
cs. There is a close connection between the equivalence of labeled
ms 97 (2009) 1–8 7

graphs and the equivalence of dynamical behavior; the first implies
the second (Theorem 1), and although the converse does not hold
(Example 2), the cases where this happens are rare. Labeled graphs
are not only easier to compare than dynamical behaviors, but also
more tractable as combinatorial objects, if, for instance, we want
to list the update schedules that preserve them. The number of
update schedules for a given network is huge; the number of dif-
ferent induced label graphs, however, seems to be much smaller,
and closer to the number of induced dynamical behaviors. There
is work in progress towards a better understanding of the classes
of labeled graphs that are possible for a given network (their sizes
and numbers, and the way to enumerate them), and their relation
to the classes of equivalent behaviors.

Another important aspect is the sensibility of dynamical cycles
to changes in the update schedules, which was the topic of Section 4.
Given a certain dynamical cycle, we would like to know the update
schedules that preserve or destroy it, and the timings of interac-
tions that are critical for its existence. A (partial) answer for the last
question is given in Theorem 4, which gives sufficient conditions
for the presence of critical arcs where a change in the update order
would destroy the cycle. On the other hand, Theorem 6 gives a con-
dition under which all the dynamical cycles of a network will be
sensitive to changes in the update schedule. A complete character-
ization of indestructible dynamical cycles (besides the presence of
non-monotonic loops, implied by the theorem) is an open problem,
as is the characterization of all the update schedules which preserve
a given dynamical cycle, or a set of them.

Section 5 shows that our results generalize those of Hansson et
al. (2005) and Mortveit and Reidys (2001) for sequential dynamics
systems. These particular systems are of no direct use in the mod-
eling of gene regulatory networks, even if they may find a place
when working with other biological networks where symmetry
does appear. Yet, the connection is worth noticing, since it may open
a possible source of insights or tools. Whether some techniques of
their approach may be imported to the less algebraically tractable
non-symmetric systems, or whether some results obtained in SDS
may be used for giving bounds on quantities of interest in more
general cases, remains to be seen.

There are several ways in which a better understanding of update
schedules may be useful. Our results may shed light on some of
the questions related to them, while other problems (some of them
mentioned above and below) remain open. On one hand, the analyt-
ical study of the space of possible update schedules is a path for the
study of deterministic asynchrony, and the question naturally arises
of the connection between this perspective and that of stochastic
noise. Do the sizes of equivalence classes of update schedules, for
instance, correlate with the probability of observing some dynam-
ics under noise? We do not know the answer, but the consideration
of increasingly general deterministic updates and the understand-
ing of their equivalence classes should bring us closer. A different
area where the insights gained may be useful is in the engineer-
ing of artificial genetic systems (Andrianantoandro et al., 2006);
there, deterministic asynchrony may be forced by using clock-like
genetic circuitry, and the update schedules may become an element
of design.

The most important current area of application, however, is cer-
tainly in the reconstruction and analysis of models of regulatory
networks. Modelers must remember the importance of the updat-
ing scheme; as we show here, it is very relevant for the dynamical
behavior of the model. It is an additional “degree of freedom” in the
construction of the model, but one that must be used with care;

any deterministic strict order of interactions must have a biolog-
ical reason (even if presently unknown), and thus if it turns out
to be required in order to suppress or cause a certain observed
periodic behavior, that reason should be given (or researched as an
hypothesis). How do we know whether an update schedule exists
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hat generates a certain periodic behavior? So far, the problem is
pen, as is the more general problem of having an efficient recon-
truction algorithm for Boolean networks that considers the update
chedule as one of the variables to be determined. In order to be
seful, such an algorithm such be able to deal with a restricted
et of legitimate update schedules (those which are deemed
iologically reasonable). Without such an algorithm, the best option

s just to use a synchronous reconstruction algorithm like REVEAL
iang et al. (1998), obtaining a network that generates the appro-
riate fixed points, and then look for changes in the labeled graph
hat may enforce in the model the dynamical cycles observed in the
eal system.

A final caveat (and line of future work) is due. In the language of
his article, the global states of the network which are considered
and hence, those that are listed as states in a dynamical cycle) are
hose reached after a whole cycle of updating, i.e., when every node
as been updated one time. In some biological systems, the obser-
ations may show an intermediate step (where, for instance, the
rst block of updates has taken place, but not the rest). If such inter-
ediate observations are considered as part of the global dynamical

ehavior, then the results presented here do not hold in their cur-
ent form, and need to be adapted. For instance: where without
ntermediate observations two update schedules are said to share
o dynamical cycle, with these observations they would be able to
hare some dynamical cycles, of a very restricted kind; such restric-
ions on partial dynamics are another line of current work.
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