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It is known that every chordal graph G = (V , E) has a spanning tree T such that, for 
every vertex v ∈ V , eccT (v) ≤ eccG (v) + 2 holds (here eccG (v) := max{dG (v, u) : u ∈ V }
is the eccentricity of v in G). We show that such a spanning tree can be computed in 
linear time for every chordal graph. As a byproduct, we get that the eccentricities of all 
vertices of a chordal graph G can be computed in linear time with an additive one-sided 
error of at most 2, i.e., after a linear time preprocessing, for every vertex v of G , one can 
compute in O (1) time an estimate ê(v) of its eccentricity eccG(v) such that eccG (v) ≤
ê(v) ≤ eccG (v) + 2.

© 2019 Elsevier B.V. All rights reserved.
Introduction. All graphs G = (V , E) in this note are con-
nected, finite, unweighted, undirected, loopless and with-
out multiple edges. The length of a path from a vertex v to 
a vertex u is the number of edges in the path. The dis-
tance dG(u, v) between vertices u and v is the length of 
a shortest path connecting u and v in G . The eccentricity
of a vertex v , denoted by eccG (v), is the largest distance 
from that vertex v to any other vertex, i.e., eccG(v) =
maxu∈V dG(v, u). A graph G is called chordal if all its in-
duced cycles have length 3.

Eccentricity k-approximating spanning trees were intro-
duced by Prisner in [12]. A spanning tree T of a graph 
G is called an eccentricity k-approximating spanning tree if 
for every vertex v of G , eccT (v) ≤ eccG(v) + k holds [12]. 
Prisner demonstrated in [12], that every chordal graph has 
an eccentricity 2-approximating spanning tree and that the 
bound 2 is sharp. Later this result was extended in [7]
to a larger family of graphs which includes among others 
all chordal graphs. Any such graph admits an eccentricity 
2-approximating spanning tree. Unfortunately, both papers 
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need O (nm) time to construct such a spanning tree for 
an n-vertex, m-edge chordal graph, making this a more 
existential-type result than a result useful for efficient ap-
proximation of all eccentricities. In fact, in O (nm) time, all 
exact vertex eccentricities can be computed in any graph. 
Moreover, a recent paper [9] demonstrated that in any 
graph an eccentricity k-approximating spanning tree with 
minimum k can be found in O (nm) time.

In this note, using two ingredients known from litera-
ture and one new ingredient, we show that an eccentricity 
2-approximating spanning tree of any chordal graph can 
be computed in linear time. This allows computation of 
eccentricities of all vertices of a chordal graph G with an 
additive one-sided error of at most 2 in total linear time. 
In particular, we get that after a linear time preprocess-
ing, for every vertex v of G , one can compute in O (1)

time an estimate ê(v) of its eccentricity eccG (v) such that 
eccG(v) ≤ ê(v) ≤ eccG(v) + 2.

Recently, in [4], it was shown that every graph with 
δ-thin geodesic triangles admits an eccentricity (2δ)-ap-
proximating spanning tree constructible in O (δ|E|) time. 
As in chordal graphs all geodesic triangles are 2-thin [4], 
an immediate consequence of that result is that an eccen-
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tricity 4-approximating spanning tree of a chordal graph 
is constructible in linear time. Here, we improve the error 
from 4 to optimal 2.

In what follows we will need a few more notions 
and notations. The radius rad(G) of a graph G is the 
minimum eccentricity of a vertex in G , i.e., rad(G) =
minv∈V maxu∈V dG(v, u). A vertex c with eccG (c) = rad(G)

is called a central vertex of G . The center C(G) = {c ∈ V :
eccG(c) = rad(G)} of a graph G is the set of all its central 
vertices. The diameter diam(G) of a graph G is the largest 
distance between a pair of vertices in G , i.e., diam(G) =
maxu,v∈V dG(u, v) = maxv∈V eccG(v). A pair of vertices 
u, v of G with diam(G) = dG(u, v) is called a diametral pair
and any shortest path between u and v is called a diame-
tral path of G . Two vertices u, v of G are called mutually 
distant vertices if dG(u, v) = eccG(v) = eccG(u). Denote also 
by F (v) = {u ∈ V : dG(v, u) = eccG (v)} the set of all ver-
tices of G that are most distant from v . For a vertex v ∈ V
and a subset S ⊆ V , let dG(v, S) = min{dG(v, u) : u ∈ S}. 
Furthermore, for a vertex v and a path P of G , denote by 
dG(v, P ) the distance between v and a closest to v vertex 
from P .

The disk Dr(s) of a graph G centered at vertex s ∈ V
and with radius r is the set of all vertices with distance 
at most r from s (i.e., Dr(s) = {v ∈ V : dG (v, s) ≤ r}). For 
any two vertices u, v of G , I(u, v) = {z ∈ V : d(u, v) =
d(u, z) + d(z, v)} is the (metric) interval between u and 
v , i.e., all vertices that lay on shortest paths between u
and v . The set Sk(x, y) = {z ∈ I(x, y) : d(z, x) = k} is called 
a slice of the interval from x to y. Denote by P (x, y) =
(x = v0, v1, . . . , vk−1, vk = y) a path connecting vertices x
and y.

Previously known facts. A linear time algorithm for find-
ing a central vertex of an arbitrary chordal graph G that 
was presented in [3] is crucial to our linear time algorithm 
for constructing an eccentricity 2-approximating spanning 
tree for G . It was shown [3] that for every vertex s of a 
chordal graph G , every vertex z ∈ F (s) has the eccentric-
ity at least max{2rad(G) − 3, diam(G) − 2}, and the bound 
is sharp. Hence, z and v ∈ F (z) or v and u ∈ F (v) or u
and w ∈ F (u) are mutually distant vertices. The algorithm 
of [3] starts with finding in linear time such a pair x, y of 
mutually distant vertices. Then, it carefully picks in linear 
time a special vertex c in a middle slice S�d(x,y)/2�(x, y)

of the interval I(x, y). Finally, if c is not a central vertex 
of G , then [3] shows that the eccentricity of any vertex 
t ∈ F (c) is larger than dG (x, y), and the process can be 
started again with a new improved pair of mutually distant 
vertices. Since there can only be at most two improve-
ments on the initial distance dG (x, y) (from diam(G) − 2 to 
diam(G) − 1 and from diam(G) − 1 to diam(G)), the whole 
algorithm works in linear time. As a byproduct of this al-
gorithm, we can claim the following additional property of 
the central vertex found by the algorithm of [3].

Fact 1 ([3]). A central vertex of a chordal graph that is also a 
middle vertex of a shortest path of length at least max{2rad(G)

− 3, diam(G) − 2} can be found in linear time.
By a later result in [5,8], the number of improvements 
on the initial distance dG (x, y) in the algorithm of [3]
can be reduced by one if, instead of any furthest vertex 
from s, the vertex z last visited by a LB F S(s) is used. A 
Lexicographic-Breadth-First-Search, LB F S(s), starting at ver-
tex s is a refined variant of a Breadth-First-Search, B F S(s), 
with a strict tie-breaking rule (see [14]). It still runs in lin-
ear time for any graph [11].

Fact 2 ([5,8]). Let z be the vertex of a chordal graph G last vis-
ited by a LB F S. Then, eccG(z) ≥ diam(G) − 1. Furthermore, if 
diam(G) is even or eccG(z) is odd then eccG(z) = diam(G).

This strong fact may seem to suggest that the diame-
ter of a chordal graph might be computable in linear time 
as well. However, that is very unlikely as an algorithm 
that can distinguish between diameter 2 and 3 in a sparse 
chordal graph in subquadratic time will refute the widely 
believed Orthogonal Vectors Conjecture (see [5,13]).

Since for any chordal graph G , diam(G) ≥ 2rad(G) − 2
holds [1,2], from Fact 2 we get that eccG(z) is not the di-
ameter diam(G) only if diam(G) = 2rad(G) − 1 = eccG(z) +
1. Note that, for any graph G , 2rad(G) ≥ diam(G) holds. 
Thus, regardless of eccG (z) is diam(G) or not, eccG (z) ≥
2rad(G) − 2 must hold. Thus, we have the following slight 
improvement of Fact 1, which will be handy later.

Fact 3. A central vertex of a chordal graph that is also a middle 
vertex of a shortest path P of length at least max{2rad(G) −
2, diam(G) − 1} can be found in linear time. Furthermore, if 
diam(G) is even or the length of P is odd, then P is a diame-
tral path of G.

Fact 3 is the first ingredient to our main result. The 
second ingredient is a nice property of the eccentricity 
function in chordal graphs established in [7] (even for a 
larger family of graphs).

Fact 4 ([7]). For every chordal graph G and any its vertex v, the 
following formula is true:

dG(v, C(G)) + rad(G) − ε ≤ eccG(v)

≤ dG(v, C(G)) + rad(G),

where ε ≤ 1, if diam(G) = 2rad(G), and ε = 0, otherwise.

We will need also the following auxiliary lemma.

Lemma 1 ([6,10]). If vertices a and b of a disk Dr(u) of a chordal 
graph are connected by a path P (a, b) outside of Dr(u) [i.e., 
P (a, b) ∩ Dr(u) = {a, b}], then a and b must be adjacent. In 
particular, for every integer k and every pair of vertices x and y, 
slice Sk(x, y) forms a clique.

One more ingredient and the main result. Our third ingre-
dient is that, in a chordal graph G , a middle vertex of a 
shortest path of length at least 2rad(G) − 2 is within dis-
tance at most two from every central vertex of G .
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Fact 5. Let G be a chordal graph and c be a middle vertex of 
a shortest path P of length at least 2rad(G) − 2 in G. Then, 
C(G) ⊆ D2(c). Furthermore, if the length of P is 2rad(G) then 
C(G) ⊆ D1(c).

Proof. Let P (x, y) be a shortest path between vertices x
and y, dG(x, y) ≥ 2rad(G) − 2, and c be the vertex of 
P (x, y) at distance �d(x, y)/2� from x. Consider an arbi-
trary vertex v ∈ C(G). We know that both dG(v, x) and 
dG(v, y) are at most rad(G). Consider arbitrary shortest 
paths P (v, x) and P (v, y) and denote by P (y, c) the sub-
path of P (x, y) between y and c.

If dG (x, y) = 2rad(G), then both c and v are in Srad(G)(x,
y) and, by Lemma 1, dG(c, v) ≤ 1.

Assume now that dG (x, y) = 2rad(G) − 1. Then dG (x,
c) = rad(G) − 1 and dG (y, c) = rad(G). If also dG (x, v) =
rad(G) − 1, then both c and v are in Srad(G)−1(x, y) and, 
by Lemma 1, dG(c, v) ≤ 1. So, let dG(x, v) = rad(G), and 
consider the vertex t on path P (x, v) adjacent to v . Ver-
tices t and c belong to Drad(G)−1(x) and are connected by 
a path {t} ∪ P (v, y) \ {y} ∪ P (y, c) outside of Drad(G)−1(x)
(note that dG (x, P (v, y)) ≥ rad(G) as dG (v, y) ≤ rad(G) and 
dG(x, y) = 2rad(G) − 1). By Lemma 1, dG(c, t) ≤ 1 and 
hence dG(c, v) ≤ 2.

Finally, assume that dG (x, y) = 2rad(G) − 2. Then dG (x,
c) = rad(G) − 1 = dG (y, c). If dG(x, v) ≤ rad(G) − 1 and 
dG(y, v) ≤ rad(G) −1, then both c and v are in Srad(G)−1(x,
y) and, by Lemma 1, dG(c, v) ≤ 1. So, without loss of 
generality, let dG(x, v) = rad(G). Consider the vertex t
on path P (x, v) adjacent to v . If dG(x, P (v, y)) ≥ rad(G), 
then as before we get dG (c, t) ≤ 1 and hence dG (c, v) ≤ 2
(since vertices t and c belong to Drad(G)−1(x) and are con-
nected by a path {t} ∪ P (v, y) \ {y} ∪ P (y, c) outside of 
Drad(G)−1(x)). If now dG (x, P (v, y)) ≤ rad(G) − 1, then to 
keep dG(x, y) = 2rad(G) − 2, only the neighbor s of v on 
shortest path P (v, y) can be at distance rad(G) − 1 from 
x (all other vertices of P (v, y) must be at distance at 
least rad(G) from x). Necessarily, dG (s, y) = rad(G) −1. But 
now, both s and c belong to Srad(G)−1(x, y). By Lemma 1, 
dG(c, s) ≤ 1 and hence dG (c, v) ≤ 2. �

We are ready to prove our main result.

Theorem 1. An eccentricity 2-approximating spanning tree of a 
chordal graph G can be computed in linear time.

Proof. By Fact 3, a central vertex c of a chordal graph that 
is also a middle vertex of a shortest path P of length at 
least 2rad(G) −2 can be found in linear time. Furthermore, 
if diam(G) = 2rad(G) then P is a diametral path of G . By 
Fact 5, C(G) ⊆ D2(c), and even C(G) ⊆ D1(c) if diam(G) =
2rad(G). We can show now that any shortest path tree T
of G rooted at c is an eccentricity 2-approximating span-
ning tree of G .

Consider an arbitrary vertex v in G and let v ′ be a ver-
tex of C(G) closets to v . By Fact 4, eccG (v) ≥ dG (v, C(G)) +
rad(G) − ε = dG(v, v ′) + rad(G) − ε , where ε ≤ 1, if 
diam(G) = 2rad(G), and ε = 0, otherwise. Since T is a 
shortest path tree and c is a central vertex of G , eccT (v) ≤
dT (v, c) + eccT (c) = dG(v, c) + eccG(c) = dG (v, c) + rad(G). 
Hence, by the triangle inequality,

eccT (v) − eccG(v) ≤ dG(v, c) + rad(G) − dG(v, v ′)
− rad(G) + ε (1)

≤ dG(c, v ′) + ε

≤ 2.

Recall that if diam(G) < 2rad(G) then dG (c, v ′) ≤ 2 and ε =
0, and if diam(G) = 2rad(G) then dG(c, v ′) ≤ 1 and ε ≤
1. �

Note that the eccentricities of all vertices in any tree 
T = (V , U ) can be computed in O (|V |) total time. It is a 
folklore by now that for trees the following facts are true:

(1) The center C(T ) of any tree T consists of one vertex 
or two adjacent vertices.

(2) The center C(T ) and the radius rad(T ) of any tree T
can be found in linear time.

(3) For every vertex v ∈ V , eccT (v) = dT (v, C(T )) +
rad(T ).

Hence, using B F S(C(T )) on T one can compute dT (v,

C(T )) for all v ∈ V in total O (|V |) time. Adding now 
rad(T ) to dT (v, C(T )), one gets eccT (v) for all v ∈ V . 
Consequently, by Theorem 1, we get the following addi-
tive approximations for the vertex eccentricities in chordal 
graphs.

Corollary 1. Let G = (V , E) be a chordal graph. There is an al-
gorithm which in total linear (O (|E|)) time outputs for every 
vertex v ∈ V an estimate ê(v) of its eccentricity eccG(v) such 
that eccG(v) ≤ ê(v) ≤ eccG (v) + 2.

Concluding remark. We demonstrated that an eccentric-
ity 2-approximating spanning tree of a chordal graph can 
be computed in linear time. Can this result be extended 
to a more general class of graphs described in [7] (they 
all admit eccentricity 2-approximating spanning trees). The 
main bottleneck there is whether a central vertex in such 
a graph can be found in linear time. It is interesting also 
whether a linear time algorithm exists which for every 
chordal graph G computes estimates ê(v), v ∈ V , with 
eccG(v) ≤ ê(v) ≤ eccG(v) + μ for μ ≤ 1.
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