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A well-known theorem of Ramsay (8; 9) states that to every n there exists 
a smallest integer g(n) so that every graph of g(n) vertices contains either 
a set of n independent points or a complete graph of order n, but there exists 
a graph of g(n) - 1 vertices which does not contain a complete subgraph 
of n vertices and also does not contain a set of n independent points. (A graph 
is called complete if every two of its vertices are connected by an edge; a set 
of points is called independent if no two of its points are connected by an 
edge.) The determination of g(n) seems a very difficult problem; the best 
inequalities for g(lz) are (3) 

(1) 
2n - 2 

9” < g(n) < n _ 1 . ( > 
It is not even known that g(n) lln tends to a limit. The lower bound in (I) 
has been obtained by combinatorial and probabilistic arguments without an 
explicit construction. 

In our paper (5) with Szekeresf(k, 1) is defined as the least integer so that 
every graph having f(K, I) vertices contains either a complete graph of order 
K or a set of i! independent points (f(k, k) = g(k)). Szekeres proved 

Thus for 

k = 3,f(3, 2) < ’ ; ’ . 
(A 

I recently proved by an explicit construction that f(3, I) > P+‘l (4). By 
probabilistic arguments I can prove that for k > 3 

which shows that (2) is not very far from being best possible. 
Define now h(k, I) as the least integer so that every graph of h(k, I) vertices 

contains either a closed circuit of k or fewer lines, or that the graph contains 
a set of 2 independent points. Clearly h(3, I) = f(3, I). 

By probabilistic arguments we are going to prove that for fixed k and suffi- 
ciently large I 

(4) h(k, I) > Z’+? 

Further we shall prove that 
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(5) h(2k + 1, 1) < c3 zl+llk, h(2k + 2, I) < c3 z1+“k. 

A graph is called r chromatic if its vertices can be coloured by Y colours 
so that no two vertices of the same colour are connected; also its vertices cannot 
be coloured in this way by I - 1 colours. Tutte (1, 2) first showed that for 
every r there exists an Y chromatic graph which contains no triangle and 
Kelly+ (6) showed that for every r there exists an r chromatic graph which 
contains no k-gon for k < 5. (Tutte’s result was rediscovered several times, 
for instance, by Mycielski (7). It was asked if such graphs exist for every K.) 
lNow (-l) clearly shows that this holds for every k and in fact that there exists 
a graph of n vertices of chromatic number > n’ which contains no closed 
circuit of fewer than k edges. 

Now we prove (4). Let n be a large number, 

is arbitrary. Put m = [YZ~+~] ([xl denotes the integral part of X, that is, the 
greatest integer not exceeding x), 9 = [n - ] 1 7 w h ere 0 < 7 < e/2 is arbitrary. 
Let @J(%) be the complete graph of n vertices ~1, XP, . . . , x, and W) any of 
its complete subgraphs having p vertices. Clearly we can choose @J(@ in (i) 
ways. Let 

n 
cs~),l<a:< 2 

u m 

be an arbitrary subgraph of G! cn) having m edges (the number of possible 
choices of cx is clearly as indicated). 

First of all we show that for almost all cz @ja(n) has the property that it 
has more than n common edges with every @@). Almost all here means: for 
all rr’s except for 

Let the vertices of a@‘) be xi, ~2, . . . , x,. The number of graphs 63jrr%on- 
taining not more than n of the edges (xi, xl), 1 Q i < j Q p equals by a 
simple combinatorial reasoning 
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Now the number of possible choices for @P’) is 

0 n < np < p”. 
P 

Thus the number of cy’s for which there exists a @j(p) so that @@‘) A @jj,cn) 
has not more than n’edges is less than (v < E/Z) 

n P) n 
2 p3n exp( - ~1+e--2q) = 

PI 

2 

m m 

as stated. 
Unfortunately almost all of these graphs aa@) contain closed circuits of 

length not exceeding k (in fact almost all of them contain triangles). But we 
shall now prove that almost all aJ,@) contain fewer than n/K closed circuits of 
length not exceeding K. 

The number of graphs C&cn) which contain a given closed circuit (x1, x2’), 
(x2,23). . . , (~1, XI) clearly equals 

n 

P ) 
2 

-1 

m- 2 * 

The circuit is determined by its vertices and their order-thus there are 
n(n - lj . . (72 - I + 1) such circuits. Therefore the expected number of 
closed circuits of length not exceeding k equals 

since E < l/k. Therefore, by a simple and well-known argument, the number 
of the cy’s for which Gj’Jol(n) contains n/k or more closed paths of length not 
exceeding k is 

as stated. 
Thus we see that for almost all CY Gjn(‘Q has the following properties: in every 

CY(p) it has more than n edges and the number of its closed circuits having k 

or fewer edges is less than n/k. Omit from 8, w all the edges contained in a 
closed circuit of k or fewer edges. By what has just been said we omit fewer 
than n edges. Thus we obtain a new graph GJor’(fl) which by construction 
does not contain a closed circuit of k or fewer edges. Also clearly &‘(“) A @5(P) 



is not empty for every a@). Thus the maximum number of independent 
points in 8, ‘W is less than p = [nl-n], or 

h(k, [n”“]) > n 

which proves (4j. 
By more complicated arguments one can improve (-1;) considerably; thus 

for k = 3 I can show that for every t > 0 and sufficiently large 1 

f(3, I) = h(3, b) > z2y 

which by (2) is very close to the right order of magnitude. 
At the moment I am unable to replace the above “existence proof” by a 

direct construction. 
By using a little more care I can prove by the above method the following 

result: there exists a (sufficiently small) constant cd so that for every k and E 

(6) 
1 

h(k, I) > c4 I’+=. 

(If k > c log 1 (6) is trivial since h(k, I) > 1.) 
From (6) it is easy to deduce that to every Y there exists a c5 so that for 

n > no@-, CE,) there exists an Y chromatic graph of n vertices which does not 
contain a closed circuit of fewer than [cg log n] edges. I am not sure if this 
result is best possible. 

We do not give the details of the proof of (3) since it is simpler than that 
of (4). For k = 3 (3) follows from (4). If k > 3, put 

m = cb[n’&] 

and denote by C!&(‘) the “random” graph of m edges. By a simple computation 
it follows that for sufficiently small cg! @-jrr(n) does not contain a complete graph 
of order k for more than 

n 
o-9 2 

0 m 

values of IY, and that for more than this number of values of a! Ha@) does not 
contain a set of c#~’ log n independent points (cr = C,(Q) is sufficiently 
large). Thus 

f(k, c7n2’k-1 log n) > n, 

which implies (3) by a simple computation. 
Now we prove (5). It will clearly s&ice to prove the first inequality of (5). 

We use induction on 1. Let there be given a graph @ having h(2k + 1, 1) - 1 
vertices which does not contain a closed circuit of 2k + 1 or fewer edges and 
for which the maximum number of independent points is less than 1. If every 
point of @ has order at least [P’“] + 2 (the order of a vertex is the number 
of edges emanating from it) then, starting from an arbitrary point, we reach 
in k steps at least 1 points, which must be all distinct since otherwise @ would 
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have to contain a closed circuit of at most 2k edges. The endpoints thus ob- 
tained must be independent, for if two were connected by an edge (3 would 
contain a closed circuit of 2k + 1 edges. Thus (3 would have a set of at least 
1 independent points, which is false. 

Thus @ must have a vertex x1 of order at most [Pk] + 1. Omit the vertex 
3c1 and all the vertices connected with it. Thus we obtain the graph C3’ and x1 
is not connected with any point of iB’, thus the maximum number of in- 
dependent points of (SJ’ is 1 - 1, or oi’ has at most h(2k f 1, I - 1) - 1 
vertices, hence 

h(2k + 1, 1) < h(2k -I- 1, 1 - 1) + [I”“] + 2 

which proves (5). 
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