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We present an algorithm that generates all maximal independent sets of a graph in lexicographic order, with only 

polynomial delay between the output of two successive independent sets. We also show that there is no polynomial-delay 

algorithm for generating all maximal independent sets in reverse lexicographic order, unless P = NP. 
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Generating all configurations that satisfy a given 
specification (e.g., all permutations of n objects 
that do not fix any object) is a well-studied prob- 
lem in combinatorics [6]. Graph theory suggests 
many interesting problems of this type (see, e.g., 
[7]). Among them, generating all maximal inde- 
pendent sets of a given graph is one that has 
attracted considerable attention in the past [4,5,8]. 
(A maximal independent set of a graph G = (V, E) 
is a subset V’ G V of the vertices such that no two 
vertices in V’ are joined by an edge in E, and 
such that each vertex in V- V’ is joined by an 
edge to some vertex in V’.) 

One has to be careful in defining notions of 
‘performance’ or ‘complexity’ of such algorithms. 
In most interesting problems of this sort, the 
number of configurations to be generated is 
potentially exponential in the size of the input 
(say, a graph), and our notions of performance 
must take this into account. Even so, there are 
many different notions of what it means to solve a 
problem of generating configurations ‘in poly- 
nomial time’. We examine several possibilities be- 
low: 

(a) Polynomial total time. The least that we 
could ask is that the time required to output all 
configurations be bounded by a polynomial in n 
(the size of the input) and C (the number of 
configurations). Several algorithms satisfying this 
criterion exist for the problem at hand. The al- 
gorithm of Paul1 and Unger in 151, for example, 
runs for O(n’C) time with no output, and then 
generates all C maximal independent sets in rapid 
succession. Note that even this weakest notion of 
‘polynomial time’ is not always possible: If the 
configurations to be generated have some inherent 
complexity (e.g., the maximum independent sets 
of a graph, or the satisfying truth assignments of a 
Boolean formula), then, of course, no polynomial 
total time algorithm exists for generating all of 
them unless P = NP [4]. 

(b) Incremental polynomial time. An algorithm 
meeting this criterion can, given an input and 
several configurations (say, a graph and a collec- 
tion of maximal independent sets), find another 
configuration, or determine that none exists, in 
time polynomial in the combined sizes of the 
input and the given configurations. It is not hard 
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to see that if such an algorithm exists, then the set 
of all configurations can be generated in poly- 
nomial rota1 time (assuming that each configura- 
tion is of polynomial size). Thus (b) implies (a). A 
notion much stronger than either (a) or (b) is the 
following. 

(c) Polynomial delay. An algorithm meeting this 
criterion generates the configurations, one after 
the other in some order, in such a way that the 
delay until the first is output, and thereafter the 
delay between any two consecutive configurations, 
is bounded by a polynomial in the input size. For 
maximal independent sets there is a clever al- 
gorithm doing just this, due to Tsukiyama et al. 
[8]. This algorithm, a variant of the one in [5], 
works by doing a depth-first search in a ‘dynamic’ 
binary tree with the maximal independent sets as 
leaves, whose forward and backward edges are 
constructed as we go. The tree has depth n, the 
number of vertices. Each vertex at level j is a 
maximal independent subset J of the first j 
vertices of the graph. As for its children, there are 
two cases. Let F(Y) denote the set of vertices that 
are adjacent to Y. If J n r(j + 1) = P, (i.e., if J 
does not contain any vertices adjacent to vertex 
j + l), then J’s only child is J U { j + 1). If there 
are some vertices in the neighborhood F( j + 1) of 
j + 1 in J, then J potentially has two children. 
The first, or leftchild, is a copy of itself, and is 
always present. The potential rightchild is J’ = 
J-F(j+l)U{j+l} if J’ is a maximal in- 
dependent subset of the first j + 1 vertices. Note 
that, in this case, J’ is potentially the child of 
several sets on the same level in the tree, namely, 
of any maximal independent subset of the first j 
vertices that contains J’ - r( j + 1). Of all these 
sets, J’ is the child of the lexicographically smal- 
lest. This completes the description of the tree of 
independent sets used in the algorithm of [S]. 
Notice that the functions leftchild, rightchild, and 
parent, as defined above for this tree, can all be 
computed in polynomial time. (The lexicographi- 
tally first maximal independent subset of 
{I, 2,..., j} that contains J - r( j + 1) is easy to 
compute.) It follows that the tree can be traversed 
in a depth-first manner with polynomial delay per 
step of the traversal, and thus the leaves can be 
output with only a polynomial delay. 
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(d) Specified order. A more complex case is the 
one in which we wish the configurations output in 

some specified order, such as lexicographic. Obvi- 

ously, this matters only in the case of polynomial 
delay; if we are interested only in polynomial total 
time, then we can generate all configurations, sort 
them, and then output them in the desired order. 
An interesting example of generating configura- 
tions in a specified order with polynomial delay is 
given in [2], which describes such an algorithm for 
generating all tuples in the Cartesian product of k 
finite, weighted sets in order of increasing total 
weight of the k-tuples. Until now, no polynomial- 
delay algorithm had been known for generating all 
maximal independent sets of a graph in lexico- 
graphic (or any other natural) order. 

(e) Polynomial space. Some of the algorithms in 
the above categories, like the algorithm of [5] and 
that of [2] build exponentially large data struc- 
tures. Ideally, one would like to avoid this. For 
example, the algorithm in [8] needs only linear 
space, since it generates the tree as it goes, and 
need save only the current node of the tree. 

In this paper we examine whether it is possible 
to generate all maximal independent sets of a 
given graph in lexicographic order and polynomial 
delay. (We say a subset S of an ordered set comes 
lexicographically before T if the first element at 
which they disagree is in S.) It is not at all 
obvious that such an algorithm exists, especially in 
the light of the following result. 

1. Theorem. Given a graph G and a maximal 
independent set S, it is coNP-complete to tell whether 
S is the lexicographically last maximal independent 
set of G. 

Proof. The problem is in coNP since if S is not 
the lexicographically last, a short proof of this fact 
can be obtained by exhibiting a maximal indepen- 
dent set that follows S. To show completeness, we 
sketch a polynomial transformation from SATISFI- 

ABILITY. Given an instance of satisfiability with 
variables xi.. . . , x, and clauses C,, . . . , C,,,, we 
shall construct a graph G (with ordered vertices) 
and a maximal independent set S such that there 
is a maximal independent set T lexicographically 
after S if and only if there is a truth assignment 
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that satisfies all the clauses. Our graph has a 
vertex for each clause, a vertex for each literal xi 
or 7x;, and a special vertex a. The order of the 
vertices is as follows: First the clauses, then a, 
then the literals (in any order). Vertex a is adja- 
cent to all other vertices in G, and there is an edge 
connecting any two contradicting literals xi and 
7xi. Finally, we make each clause adjacent to all 
literals it contains. These are all edges of G. Let us 
now define S = { a } (clearly a maximal indepen- 
dent set). 

Is there a maximal independent set T lexico- 
graphically after S? If there is, it must be a subset 
of the literals, and, since contradicting literals are 
adjacent, a truth assignment. But is it maximal? 
For such an independent set to be maximal, it 

. must be the case that, for each clause, there is at 
least one literal in T which is adjacent to it. In 
other words, T is a satisfying truth assignment. 
Therefore, S is the lexicographically last maximal 
independent set of G if and only if the given 
Boolean formula is unsatisfiable. 0 

Notice that it is easy to generate the lexico- 
graphically first maximal independent subset of a 
graph: Scan the vertices in the specified order, and 
never leave out a vertex unless it is adjacent to a 
vertex already in the set. This can be done in 
O(n + m) time, where n and M are the numbers 
of vertices and edges, respectively, in G. Similarly, 
we can find the lexicographically first independent 
set that is maximal and contains a given indepen- 
dent set of vertices. (Recall that this fact was used 
in the proof sketched above that the algorithm of 
[8] runs with polynomial delay.) 

Theorem 1 has interesting consequences, as far 
as generating algorithms are concerned. 

2. Corollary. It is NP-hard, given a graph G and a 
maximal independent set S, to generate the lexico- 
graphically next maximal independent set. 

3. Corollary. Unless P = NP, there is no algorithm 
that generates the maximal independent sets of a 
graph in inverse lexicographic order with polynomial 
delay. 

Perhaps surprisingly, we now present an al- 
gorithm which generates all maximal independent 

subsets of a graph in lexicographic order, with 
polynomial delay. Intuitively, our algorithm gets 
around the negative implications of Corollary 2 by 
‘investing’ work for future outputs while working 
on the current one. It does use potentially ex- 
ponential space, in the form of a priority queue Q, 
which stores a potentially exponential number of 
maximal independent sets. These sets are inserted 
into Q by the algorithm at a cost of O(n log C) 
per insertion, where n is the number of vertices 
and C is the total number of maximal indepen- 
dent sets. (If the item to be inserted is already 
present in the queue, the queue is not altered, 
although the same time penalty is incurred.) The 
other operation we can perform on the queue is to 
find and delete the lexicographically first set it 
contains; this can be accomplished within the 
same 0( n log C) time bound. Such a priority queue 
can be implemented using any of the standard 
balanced tree schemes (see, e.g., [l]). Note that the 
comparisons to determine lexicographic priority 
may take time proportional to n; this is why the 
time is not simply the depth of the tree, i.e., 
O(log C). The algorithm is the following: 

begin 
let S* be the first maximal independent set of 

G; 
insert S* to Q; 
while Q not empty do 

begin 
S := min of Q; 
output s; 
for each vertex j of G adjacent to a vertex 

i cj of S do 
begin 

let s,=sn {l,..., j}; 
if Sj-r(j)U { j} is a maximal inde- 

pendent set of the first j vertices then 
begin 
let T be the lexicographically first ma- 

ximal independent set of G 
whichcontainsS,-T(j)U{j}; 

insert T into Q 
end 

end 
end 

end 
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4. Theorem. The algorithm above outputs ail maxi- 
mal independent sets of a graph with n vertices and 
m edges in lexicographic order, and with O(n(m + 
n log C)) = 0( n3) delay. 

Proof. Notice that the set T inserted in Q at the 
time S is output is lexicographically after S. Thus, 
the queue always gets sets that are lexicographi- 
tally after the one being output, and therefore the 
sequence output is indeed lexicographically in- 
creasing. We shall show by induction that, if S is 
the lexicographically first maximal independent 
set not yet output, then it is already in the queue 
(and thus it will indeed be output next). This 
certainly holds when S = S *. 

In the generic case, let j be the largest number 
such that S, is not a maximal independent set of 
the graph restricted to the first j vertices. (If no 
such j exists, then it is easy to see that S = S * .) 
Note that we must have j < n since S is a maxi- 
mal independent set for the whole graph; note 
also that, by the maximality of j, we must have 
j + 1 E S. Enlarge S, to a maximal independent 
set Sj u K of the first j vertices; since Sj is not 
maximal, K is nonempty. Moreover, j + 1 must 
be adjacent to all vertices in set K, again because 
of the maximality of j. 

We conclude that there is a maximal indepen- 
dent set S’ which contains S, U K, but not j + 1. 
However, S’ comes lexicographically before S 
(since it first disagrees with S on the vertices of 
K). By induction, S’ has already been output by 
the algorithm. When it was output, vertex j + 1 
was found to be adjacent to a vertex i -c j + 1 in 
S’. Since si’+, -r(j+l)U{j+l}=Sj+i is a 
maximal independent subset of the first j + 1 
vertices, the first maximal independent set T of G 
that contains Sj+, was inserted into the queue. T 
agrees with S on the first j + 1 vertices, because 
Sj+, is maximal on that set of vertices. Suppose 
S # T, and let k be the first vertex in which they 
differ; k > j + 1. We must have k E T and k e S 
since T was the lexicographically first maximal 
independent set containing S,+i. But this would 
imply that S, is not maximal, contradicting the 
maximality of j. It follows that S = T, and there- 
fore S is indeed in Q, as claimed. This concludes 
the proof of correctness. 
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For the time bound, notice that the generic step 
of the algorithm consist of an extraction of the 
lexicographically first maximal independent set 
from Q (taking 0( n log C) time), followed by at 
most n calculations of a maximal independent set 
containing a given one (taking O(n + m) time per 

set), and for each of these an attempt to insert the 
set found into the queue (taking time O(n log C) 
per set). The total delay is thus 0( n(log C + n + m 
+nlogC))=O(n3). Cl 

Notice that our algorithm uses potentially ex- 
ponential space (although at most O(nC)). If we 
are willing to tolerate potentially exponential de- 
lay, we can generate all maximal independent sets 
of a graph in lexicographic order using only poly- 
nomial space: simply generate all subsets in lexi- 
cographic order, outputting only those that are 
independent and maximal. A remaining open 
question is whether there is a way to avoid this 
apparent tradeoff. 

Another important open question is whether 
there is an algorithm for generating in polynomial 
total time the maximal independent sets of a 
hypergraph, not necessarily in lexicographic order. 
A hypergraph is a set of vertices together with a 
set of subsets of the vertices, called hyperedges. A 
set of vertices of a hypergraph is independent if it 
does not contain a hyperedge. (Note that this 
reduces to our standard notion of an independent 
set in a graph if we specialize to the case when all 
hyperedges contain precisely two elements.) 

This problem has an unexpected application in 
databases. Consider a set of n distributed sites. A 
voting pattern in a distributed database concur- 
rency control scheme is a hypergraph with these n 
cites as vertices, in which the following two prop- 
erties hold: (a) all pairs of hyperedges intersect, 
and (b) no vertex can be deleted from any hyper- 
edge without violating (a). (This is a restricted 
version of the ‘coterie’ of [3].) Intuitively, a voting 
pattern is a collection of minimal sets of sites, 
such that the sites in each of these sets can safely 
agree on a decision (say, an update), without the 
risk that another set has reached a contradictory 
decision. The most usual voting pattern contains 
all sets of [$(n + 1)1 sites. We say a voting pattern 
is maximal if it cannot be extended to a voting 
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pattern with one more hyperedge. (The maximal 
voting patterns coincide with the ‘nondominated 

coteries’ of [3].) Testing whether a voting pattern 
is maximal can be shown to be equivalent to 
deciding whether a proposed list of maximal inde- 
pendent sets of a given hypergraph is complete. 

Unfortunately, no algorithm for generating all 
maximal independent sets of a hypergraph in 
polynomial total time is known. In particular, the 
approach of [5,8] will not work. That approach 
constructs all maximal independent sets of the 
subgraph induced by (1, 2.. . . , j}, and then de- 
rives from them the maximal independent sets of 

the subgraph induced by { 1, 2,. . . , j + l}. With 
both graphs and hypergraphs, we know that every 
maximal independent set Z of vertices { 1,. . . , j + 
l} is contained in a set J U { j + l} for some 
maximal independent set .Z of (1, 2,. . . , j}. The 
question of determining which such Z are con- 
tained in J u { j + l} for a given J is easy for 
graphs; the only candidates are J and J - r( j + 
1) U { j + l}. For hypergraphs, however, we are 
not so fortunate. The set of candidates is much 
larger, and, indeed, the question of whether any 
such Z exists is NP-complete (an exercise we leave 
to the reader). 
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