
Information Processing Letters 27 (1988) 119-123

North-Holland

25 March 1988

ON GENERATING ALL MAXIMAL INDEPENDENT SETS

David S. JOHNSON and Mihalis YANNAKAKIS

AT& 7 Bell Loboratories, Murray Hill, NJ 07974, U.S.A.

Christos H. PAPADIMITRIOU

Departmeni of Computer Science, Stanford University, Stanford, CA 94305, U.S.A.

Communicated by A.V. Abo

Received 15 September 1986

Revised 24 August 1987

We present an algorithm that generates all maximal independent sets of a graph in lexicographic order, with only

polynomial delay between the output of two successive independent sets. We also show that there is no polynomial-delay

algorithm for generating all maximal independent sets in reverse lexicographic order, unless P = NP.

Keywords: Independent set, enumeration, NP-complete, lexicographic order, polynomial time

Generating all configurations that satisfy a given
specification (e.g., all permutations of n objects
that do not fix any object) is a well-studied prob-
lem in combinatorics [6]. Graph theory suggests
many interesting problems of this type (see, e.g.,
[7]). Among them, generating all maximal inde-
pendent sets of a given graph is one that has
attracted considerable attention in the past [4,5,8].
(A maximal independent set of a graph G = (V, E)
is a subset V’ G V of the vertices such that no two
vertices in V’ are joined by an edge in E, and
such that each vertex in V- V’ is joined by an
edge to some vertex in V’.)

One has to be careful in defining notions of
‘performance’ or ‘complexity’ of such algorithms.
In most interesting problems of this sort, the
number of configurations to be generated is
potentially exponential in the size of the input
(say, a graph), and our notions of performance
must take this into account. Even so, there are
many different notions of what it means to solve a
problem of generating configurations ‘in poly-
nomial time’. We examine several possibilities be-
low:

(a) Polynomial total time. The least that we
could ask is that the time required to output all
configurations be bounded by a polynomial in n
(the size of the input) and C (the number of
configurations). Several algorithms satisfying this
criterion exist for the problem at hand. The al-
gorithm of Paul1 and Unger in 151, for example,
runs for O(n’C) time with no output, and then
generates all C maximal independent sets in rapid
succession. Note that even this weakest notion of
‘polynomial time’ is not always possible: If the
configurations to be generated have some inherent
complexity (e.g., the maximum independent sets
of a graph, or the satisfying truth assignments of a
Boolean formula), then, of course, no polynomial
total time algorithm exists for generating all of
them unless P = NP [4].

(b) Incremental polynomial time. An algorithm
meeting this criterion can, given an input and
several configurations (say, a graph and a collec-
tion of maximal independent sets), find another
configuration, or determine that none exists, in
time polynomial in the combined sizes of the
input and the given configurations. It is not hard

0020-0190/88/%3.50 0 1988, Elsevier Science Publishers B.V. (North-Holland) 119

Volume 27, Number 3 INFORMATION PROCESSING LETTERS 25 March 1988

to see that if such an algorithm exists, then the set
of all configurations can be generated in poly-
nomial rota1 time (assuming that each configura-
tion is of polynomial size). Thus (b) implies (a). A
notion much stronger than either (a) or (b) is the
following.

(c) Polynomial delay. An algorithm meeting this
criterion generates the configurations, one after
the other in some order, in such a way that the
delay until the first is output, and thereafter the
delay between any two consecutive configurations,
is bounded by a polynomial in the input size. For
maximal independent sets there is a clever al-
gorithm doing just this, due to Tsukiyama et al.
[8]. This algorithm, a variant of the one in [5],
works by doing a depth-first search in a ‘dynamic’
binary tree with the maximal independent sets as
leaves, whose forward and backward edges are
constructed as we go. The tree has depth n, the
number of vertices. Each vertex at level j is a
maximal independent subset J of the first j
vertices of the graph. As for its children, there are
two cases. Let F(Y) denote the set of vertices that
are adjacent to Y. If J n r(j + 1) = P, (i.e., if J
does not contain any vertices adjacent to vertex
j + l), then J’s only child is J U { j + 1). If there
are some vertices in the neighborhood F(j + 1) of
j + 1 in J, then J potentially has two children.
The first, or leftchild, is a copy of itself, and is
always present. The potential rightchild is J’ =
J-F(j+l)U{j+l} if J’ is a maximal in-
dependent subset of the first j + 1 vertices. Note
that, in this case, J’ is potentially the child of
several sets on the same level in the tree, namely,
of any maximal independent subset of the first j
vertices that contains J’ - r(j + 1). Of all these
sets, J’ is the child of the lexicographically smal-
lest. This completes the description of the tree of
independent sets used in the algorithm of [S].
Notice that the functions leftchild, rightchild, and
parent, as defined above for this tree, can all be
computed in polynomial time. (The lexicographi-
tally first maximal independent subset of
{I, 2,..., j} that contains J - r(j + 1) is easy to
compute.) It follows that the tree can be traversed
in a depth-first manner with polynomial delay per
step of the traversal, and thus the leaves can be
output with only a polynomial delay.

120

(d) Specified order. A more complex case is the
one in which we wish the configurations output in

some specified order, such as lexicographic. Obvi-

ously, this matters only in the case of polynomial
delay; if we are interested only in polynomial total
time, then we can generate all configurations, sort
them, and then output them in the desired order.
An interesting example of generating configura-
tions in a specified order with polynomial delay is
given in [2], which describes such an algorithm for
generating all tuples in the Cartesian product of k
finite, weighted sets in order of increasing total
weight of the k-tuples. Until now, no polynomial-
delay algorithm had been known for generating all
maximal independent sets of a graph in lexico-
graphic (or any other natural) order.

(e) Polynomial space. Some of the algorithms in
the above categories, like the algorithm of [5] and
that of [2] build exponentially large data struc-
tures. Ideally, one would like to avoid this. For
example, the algorithm in [8] needs only linear
space, since it generates the tree as it goes, and
need save only the current node of the tree.

In this paper we examine whether it is possible
to generate all maximal independent sets of a
given graph in lexicographic order and polynomial
delay. (We say a subset S of an ordered set comes
lexicographically before T if the first element at
which they disagree is in S.) It is not at all
obvious that such an algorithm exists, especially in
the light of the following result.

1. Theorem. Given a graph G and a maximal
independent set S, it is coNP-complete to tell whether
S is the lexicographically last maximal independent
set of G.

Proof. The problem is in coNP since if S is not
the lexicographically last, a short proof of this fact
can be obtained by exhibiting a maximal indepen-
dent set that follows S. To show completeness, we
sketch a polynomial transformation from SATISFI-

ABILITY. Given an instance of satisfiability with
variables xi.. . . , x, and clauses C,, . . . , C,,,, we
shall construct a graph G (with ordered vertices)
and a maximal independent set S such that there
is a maximal independent set T lexicographically
after S if and only if there is a truth assignment

Oscar Defrain

Volume 27. Number 3 INFORMATION PROCESSING LETTERS 25 March 1988

that satisfies all the clauses. Our graph has a
vertex for each clause, a vertex for each literal xi
or 7x;, and a special vertex a. The order of the
vertices is as follows: First the clauses, then a,
then the literals (in any order). Vertex a is adja-
cent to all other vertices in G, and there is an edge
connecting any two contradicting literals xi and
7xi. Finally, we make each clause adjacent to all
literals it contains. These are all edges of G. Let us
now define S = { a } (clearly a maximal indepen-
dent set).

Is there a maximal independent set T lexico-
graphically after S? If there is, it must be a subset
of the literals, and, since contradicting literals are
adjacent, a truth assignment. But is it maximal?
For such an independent set to be maximal, it

. must be the case that, for each clause, there is at
least one literal in T which is adjacent to it. In
other words, T is a satisfying truth assignment.
Therefore, S is the lexicographically last maximal
independent set of G if and only if the given
Boolean formula is unsatisfiable. 0

Notice that it is easy to generate the lexico-
graphically first maximal independent subset of a
graph: Scan the vertices in the specified order, and
never leave out a vertex unless it is adjacent to a
vertex already in the set. This can be done in
O(n + m) time, where n and M are the numbers
of vertices and edges, respectively, in G. Similarly,
we can find the lexicographically first independent
set that is maximal and contains a given indepen-
dent set of vertices. (Recall that this fact was used
in the proof sketched above that the algorithm of
[8] runs with polynomial delay.)

Theorem 1 has interesting consequences, as far
as generating algorithms are concerned.

2. Corollary. It is NP-hard, given a graph G and a
maximal independent set S, to generate the lexico-
graphically next maximal independent set.

3. Corollary. Unless P = NP, there is no algorithm
that generates the maximal independent sets of a
graph in inverse lexicographic order with polynomial
delay.

Perhaps surprisingly, we now present an al-
gorithm which generates all maximal independent

subsets of a graph in lexicographic order, with
polynomial delay. Intuitively, our algorithm gets
around the negative implications of Corollary 2 by
‘investing’ work for future outputs while working
on the current one. It does use potentially ex-
ponential space, in the form of a priority queue Q,
which stores a potentially exponential number of
maximal independent sets. These sets are inserted
into Q by the algorithm at a cost of O(n log C)
per insertion, where n is the number of vertices
and C is the total number of maximal indepen-
dent sets. (If the item to be inserted is already
present in the queue, the queue is not altered,
although the same time penalty is incurred.) The
other operation we can perform on the queue is to
find and delete the lexicographically first set it
contains; this can be accomplished within the
same 0(n log C) time bound. Such a priority queue
can be implemented using any of the standard
balanced tree schemes (see, e.g., [l]). Note that the
comparisons to determine lexicographic priority
may take time proportional to n; this is why the
time is not simply the depth of the tree, i.e.,
O(log C). The algorithm is the following:

begin
let S* be the first maximal independent set of

G;
insert S* to Q;
while Q not empty do

begin
S := min of Q;
output s;
for each vertex j of G adjacent to a vertex

i cj of S do
begin

let s,=sn {l,..., j};
if Sj-r(j)U { j} is a maximal inde-

pendent set of the first j vertices then
begin
let T be the lexicographically first ma-

ximal independent set of G
whichcontainsS,-T(j)U{j};

insert T into Q
end

end
end

end

121

Volume 27, Number 3 INFORMATION PROCESSING LETTERS 25 March 1988

4. Theorem. The algorithm above outputs ail maxi-
mal independent sets of a graph with n vertices and
m edges in lexicographic order, and with O(n(m +
n log C)) = 0(n3) delay.

Proof. Notice that the set T inserted in Q at the
time S is output is lexicographically after S. Thus,
the queue always gets sets that are lexicographi-
tally after the one being output, and therefore the
sequence output is indeed lexicographically in-
creasing. We shall show by induction that, if S is
the lexicographically first maximal independent
set not yet output, then it is already in the queue
(and thus it will indeed be output next). This
certainly holds when S = S *.

In the generic case, let j be the largest number
such that S, is not a maximal independent set of
the graph restricted to the first j vertices. (If no
such j exists, then it is easy to see that S = S * .)
Note that we must have j < n since S is a maxi-
mal independent set for the whole graph; note
also that, by the maximality of j, we must have
j + 1 E S. Enlarge S, to a maximal independent
set Sj u K of the first j vertices; since Sj is not
maximal, K is nonempty. Moreover, j + 1 must
be adjacent to all vertices in set K, again because
of the maximality of j.

We conclude that there is a maximal indepen-
dent set S’ which contains S, U K, but not j + 1.
However, S’ comes lexicographically before S
(since it first disagrees with S on the vertices of
K). By induction, S’ has already been output by
the algorithm. When it was output, vertex j + 1
was found to be adjacent to a vertex i -c j + 1 in
S’. Since si’+, -r(j+l)U{j+l}=Sj+i is a
maximal independent subset of the first j + 1
vertices, the first maximal independent set T of G
that contains Sj+, was inserted into the queue. T
agrees with S on the first j + 1 vertices, because
Sj+, is maximal on that set of vertices. Suppose
S # T, and let k be the first vertex in which they
differ; k > j + 1. We must have k E T and k e S
since T was the lexicographically first maximal
independent set containing S,+i. But this would
imply that S, is not maximal, contradicting the
maximality of j. It follows that S = T, and there-
fore S is indeed in Q, as claimed. This concludes
the proof of correctness.

122

For the time bound, notice that the generic step
of the algorithm consist of an extraction of the
lexicographically first maximal independent set
from Q (taking 0(n log C) time), followed by at
most n calculations of a maximal independent set
containing a given one (taking O(n + m) time per

set), and for each of these an attempt to insert the
set found into the queue (taking time O(n log C)
per set). The total delay is thus 0(n(log C + n + m
+nlogC))=O(n3). Cl

Notice that our algorithm uses potentially ex-
ponential space (although at most O(nC)). If we
are willing to tolerate potentially exponential de-
lay, we can generate all maximal independent sets
of a graph in lexicographic order using only poly-
nomial space: simply generate all subsets in lexi-
cographic order, outputting only those that are
independent and maximal. A remaining open
question is whether there is a way to avoid this
apparent tradeoff.

Another important open question is whether
there is an algorithm for generating in polynomial
total time the maximal independent sets of a
hypergraph, not necessarily in lexicographic order.
A hypergraph is a set of vertices together with a
set of subsets of the vertices, called hyperedges. A
set of vertices of a hypergraph is independent if it
does not contain a hyperedge. (Note that this
reduces to our standard notion of an independent
set in a graph if we specialize to the case when all
hyperedges contain precisely two elements.)

This problem has an unexpected application in
databases. Consider a set of n distributed sites. A
voting pattern in a distributed database concur-
rency control scheme is a hypergraph with these n
cites as vertices, in which the following two prop-
erties hold: (a) all pairs of hyperedges intersect,
and (b) no vertex can be deleted from any hyper-
edge without violating (a). (This is a restricted
version of the ‘coterie’ of [3].) Intuitively, a voting
pattern is a collection of minimal sets of sites,
such that the sites in each of these sets can safely
agree on a decision (say, an update), without the
risk that another set has reached a contradictory
decision. The most usual voting pattern contains
all sets of [$(n + 1)1 sites. We say a voting pattern
is maximal if it cannot be extended to a voting

Volume 27. Number 3 INFORMATION PROCESSING LETTERS 25 March 1988

pattern with one more hyperedge. (The maximal
voting patterns coincide with the ‘nondominated

coteries’ of [3].) Testing whether a voting pattern
is maximal can be shown to be equivalent to
deciding whether a proposed list of maximal inde-
pendent sets of a given hypergraph is complete.

Unfortunately, no algorithm for generating all
maximal independent sets of a hypergraph in
polynomial total time is known. In particular, the
approach of [5,8] will not work. That approach
constructs all maximal independent sets of the
subgraph induced by (1, 2.. . . , j}, and then de-
rives from them the maximal independent sets of

the subgraph induced by { 1, 2,. . . , j + l}. With
both graphs and hypergraphs, we know that every
maximal independent set Z of vertices { 1,. . . , j +
l} is contained in a set J U { j + l} for some
maximal independent set .Z of (1, 2,. . . , j}. The
question of determining which such Z are con-
tained in J u { j + l} for a given J is easy for
graphs; the only candidates are J and J - r(j +
1) U { j + l}. For hypergraphs, however, we are
not so fortunate. The set of candidates is much
larger, and, indeed, the question of whether any
such Z exists is NP-complete (an exercise we leave
to the reader).

References

111

121

I31

141

161

[71

PI

A.V. Aho. J.E. Hopcroft and J.D. Ullman. The Design and

Analysis of Computer Algorithms (Addison-Wesley, Read-

ing, MA, 1974).

A.V. Aho, T. Szymanski and M. Yannakakis, Sorting the

Cartesian product. Proc. Conk on Information Sciences and

Swtems (Princeton University, Princeton, NJ, 1980)

557-558.

H. Garcia-Molina and D. Barbara, How to assign votes in

a distributed system, J. ACM 32 (1985) 841-860.

E.L. Lawler. J.K. Lenstra and A.H.G. Rinnooy Kan, Gen-

erating all maximal independent sets: FP-hardness and

polynomial-time algorithms, SIAM J. Comput. 9 (1980)

558-565.

M.C. Paul1 and S.H. Unger, Minimizing the number of

states in incompletely specified sequential switching func-

tions, IRE Trans. Electr. Comput. EC-8 (1959) 356-367.

R.C. Read, Every one a winner, or how to avoid isomor-

phism when cataloguing combinatorial configurations, Ann.

Discrete Math. 2 (1978) 107-120.

R.C. Read and R.E. Tatjan, Bounds on backtrack al-

gorithms for listing cycles, paths, and spanning trees, Net-

works 5 (1975) 237-252.

S. Tsukiyama. M. Ide, H. Ariyoshi and I. Shirakawa, A new

algorithm for generating all maximal independent sets,

SIAM J. Comput. 6 (1977) 505-517.

123

