
Journal of Algorithms 33, 281-295 (1999)
Article ID jagm.1999.1043, available online at http://www.idealibrary.com on InEkL@

Exploring Unknown Undirected Graphs

PetriSor Panaite and Andrzej Pelc"

Dlpartememt d'lnformatique, Umiuersitl du Quibec b Hull, Hull,
Quibec J8X 3Xz Canada

E-mail: petrisor@cadabratech.com, pelc@uqah.uquebec.ca

Received October 18, 1997

A robot has to construct a complete map of an unknown environment modeled
as an undirected connected graph. The task is to explore all nodes and edges of the
graph using the minimum number of edge traversals. The penalty of an exploration
algorithm running on a graph G = (V(G), E(G)) is the worst-case number of
traversals in excess of the lower bound IE(G)I that it must perform in order to
explore the entire graph. We give an exploration algorithm whose penalty is
O(lV(G)l) for every graph. We also show that some natural exploration algorithms
cannot achieve this efficiency. (G 1999 Academic Press

1. INTRODUCTION

A robot has to construct a complete map of an unknown environment
modeled as an undirected connected graph. To this end it has to explore all
nodes and edges of the unknown graph starting from some node and
moving along edges. When the robot traverses an edge, it explores this
edge and both of its ends. The robot does not have any a priori knowledge
of the graph. During the exploration, the robot draws a partial map
consisting of all nodes and edges that it has already explored. It assigns
labels to these components and can recognize them when encountered
again. In particular, after coming to an already explored node u incident to
an explored edge e, the robot knows the location of u and of the other end
of e on the partial map. At any stage of exploration the robot also knows
the number of unexplored edges incident to an explored node but does not
know the other ends of these edges. It has two options for leaving an
explored node: either use a specific explored edge or an arbitrary unex-

* Andrzej Pelc was supported in part by NSERC Grant OGP 0008136.

281

0196-6774/99 $30.00
Copyright 0 1999 by Academic Press

All rights of reproduction in any form reserved.

282 PANAITE AND PELC

plored edge (chosen by the adversary). The latter assumption corresponds
to the lack of knowledge concerning the unexplored part of the graph.

A natural measure of cost of an exploration algorithm running on a
graph G = (HG), E(G)) is the worst-case number of edge traversals it
uses, taken over all starting points and all adversary decisions. The obvious
lower bound on this cost is IE(G)I. This can be achieved for Eulerian
graphs by an off-line algorithm provided with a labeled map of the graph,
knowing the starting point and other ends of all edges incident to the
currently visited node. However, in the unknown environment setting, an
exploration algorithm will often have to use substantially more traversals,
due to the topology of the graph (which may be non-Eulerian) and to the
lack of information indicating an efficient method of exploring. The
penalty of an exploration algorithm running on a graph G = (V(G), E(G))
is the worst-case number of traversals in excess of the lower bound IE(G)I.
It is important to construct exploration algorithms whose penalty is small
for every graph.

1.1. Related Work

Exploration and navigation problems for robots in an unknown environ-
ment have been previously studied by many researchers (cf. the survey
[12]). There are two basic approaches to modeling these problems. In one
of them a particular geometric setting is assumed, e.g., an unknown terrain
with convex obstacles [5] or a room with polygonal [7] or rectangular [3]
obstacles. In the second approach the environment is modeled as a graph
and the robot may move only along its edges. This latter setting was
further specified in two different ways. In [l, 81 the robot explores strongly
connected directed graphs and it can move only in the direction from head
to tail of an edge, not vice versa. In [2, 61 the explored graph is undirected
but an additional requirement is imposed that the robot has to come back
to the starting point every so often, say for refueling. In all these papers
the aim was to explore the environment as efficiently as possible. In
particular, under the graph model, this goal translates into constructing
exploration algorithms with the smallest possible penalty. Indeed, in [1, 8,
2, 61 such exploration algorithms were constructed and analyzed, and
(nearly) matching lower bounds were also given. It turns out that due to
the requirement of traversing edges only from tail to head in one case and
due to the necessity of periodic returns in the other case, the smallest
possibility penalty is relatively high in both situations.

The above work leaves out the natural scenario of exploring an unknown
undirected connected graph without the extra requirement of periodic
returns to the starting point. It is briefly observed in [6] that the simple
depth-first search algorithm gives a penalty of at most IE(G)I in this case

EXPLORING UNKNOWN UNDIRECTED GRAPHS 283

(cf. also the remark in [l] that a penalty of at most 31E(G)I follows
immediately from a result in [S]). However, this penalty of order of IE(G)I
may become quite large in the case of dense graphs. The aim of the
present paper, which is an extended version of [lo], is to give an explo-
ration algorithm with the penalty linear in the number of nodes, not only
in the number of edges.

1.2. Our Results

Our main result is an exploration algorithm working for any (unknown)
undirected connected graph G = (H G) , E(G)) with penalty O(lV(G)l).
More precisely, we show that the penalty of our algorithm never exceeds
3lV(G)l. We also show that two natural heuristics, GREEDY and depth-first
search (DFS), do not achieve penalty O(lV(G)l) for all graphs.

In both GREEDY and DFS (cf. [11, where analogous heuristics were
defined in the directed case), the robot uses unexplored edges as long as
possible and, when stuck at a node c, it uses a simple strategy to reach a
free node c’ (i.e., incident to yet unexplored edges). In the case of GREEDY,
c’ is the free node closest to c, while in the case of DFS, u’ is the most
recently visited free node. It turns out that both these choices are too
naive. The vision of GREEDY is too local, while DFS does not make
sufficient use of the knowledge of the explored subgraph, basing its
decisions only on the order of visits.

As opposed to these simple heuristics, our algorithm explores the graph
in the order given by a dynamically constructed tree. As above, the robot
uses unexplored edges as long as possible. The place where our algorithm
differs from GREEDY or DFS is in the choice of the free node to which the
robot relocates after getting stuck. The idea is to bring the robot back to
the node of the dynamically constructed tree at which it interrupted the
construction of the tree. In doing this we want to control the number of
traversals through already explored edges. Following the structure of the
dynamic tree prevents the robot from being distracted from systematic
exploration by free nodes situated close to it, which is the case for
GREEDY. At the same time it excludes “temporal” rather than “geo-
graphic” preferences, which cause inefficiency of DFS.

It should also be mentioned that the methods and results from [l , 81
concerning directed graphs cannot be adapted to our scenario. This would
require traversing each edge at least once in each direction, thus giving a
penalty of at least IE(G)I, which we want to avoid. Also methods from [2,
61, based on breadth-first search exploration, natural and useful under the
requirement of frequent returns to the starting point, are easily seen to
give a penalty of at least IE(G)I and thus cannot be used for our purpose.

284 PANAITE AND PELC

The paper is organized as follows. In Section 2 we establish terminology.
In Section 3 we describe the above-mentioned natural exploration heuris-
tics and show that they do not achieve penalty O(lV(G)l) for all graphs. In
Section 4 we describe our exploration algorithm, prove its correctness, and
show that its penalty is linear in the number of nodes of the graph.

2. TERMINOLOGY AND NOTATION

Throughout the paper, graph means undirected connected graph. The
order of a graph is its numbers of nodes. For G = (V(G),E(G)) and
H = (V (H) , E (H)) , let G u H denote the graph (V(G) u H H) , E(G) u
E(H)) . If H is a subgraph of G, let G \ H denote the graph induced in G
by V(G)\V’(H), where V ’ (H) is the set of those nodes in H , all of whose
neighbors belong to H H) .

A run of an exploration algorithm is a sequence of edge tracersals, where
consecutive edges form a path in the graph. At any stage of the algorithm
execution, already traversed edges are called explored and other edges are
called fiee. A node is saturated if all its incident edges are explored.
Otherwise it is fiee. The robot is stuck after coming to node z: if z:
becomes saturated after this move of the robot. Let G = (V(G), E(G)) be
a graph, ~1 E HG) , and let A be an exploration algorithm in G. A penalty
traversal is any traversal of an explored edge. PA(G, u) denotes the
worst-case number of penalty traversals, taken over all possibilities to
choose the unexplored edges (i.e., taken over all aduersaries), when the
robot starts at u and moves according to algorithm A. The penalty o f A for
G is 9A(G) = max{PA(G, u) : z: E V(G)}. An important property of an
exploration algorithm A is that its penalty is linear in the order of the graph.
By this we mean that there exists a constant c such that, for evevy graph
G, PA(G) I c . IV(G>I.

3. NATURAL HEURISTICS

In this section we consider two natural exploration heuristics, the
GREEDY algorithm and the depth-first search algorithm, defined similarly
as in [l]. Under our scenario these heuristics are, of course, much more
efficient than those in [ll. However, our efficiency demand that the penalty
be linear in the order of the graph is also much more difficult to satisfy.
We show that none of these heuristics meet this requirement. It is worth
mentioning that (as opposed to [11) graphs constructed to prove this are
totally different in each case. They are also different from graphs con-
structed in [l].

EXPLORING UNKNOWN UNDIRECTED GRAPHS 285

The GREEDY exploration algorithm is defined as follows. Whenever the
current node is free, the robot takes an unexplored edge incident to the
node. When stuck at the current node, the robot relocates to the nearest
visited free node via a shortest path, where the distance d and the shortest
path are defined with respect to the explored part of the graph.

We prove that the penalty of GREEDY is not linear in the order of the
graph. To this end, we construct a class of graphs for which this algorithm
performs poorly. Intuitively, the way of forcing GREEDY to perform many
penalty traversals is the following. At many stages of the exploration, the
adversary creates free visited nodes which are sufficiently close to the
current node to “attract” the robot far away from a still unexplored part of
the graph. In order to come back to this unexplored “hole,” the robot
performs many penalty traversals. Our graphs contain special devices
called magnets whose role is to drag the robot away from such holes many
times.

Let g 2 1. A g-magnet is any graph isomorphic to MR = {(O, . . . ,4g},
{[O, 11, [l , 21,. . . , [4g - 1,0], [2g, 4gl)). Hence a g-magnet is a cycle of length
4g with one extra node of degree 1 attached to it. The node of degree 3 is
called the center of the magnet and the node of degree 1 is called its top.
The node at distance 2g from the center is called the root of the magnet.
A 0-magnet is any graph isomorphic to M , = ({O, 11, {[O, 1111, i.e., a two-node
path. One of its nodes is called the root and the other is called the top. For
convenience, we say that the root of a 0-magnet is also its center.

A graph S containing exactly one elementary path between two nodes u
and u is called a uu-segment. This unique path, denoted R,,(S), is called
the uu-road of S . For w E V(RLLz(S)) , let G,,(S, w) denote the connected
component of S\R,,(S) containing the node w , if such a component
exists. Otherwise, let G,, (S , w) = 0. Because of the unicity of the path
connecting u and c , the graphs G,, (S , w) and G,, (S , w’) do not share any
node, for distinct nodes w and w’ on the uc-road of S.

Let S be a uu-segment and Z be a uw-segment such that V (S) n V (Z)
= {u}. The join of S and 2, denoted S O Z , is the graph S U
(Z\G,,,,(Z, 71)). Notice that S O 2 is a uw-segment and, for all x E
V(R,,, (S)), y E V(R, ,(Z>>\Ccl, we have G,, (S , x) = G,,,(S 0 2, x) and
G, ,(Z, y) = G,,O 0 Z , y) .

Suitably relabeling nodes of S and 2, the join operation can be ex-
tended to any pair uu-segment/uw-segment, with u # w, such that the
result is always a uw-segment.

Let M and N be g-magnets, g 2 0, with roots u and u , respectively. If
S is a uu-segment such that V (M) n V (S) = {u} and V (S) n V (N) = { u }
then M O S = M u S and S O N = S u N. Clearly, M O S and S O N are
still uc-segments. This operation can be extended to any pair g-
magnet/uu-segment such that the result is a uu-segment.

286 PANAITE AND PELC

We introduce a particular class of ab-segments, for fixed nodes a and b.
For g 2 0 and k 2 1, S,[k] is recursively defined as follows. Let S,[k] be
the path [x, a , u , , . . . , u k P l , b, y]. Notice that S = So[k] is an ab-segment
with Ruh[S] = [a, u , , . . . , ~ 1 ~ - ~ , b] and with two 0-magnets, GuI,(S, a) and
Gub(S, b), rooted at a and b, respectively.

Let g 2 1 and let i be the largest j with 1 + 2 l + ... + 2 J I k ; let
k' = k - (2 '+' - 1). If g is odd and k' > 0 then S,[kl = M, 0 S,- ,111 0
S,- , [2 l] 0 ... 0 S,- ,[2'] 0 S,- ,[k'] 0 M,. For k' = 0, S,[kl = M, 0
S ,~ , [l]OS ,~ , [2 ']0 ... OS,~,[2']0M,. If g is even and k' > 0 then
S,[kl = M,OS,~,[k'lOS,~,[2'10 ... OS,~,[2'lOS,~,[1lOM,. For k'
= 0, S,[k] =M,0S,-l[2L]0 ... OS,~1[2110S,~l[l10M,. See the ex-
amples given in Fig. 1.

Notice that every graph S = S,[k] is an ab-segment. The ab-road
R a b (S) is a path of length k. For every u E Rab(S) , either Gah(S, u) = 0
or there exists h E (0,. . . , g } such that Gub(S, u) = No U ..* U NJl, where
N , is an i-magnet with root u and V(N,) n V(N,) = { u) whenever i Z j .
The graph S contains a simple path, connecting b to a , which passes
through all the nodes of S apart from the tops of the magnets. Let P,[k]
denote such a path. Intuitively, the adversary first forces the robot to
traverse the path P,[k] and then the magnets force the robot to perform
many trips along the ab-road. This idea yields the following lemma.

For every g 2 0 and k 2 1, 9G13rrl,,(S,[k], b) 2 (g + 1)k.

Let S = S,[k]. Since the path P,[kI is simple, the adversary can
lead the robot along this path from b to a . At the end of this trip, the only
visited free nodes are the centers of the magnets. A magnet is actice if its
center is visited but its top is not. A magnet is dead if its top is visited.
Otherwise a magnet is asleep. Thus, at the beginning all magnets are
asleep and after the trip along P,[k], all magnets are active.

For g = 0, the robot moves to the top of the 0-magnet rooted at a , and
then relocates to the top of the 0-magnet rooted at b. This involves at least
k penalty traversals.

LEMMA 3.1.

Pro05

FIGURE 1

EXPLORING UNKNOWN UNDIRECTED GRAPHS 287

For g = 1, the robot moves to the top to of the 0-magnet rooted at a
and gets stuck. Let Rah(S) = [a , u , , . . . , ukP 1, b]. Active 0-magnets are
rooted at u1, cg.. . . , ugJP 1, . . . , b, and active 1-magnets are rooted at a and
b. The competitors for the nearest visited free node are the center x of the
1-magnet rooted at a and the node ul. Since d(t,, x) = 3 and d(t,, u ,) = 2,
the robot relocates to c,, and then moves to the top t , of the 0-magnet
rooted at c1 and gets stuck. Since d(t , , x) = 4 and d (t l , c 3) = 3, the robot
relocates to c 3 . In general, when the robot arrives at cz l - l , it moves to the
top t2,-1 of the 0-magnet rooted at ~ 1 ~ ~ - ~ and gets stuck. Since d(tZ l - , , x)
= 1 + (2 J - 1) + 2 = 2 ’ + 2 and d (t z l - l , uZ,+1-,) = 2 ’ + 1, the robot re-
locates to uZl+1- , . It follows that the GREEDY strategy leads the robot to
the node b, forcing it to perform at least k penalty traversals. Further, the
robot visits the tops of the 0-magnet and 1-magnet rooted at b. At this
stage, n becomes the unique visited free node. The robot relocates to
this node performing at least k more penalty traversals. Therefore,

Suppose that g 2 2. After traversing P,(k), the robot moves to the top
of the 0-magnet rooted at a and gets stuck. Following the above reasoning,
as long as there exist active 0-magnets, the robot relocates to the centers
of these magnets and visits their tops. When the robot gets stuck at the top
of the 0-magnet rooted at b, all the 0-magnets are dead. The nearest
visited free node is now the center of the 1-magnet rooted at b. In general,
when the robot gets stuck at the top of the h-magnet rooted at b (h even),
all the h-magnets are dead and the nearest visited free node is the center
of the (h + 1)-magnet rooted at b. The robot relocates to this node, and
then moves to the top of the (h + 1)-magnet rooted at b and gets stuck.
Recall that if a node on the ab-road is the root of an r-magnet then it is
also the root of a q-magnet for each q < r. Therefore, whenever the robot
gets stuck, the competitors for the nearest visited free node are the centers
of (h + 1)- and (h + 2)-magnets. The chosen distance between two con-
secutive (h + 1)-magnets guarantees that the nearest visited free node is
always the center of a (h + 1)-magnet. Consequently, the robot kills, one
by one, all the (h + 1)-magnets. This involves a new trip along the ab-road
of S, ending at a , and hence at least k more penalty traversals. When the
robot gets stuck at the top of the h-magnet rooted at a (h odd), the
nearest visited free node is the center of the (h + 1)-magnet rooted at a .
The robot kills, one by one, all the (h + 1)-magnets. This involves a new
trip along the ab-road, ending at b, and hence at least k more penalty
traversals. We conclude that, in order to explor S, the robot performs
(g + 1) trips along the ab-road, after the initial one, and hence performs
at least (g + 1)k penalty traversals.

9 G R r r n Y (S , b) 2 2k.

I

288 PANAITE AND PELC

THEOREM 3.1. The penalty of algorithm GREEDY is not linear in the order
of the graph.

Pro05 We construct a family of graphs {G, : g 2 11 such that, for every
g 2 1, 9G,,,, , , ,(Gg) 2 glV(G,)l.

Let n,(i) denote I(S,[2'])l - (2' + l), i.e., the number of all nodes of
S,[2'] apart from those belonging to its ab-road. We prove by induction on
g 2 1 that

For every i 2 2, n,(i) = 10 + i I (i + 2)'. Hence the inequality is true for
g = 1. We suppose that it is true for g and prove it for g + 1. Suppose that
g + 1 is odd (for g + 1 even, the argument is similar). By definition,
S,+1[2i1 = M R + 1 0 S R [2 0] 0 . . . SR[2 '~ '10S,[110M,+, . It follows that

n g + l (i) 5 8 (g + 1) + n,(O) + 1 . 1 +n,(i - 1) + n,(O)

I 8 (g + 1) + (i + l)n , (i - 1).

By induction hypothesis, for i 2 g + 2, ng+ l(i) I 8(g + 1) + (i + l)(i +
1)R'l I (i + 2)R" + (i + l)(i + 2)R'l = (i + 2)R". Hence, the inequal-
ity is true for g + 1.

Consequently, for every g 2 1 and i 2 g + 1, IV(S,[2'l)l 5 2 ' + 1 + (i
+ 2)"+'. By Lemma 3.1, 9GR,,,y(S,[2i]) 2 (g + 1)2i 2 (g + l>lV(S,[2i]>l
-(g + 1)[1 + (i + 2)"+']. Let i , 2 g + 1 be any integer for which 2in 2
(g + 1)[1 + (io + 2)"+']. Let G, = S,[2'0]. It follows that 9GRrrny(G,) 2

glV(G,>l. I
Another natural way to explore a graph is given by the depth-first search

strategy. The DFS exploration algorithm is defined as follows. Every time
the current node is free, the robot takes an unexplored edge incident to
the node. When stuck at a node, the robot relocates to the most recently
visited free node, following a shortest path in the explored part of the
graph.

The reason why DFS may be inefficient is, in some sense, opposite to
that for the GREEDY strategy. The DFS exploration algorithm "blindly"
looks at its history, always choosing the recently visited free node, even
when it is far away from the current node. Hence the robot will postpone
exploration of regions close to the current node, in order to relocate to the
recently visited node. The difficulty in constructing graphs for which DFS
performs poorly lies in the fact that adding devices similar to magnets
cannot help. Such cycle-like structures with pending unexplored edges are
a natural way to create free visited nodes (and hence to "drag" the robot

EXPLORING UNKNOWN UNDIRECTED GRAPHS 289

away) but graphs obtained in this way are necessarily sparse; in particular
their number of edges is linear in their order. Since, as we know, the
penalty of DFS does not exceed the number of edges, this construction
method cannot show that the penalty of DFS is not linear in the order of
the graph. To prove the inefficiency of DFS we need dense graphs.

For every positive even integer x = 2k, let R[xl = (V(R[x l) , E(R[xI)) ,
where, V (R [x]) = { a o , . . . , a,,,, d , , . . . , d,, e l , . . . , e,} U {bi, j, c,, : 0 I i I
x , l ~j 1k1 and E(R[x l) = ~~b,,j,ail,~b,,j,ai+ll,~~~,j,ail,~ci,j,a,+ll:O I

i I x, 1 I j I kl u Ub,, ,, 41,. . . , [b,,,, d k l , [c,,,, e l l , . . . , [c,,,, ekll. See
Fig. 2 for the graph R[41.

Let C [x] denote the following cycle in R [x] : [a o , b,, ,, a,, b,,, , a 2 , . . . ,

a,, . . . , a , , c0,,, ao] . Notice that C [x] passes exactly once through all edges
of R[xl apart from those of type [b,, * , d ,] and [c x , * , e,].

Let G be a graph of order x 2 2, x = 2k, with a, as one of its nodes.
RIG] denotes the graph defined by I/(R[GI) = I / (R[xl) and E(R[GI) =

E (R [x]) u E(G,) u ... u E(G,-,), where, for every i E (1, . . . , x - l } , G,
is any graph with V(Gi) = {bi, ,, . . . , bi,,, c,, ,, . . . , c , , , } for which there
exists an isomorphism f : G + G, such that f(a,) = ci,,. Intuitively, R[G]
is the graph R [x] with isomorphic copies Gi of G inserted on sets of nodes
{b,,,, . . . , bi,,, c,, ,, . . . , ci,,}. Notice that R[xI = R[N,I, where N, = ({a,,

For every connected graph G with a , E V(G) , let p (G) denote

LEMMA 3.2. Let x = 2k 2 2. If G is N, or any connected graph of order

a,, b,,,, a,+,, C, , l , a,, . f f 9 a,, c O , l ' . . . 9 bO,k , a,, b,,ka,+l, c,,ki

1 , 2 , . . . , x - 1},0).

T D F S (G , a,). For convenience, let additionally p(N,) = 0.

x , with a , E H G) , then

1.
2.

IV(R[G])I =x2 + 3x + 2 ;
p (R [G]) 2 2x2 + (X - l)p(G) .

di d2

FIG. 2. The graph R[41

290 PANAITE AND PELC

Pro05 1 . Straightforward from the definition of V(R[GI).

2. Suppose that the robot starts at node a , and moves according to
the DFS exploration algorithms. Since R [x] is a subgraph of R[G], C [x] is
also a cycle in R[G]. Since C [x] is a simple cycle, there exists an adversary
that, first, leads the robot along C[x] . At the end of this trip, the robot
gets stuck at a,.

If G = N,, the most recently visited free node is c,,~. By definition of
DFS, the robot relocates to c,,~. This requires 2x + 1 penalty traversals.

If G # N, then G,, . . . , G, - , are connected components in the graph
induced by the unexplored edges of R[G] . In this case, the most recently
visited free node is c , , ~ . Therefore, the robot relocates to c , , ~ . This node
belongs to V(G,). By definition of DFS, the robot does not leave the nodes
of G , before exploring all of its edges. Moreover, when this happens, c ~ , ~
becomes the most recently visited free node. The robot relocates to this
node, which belongs to V(G,). Iterating the above reasoning, it follows
that the robot can be led to the node c,,~ by saturating all nodes of
G,, . . . , G,- ,. Notice that this can be done so that the robot performs at
least (x - l)p (G) penalty traversals. Supplementary 2x + 1 penalty
traversals are performed in order to reach nodes c,, k , . . . , c , , ~ .

We conclude that there exists an adversary that leads the robot from a ,
to c , , ~ such that all edges, apart from those of the form [b,, * , d , I and
1% * 1 e.1, are explored and the number of penalty traversals is at least
2x + 1 + (x - l)p(G). At this stage of exploration, the free visited nodes
(in the reverse order of visiting) are c , , ~ , b,,,, c , , , ~ ,, . . . , x,, ,, bo, ,. There-
fore, the robot has to relocate to these nodes, in the above order, and to
explore the remaining edges. This requires (2k - 1)(2x + 1) = 2 x 2 - x -
1 penalty traversals. Consequently, p (R [G]) 2 2x2 + x + (x - l)p(G) . I

THEOREM 3.2. The penalty of algorithm DFS is not linear in the order of
the graph.

Pro08 We construct a family of graphs {G, : i 2 11 such that, for every
i 2 1, PDFS(G,) 2 ilV(G,>l.

For every positive even integer x, let H,[xI = R[xI and H,[xI =

R[H,- ,[XI], for i 2 2. Notice that these graphs are well defined since, for
every i 2 1 , IV(H,)I is even and a , E V(H,) .

For k 2 0, let IIk denote the set of all nonzero polynomials of degree at
most k , with nonnegative integer coefficients. We prove by induction on
i 2 1 that there exists P, E IIZz-, such that

IV(H,[x]) l =x2’ + P, (x) and p (H , [x]) 2 2i.x”.

EXPLORING UNKNOWN UNDIRECTED GRAPHS 29 1

By Lemma 3.2, IV(H,[xl)l = x2 + 3x + 2 and p (H , [x]) 2 2x2; hence the
above property is true for i = 1. Supposing that the property is valid for
i 2 1, we prove its validity for i + 1.

Let y = IV(H,[xl)l; by induction hypothesis, there exists P, E 112,-,
such that y = x2 ' + P,(x). By definition, IV(H,+,[xl>l = lV(R[yl)l. By
Lemma 3.2(1), IV(H,+,[xl)l = y 2 + 3y + 2 = x 2 ' + ' + P,+,(x), where
P,+,(x) = 2x2PL(x) + P , ~ (X) + 3[x2' + P,(x)] + 2. Clearly, P,+, E
I I zZ+~- , . By Lemma 3.2(2), p(H,+,[xl) 2 2 y 2 + (y - l)p(H,[xl). By in-
duction hypothesis, p(H,[xl) > 2i.x". It follows that p(H,+, [x]) > 2x2"'
+x2'(2i)n2' + [P , (x) - l] p (H , [x]) 2 2(i + 1)x2"'. This ends the proof by
induction.

Let i > 1. Since the degree of P, is at most 2 , - 1 , there exists x, 2 2
such that x,"' > P,(x,). For G, = H J x ,] we have IV(G,)l I 2x;' and hence
PDFS(G,) 2 p (G ,) 2 iIV(G,>I. I

4. AN EXPLORATION ALGORITHM WITH LINEAR PENALTY

We present an algorithm which performs no more than 31V(G)I penalty
traversals for every connected graph G. The main idea is to maintain most
of the robot relocations along a (dynamically constructed) spanning tree
of G.

The algorithm EXPLORE(?), given below, controls the movements of the
robot, where the node r E V(G) is its initial position. Two arrays are used
in the algorithm description: parent : V(G) + V(G) u {null, unassigned)
and color : V (G) + {white, blue, red}. For every u E V(G)\{r}, parent[ul
will represent the parent of ~1 in the spanning tree T of G that EXPLORE(?)
will build. More exactly, parent(u) is the neighbor of c on the path joining
~1 with r in T .

 EXPLORE(^): parent[r] := null;
parent[ul := unassigned for every u E V(G)\{r};
color[u] := white for every u E V(G);

while c # null do
r ; L, :=

SATURATE(u) ;
if u has a neighbor u such that parent[u] = unassigned
then

parent[ul := c ;
Ll := u'

else

Move to u ;
u := parent[u] ;

292 PANAITE AND PELC

Procedure SATURATE(U) is the crucial part of the algorithm. We describe
it later in detail. The aim of this procedure is to perform a travel which
starts and ends at c and saturates u. As a side effect of SATURATE(C),
some white nodes turn red.

The correctness of EXPLORE is straightforward. By the definition of
SATURATE, every time the if instruction is reached, the robot knows all
neighbors of u. Hence, all steps are well defined. Since every node is
visited and saturated, the whole graph G is explored when the end of
algorithm EXPLORE is reached.

During the execution of EXPLORE, we can distinguish two types of
penalty traversals: those required by the procedure SATURATE and those
dictated directly by EXPLORE in its last line. We call the traversals of the
second type external penalty tracersals. It is clear that the external penalty
traversals are along the edges of a spanning tree T of G, in depth-first
order. At this level of the description of EXPLORE, we can state the
following complexity result that points out the role of the dynamically
constructed tree T.

LEMMA 4.1. For every connectedgraph G, 9Exrl ,,,,,(G) I ZlV(G>l + p ,
where p is the number of penalty traversals pegoimed during the executions of
procedure SATURATE.

In the case where the robot has to deal only with Eulerian graphs, our
exploration strategy, based on depth-first search in an unknown tree, leads
to a simple algorithm with linear penalty. Indeed, in this case, the proce-
dure SATURATE(U) can simply tell the robot to take an unexplored edge as
long as the current visited node is free. Since the graph is Eulerian, every
node has an even degree and, therefore, the travel started at u ends also at
u. Consequently, no penalty traversal is performed during any execution of
SATURATE. Let EXPLORE’ denote the algorithm EXPLORE working only for
Eulerian graphs, with procedure SATURATE defined as above. Clearly, for
every Eulerian graph, 9 E X F L o R L I (G) I ZIV(G)l.

Consider the general case. The travel, obtained by taking an unexplored
edge as long as the currently visited node is free, does not necessarily end
at the starting node. In order to bring the robot back to the starting node
u , the procedure SATURATE(U) performs a sequence of free trips and
maintains a bridge between the currently visited node and node u.

A free trip is a maximal sequence of consecutive unexplored edge
traversals. During the execution of SATURATE, some white nodes are
colored blue. By the end of SATURATE, every blue node will become either
white or red. A red node will never change its color. A bridge is any path
(not necessarily elementary) in the explored part of G, all of whose nodes
are blue. The only penalty traversals are involved when the robot relocates

EXPLORING UNKNOWN UNDIRECTED GRAPHS 293

between two consecutive free trips. The number of these penalty traversals
is kept small by using bridges.

Procedure SATURATE is defined as follows.

SATURATE(U): if L] is saturated then return;
color[u] := blue;

while not (u = u and u saturated) do
u := Ll'

if u is incident to a free edge e then
u := the other end of e ;
color[u] := blue;

Let [u,,, u l , . . . , u k] be a path from u to u where
all nodes are blue and all edges are explored;

color[ul := red;

else

,g:=,g' 1 '

Move to u ;
All blue nodes become white;

LEMMA 4.2. 1. Procedure SATURATE(C) is well defined.

2.

3.

4.

Pro05 1. It is sufficient to prove the following property, for every i 2 1:

P(i) : If SATURATE(C) performs the ith iteration of the while loop then,

Procedure SATURATE(U) stops and, at its end, the node u is satu-

For euely execution of SATURATE, the number ofpenalty traversals is

A red node does not change its color.

rated and the robot is at u.

equal to the number of blue nodes turned red.

before this iteration, there is a bridge connecting u to u.

Obviously, P(1) is true. Suppose that P(i) is true, for some i 2 1, and
suppose that SATURATE(U) performs the (i + 11th iteration of the while
loop. Let u be the node where the robot is before the ith iteration. By
induction hypothesis, there is a path B in the explored part of graph G, all
its nodes being colored blue, which connects u to u. If u is not saturated,
let u' be the node chosen by procedure SATURATE. Since this node will be
colored blue, it follows that, before the (i + 11th iteration, the edge [u', ul
followed by the path B is a bridge connecting u' to c. If u is saturated, let
[u,,. u l , . . . , u k] be the path defined by procedure SATURATE. Notice that
such a path is the bridge B. Clearly, before the (i + 11th iteration, the path
[u l , . . . , u k] is a bridge connecting u1 to u. Hence, in both cases, P(i + 1)
is true.

294 PANAITE AND PELC

2. After each iteration of the while loop, either a new edge is
explored or a new mode is colored red. Notice that outside procedure
SATURATE nodes do not change their color. By definition, SATURATE colors
a node red only once. Since the number of edges to be explored and the
number of nodes to be colored red are finite, there is an iteration where
vertex c is reached again and no unexplored edge is incident to u.

3. A maximal sequence of iterations, with u not saturated, defines a
free trip for the robot. The only penalty traversal in SATURATE are
involved when the robot moves from u to u l . Each such move corresponds
to a red coloring.

4. See (2). I
THEOREM 4.1. The penalg of algorithm EXPLORE is linear in the order of

the graph.

Pro05 We prove that, for every connected graph G, PEXPLOR,(G) 5
3lV(G)l. By Lemma 4.1, it is sufficient to prove that the number of penalty
traversals, performed during all executions of SATURATE, is at most I V(G)I.
This follows immediately from Lemma 4.2(3,4). I

ACKNOWLEDGMENT

Thanks are due to the anonymous referee who suggested a simpler version of algorithm
EXPLORE.

REFERENCES

1. S. Albers and M. R. Henzinger, Exploring unknown environments, SIAM J . Comput., to

2 . B. Awerbuch, M. Betke, R. Rivest, and M. Singh, Piecemeal graph learning by a mobile

3. E. Bar-Eli, P. Berman, A. Fiat, and R. Yan, On-line navigation in a room, J . Algorithms

4. P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosen, and M. Saks, Randomized robot
navigation algorithms, in “Proceedings 7th ACM-SIAM Syrnp. on Discrete Algorithms,
1996,” pp. 74-84.

5. A. Blum, P. Raghavan, arid B. Schieber, Navigating in unfamiliar geometric terrain, SIAM
J . Comput. 26 (1997), 110-137.

6. M. Betke, R. Rivest, arid M. Singh, Piecemeal learning of an unknown environment,

7. X. Derig, T. Karneda, arid C. H. Papadimitriou, How to learn an unknown environment. I.

8. X. Derig arid C. H. Papadirnitriou, Exploring an unknown graph, J . Graph Theory, to

appear.

robot, in “Proceedings 8th Corif. on Comput. Learning Theory, 1995,” pp. 321-328.

17 (1994), 319-341.

Mach. Learning 18 (1995), 231-254.

The rectilinear case, J . ACM 45 (1998). 215-245.

appear.

EXPLORING UNKNOWN UNDIRECTED GRAPHS 295

9. F. Hoffrnam, C. Icking, R. Klein, and R. Kriegel, A competitive strategy for learning a
polygon, in “Proceedings, 8th ACM-SIAM Symp. on Discrete Algorithms, 1997,” pp.

10. P. Panaite and A. Pelc, Exploring unknown undirected graphs, in “Proceedings, 9th Ann.

11. C. H. Papadimitriou and M. Yannakakis, Shortest paths without a map, Theoret. Cornput.
Sci. 84 (19911, 127-150.

12. N. S. V. Rao, S. Hareti, W. Shi, and S. S. Iyengar, “Robot Navigation in Unknown
Terrains: Introductory Survey of Nomheuristic Algorithms,” Technical Report
ORNL/TM-12410, Oak Ridge National Laboratory, July 1993.

166- 174.

ACM-SIAM Symposium 011 Discrete Algorithms, 1998,” pp. 316-322.

