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A robot has to construct a complete map of an unknown environment modeled 
as an undirected connected graph. The task is to explore all nodes and edges of the 
graph using the minimum number of edge traversals. The penalty of an exploration 
algorithm running on a graph G = (V(G), E(G)) is the worst-case number of 
traversals in excess of the lower bound IE(G)I that it must perform in order to 
explore the entire graph. We give an exploration algorithm whose penalty is 
O(lV(G)l) for every graph. We also show that some natural exploration algorithms 
cannot achieve this efficiency. (G 1999 Academic Press 

1. INTRODUCTION 

A robot has to construct a complete map of an unknown environment 
modeled as an undirected connected graph. To this end it has to explore all 
nodes and edges of the unknown graph starting from some node and 
moving along edges. When the robot traverses an edge, it explores this 
edge and both of its ends. The robot does not have any a priori knowledge 
of the graph. During the exploration, the robot draws a partial map 
consisting of all nodes and edges that it has already explored. It assigns 
labels to these components and can recognize them when encountered 
again. In particular, after coming to an already explored node u incident to 
an explored edge e, the robot knows the location of u and of the other end 
of e on the partial map. At any stage of exploration the robot also knows 
the number of unexplored edges incident to an explored node but does not 
know the other ends of these edges. It has two options for leaving an 
explored node: either use a specific explored edge or an arbitrary unex- 
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plored edge (chosen by the adversary). The latter assumption corresponds 
to the lack of knowledge concerning the unexplored part of the graph. 

A natural measure of cost of an exploration algorithm running on a 
graph G = (HG), E(G))  is the worst-case number of edge traversals it 
uses, taken over all starting points and all adversary decisions. The obvious 
lower bound on this cost is IE(G)I. This can be achieved for Eulerian 
graphs by an off-line algorithm provided with a labeled map of the graph, 
knowing the starting point and other ends of all edges incident to the 
currently visited node. However, in the unknown environment setting, an 
exploration algorithm will often have to use substantially more traversals, 
due to the topology of the graph (which may be non-Eulerian) and to the 
lack of information indicating an efficient method of exploring. The 
penalty of an exploration algorithm running on a graph G = (V(G), E(G)) 
is the worst-case number of traversals in excess of the lower bound IE(G)I. 
It is important to construct exploration algorithms whose penalty is small 
for every graph. 

1.1. Related Work 

Exploration and navigation problems for robots in an unknown environ- 
ment have been previously studied by many researchers (cf. the survey 
[12]). There are two basic approaches to modeling these problems. In one 
of them a particular geometric setting is assumed, e.g., an unknown terrain 
with convex obstacles [5] or a room with polygonal [7] or rectangular [3] 
obstacles. In the second approach the environment is modeled as a graph 
and the robot may move only along its edges. This latter setting was 
further specified in two different ways. In [l, 81 the robot explores strongly 
connected directed graphs and it can move only in the direction from head 
to tail of an edge, not vice versa. In [2, 61 the explored graph is undirected 
but an additional requirement is imposed that the robot has to come back 
to the starting point every so often, say for refueling. In all these papers 
the aim was to explore the environment as efficiently as possible. In 
particular, under the graph model, this goal translates into constructing 
exploration algorithms with the smallest possible penalty. Indeed, in [ 1, 8, 
2, 61 such exploration algorithms were constructed and analyzed, and 
(nearly) matching lower bounds were also given. It turns out that due to 
the requirement of traversing edges only from tail to head in one case and 
due to the necessity of periodic returns in the other case, the smallest 
possibility penalty is relatively high in both situations. 

The above work leaves out the natural scenario of exploring an unknown 
undirected connected graph without the extra requirement of periodic 
returns to the starting point. It is briefly observed in [6] that the simple 
depth-first search algorithm gives a penalty of at most IE(G)I in this case 



EXPLORING UNKNOWN UNDIRECTED GRAPHS 283 

(cf. also the remark in [ l ]  that a penalty of at most 31E(G)I follows 
immediately from a result in [S]). However, this penalty of order of IE(G)I 
may become quite large in the case of dense graphs. The aim of the 
present paper, which is an extended version of [lo], is to give an explo- 
ration algorithm with the penalty linear in the number of nodes, not only 
in the number of edges. 

1.2. Our Results 

Our main result is an exploration algorithm working for any (unknown) 
undirected connected graph G = ( H G ) ,  E(G)) with penalty O(lV(G)l). 
More precisely, we show that the penalty of our algorithm never exceeds 
3lV(G)l. We also show that two natural heuristics, GREEDY and depth-first 
search (DFS), do not achieve penalty O(lV(G)l) for all graphs. 

In both GREEDY and DFS (cf. [ 11, where analogous heuristics were 
defined in the directed case), the robot uses unexplored edges as long as 
possible and, when stuck at a node c, it uses a simple strategy to reach a 
free node c’ (i.e., incident to yet unexplored edges). In the case of GREEDY, 
c’ is the free node closest to c, while in the case of DFS, u’ is the most 
recently visited free node. It turns out that both these choices are too 
naive. The vision of GREEDY is too local, while DFS does not make 
sufficient use of the knowledge of the explored subgraph, basing its 
decisions only on the order of visits. 

As opposed to these simple heuristics, our algorithm explores the graph 
in the order given by a dynamically constructed tree. As above, the robot 
uses unexplored edges as long as possible. The place where our algorithm 
differs from GREEDY or DFS is in the choice of the free node to which the 
robot relocates after getting stuck. The idea is to bring the robot back to 
the node of the dynamically constructed tree at which it interrupted the 
construction of the tree. In doing this we want to control the number of 
traversals through already explored edges. Following the structure of the 
dynamic tree prevents the robot from being distracted from systematic 
exploration by free nodes situated close to it, which is the case for 
GREEDY. At the same time it excludes “temporal” rather than “geo- 
graphic” preferences, which cause inefficiency of DFS. 

It should also be mentioned that the methods and results from [ l ,  81 
concerning directed graphs cannot be adapted to our scenario. This would 
require traversing each edge at least once in each direction, thus giving a 
penalty of at least IE(G)I, which we want to avoid. Also methods from [2, 
61, based on breadth-first search exploration, natural and useful under the 
requirement of frequent returns to the starting point, are easily seen to 
give a penalty of at least IE(G)I and thus cannot be used for our purpose. 
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The paper is organized as follows. In Section 2 we establish terminology. 
In Section 3 we describe the above-mentioned natural exploration heuris- 
tics and show that they do not achieve penalty O(lV(G)l) for all graphs. In 
Section 4 we describe our exploration algorithm, prove its correctness, and 
show that its penalty is linear in the number of nodes of the graph. 

2. TERMINOLOGY AND NOTATION 

Throughout the paper, graph means undirected connected graph. The 
order of a graph is its numbers of nodes. For G = (V(G),E(G)) and 
H = ( V ( H ) ,  E (H) ) ,  let G u H denote the graph (V(G) u H H ) ,  E(G) u 
E(H) ) .  If H is a subgraph of G,  let G \ H  denote the graph induced in G 
by V(G)\V’(H), where V ’ ( H )  is the set of those nodes in H ,  all of whose 
neighbors belong to H H ) .  

A run of an exploration algorithm is a sequence of edge tracersals, where 
consecutive edges form a path in the graph. At any stage of the algorithm 
execution, already traversed edges are called explored and other edges are 
called fiee. A node is saturated if all its incident edges are explored. 
Otherwise it is fiee. The robot is stuck after coming to node z: if z: 
becomes saturated after this move of the robot. Let G = (V(G), E(G)) be 
a graph, ~1 E HG) ,  and let A be an exploration algorithm in G. A penalty 
traversal is any traversal of an explored edge. PA(G, u )  denotes the 
worst-case number of penalty traversals, taken over all possibilities to 
choose the unexplored edges (i.e., taken over all aduersaries), when the 
robot starts at u and moves according to algorithm A. The penalty o f A  for 
G is 9A(G) = max{PA(G, u ) :  z: E V(G)}. An important property of an 
exploration algorithm A is that its penalty is linear in the order of the graph. 
By this we mean that there exists a constant c such that, for evevy graph 
G, PA(G) I c . IV(G>I. 

3. NATURAL HEURISTICS 

In this section we consider two natural exploration heuristics, the 
GREEDY algorithm and the depth-first search algorithm, defined similarly 
as in [l]. Under our scenario these heuristics are, of course, much more 
efficient than those in [ll. However, our efficiency demand that the penalty 
be linear in the order of the graph is also much more difficult to satisfy. 
We show that none of these heuristics meet this requirement. It is worth 
mentioning that (as opposed to [ 11) graphs constructed to prove this are 
totally different in each case. They are also different from graphs con- 
structed in [l]. 
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The GREEDY exploration algorithm is defined as follows. Whenever the 
current node is free, the robot takes an unexplored edge incident to the 
node. When stuck at the current node, the robot relocates to the nearest 
visited free node via a shortest path, where the distance d and the shortest 
path are defined with respect to the explored part of the graph. 

We prove that the penalty of GREEDY is not linear in the order of the 
graph. To this end, we construct a class of graphs for which this algorithm 
performs poorly. Intuitively, the way of forcing GREEDY to perform many 
penalty traversals is the following. At many stages of the exploration, the 
adversary creates free visited nodes which are sufficiently close to the 
current node to “attract” the robot far away from a still unexplored part of 
the graph. In order to come back to this unexplored “hole,” the robot 
performs many penalty traversals. Our graphs contain special devices 
called magnets whose role is to drag the robot away from such holes many 
times. 

Let g 2 1. A g-magnet is any graph isomorphic to MR = {(O, . . . ,4g}, 
{[O, 11, [ l ,  21,. . . , [4g - 1,0], [2g, 4gl)). Hence a g-magnet is a cycle of length 
4g with one extra node of degree 1 attached to it. The node of degree 3 is 
called the center of the magnet and the node of degree 1 is called its top. 
The node at distance 2g from the center is called the root of the magnet. 
A 0-magnet is any graph isomorphic to M ,  = ({O, 11, {[O, 1111, i.e., a two-node 
path. One of its nodes is called the root and the other is called the top. For 
convenience, we say that the root of a 0-magnet is also its center. 

A graph S containing exactly one elementary path between two nodes u 
and u is called a uu-segment. This unique path, denoted R,,(S), is called 
the uu-road of S .  For w E V(RLLz(S)) ,  let G,,(S, w )  denote the connected 
component of S\R,,(S) containing the node w ,  if such a component 
exists. Otherwise, let G,, ( S ,  w) = 0. Because of the unicity of the path 
connecting u and c ,  the graphs G,, ( S ,  w) and G,, ( S ,  w’) do not share any 
node, for distinct nodes w and w’ on the uc-road of S. 

Let S be a uu-segment and Z be a uw-segment such that V ( S )  n V ( Z )  
= {u}.  The join of S and 2, denoted S O Z ,  is the graph S U 
(Z\G,,,,(Z, 71)). Notice that S O 2  is a uw-segment and, for all x E 
V(R,,, (S)), y E V(R,  ,(Z>>\Ccl, we have G,, ( S ,  x) = G,,,(S 0 2, x) and 
G, ,(Z, y )  = G,,O 0 Z ,  y ) .  

Suitably relabeling nodes of S and 2, the join operation can be ex- 
tended to any pair uu-segment/uw-segment, with u # w, such that the 
result is always a uw-segment. 

Let M and N be g-magnets, g 2 0, with roots u and u ,  respectively. If 
S is a uu-segment such that V ( M )  n V ( S )  = {u} and V ( S )  n V ( N )  = { u }  
then M O S  = M u  S and S O N  = S u N. Clearly, M O S  and S O N  are 
still uc-segments. This operation can be extended to any pair g- 
magnet/uu-segment such that the result is a uu-segment. 
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We introduce a particular class of ab-segments, for fixed nodes a and b. 
For g 2 0 and k 2 1, S,[k] is recursively defined as follows. Let S,[k] be 
the path [x, a ,  u , , .  . . , u k P l ,  b,  y]. Notice that S = So[k] is an ab-segment 
with Ruh[S] = [a,  u , ,  . . . , ~ 1 ~ - ~ ,  b ]  and with two 0-magnets, GuI,(S, a )  and 
Gub(S, b), rooted at a and b, respectively. 

Let g 2 1 and let i be the largest j with 1 + 2 l  + ... + 2 J  I k ;  let 
k' = k - (2 '+' - 1). If g is odd and k' > 0 then S,[kl = M, 0 S,- ,111 0 
S,- , [2 l ]  0 ... 0 S,- ,[2'] 0 S,- ,[k'] 0 M,. For k' = 0, S,[kl = M, 0 
S ,~ , [ l ]OS ,~ , [2 ' ]0  ... OS,~,[2']0M,.  If g is even and k' > 0 then 
S,[kl = M,OS,~,[k'lOS,~,[2'10 ... OS,~,[2'lOS,~,[1lOM,. For k' 
= 0, S,[k] =M,0S,-l[2L]0 ... OS,~1[2110S,~l[l10M,. See the ex- 
amples given in Fig. 1. 

Notice that every graph S = S,[k] is an ab-segment. The ab-road 
R a b ( S )  is a path of length k.  For every u E Rab(S) ,  either Gah(S, u )  = 0 
or there exists h E (0,. . . , g }  such that Gub(S, u )  = No U ..* U NJl,  where 
N ,  is an i-magnet with root u and V(N,) n V(N,) = { u )  whenever i Z j .  
The graph S contains a simple path, connecting b to a ,  which passes 
through all the nodes of S apart from the tops of the magnets. Let P,[k] 
denote such a path. Intuitively, the adversary first forces the robot to 
traverse the path P,[k] and then the magnets force the robot to perform 
many trips along the ab-road. This idea yields the following lemma. 

For every g 2 0 and k 2 1, 9G13rrl,,(S,[k], b )  2 ( g  + 1)k. 

Let S = S,[k]. Since the path P,[kI is simple, the adversary can 
lead the robot along this path from b to a .  At the end of this trip, the only 
visited free nodes are the centers of the magnets. A magnet is actice if its 
center is visited but its top is not. A magnet is dead if its top is visited. 
Otherwise a magnet is asleep. Thus, at the beginning all magnets are 
asleep and after the trip along P,[k], all magnets are active. 

For g = 0, the robot moves to the top of the 0-magnet rooted at a ,  and 
then relocates to the top of the 0-magnet rooted at b. This involves at least 
k penalty traversals. 

LEMMA 3.1. 

Pro05 

FIGURE 1 
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For g = 1, the robot moves to the top to  of the 0-magnet rooted at a 
and gets stuck. Let Rah(S)  = [a ,  u , ,  . . . , ukP 1, b].  Active 0-magnets are 
rooted at u1, cg.. . . , ugJP 1, . . . , b, and active 1-magnets are rooted at a and 
b. The competitors for the nearest visited free node are the center x of the 
1-magnet rooted at a and the node ul. Since d(t,,  x) = 3 and d(t,,  u , )  = 2, 
the robot relocates to c,, and then moves to the top t ,  of the 0-magnet 
rooted at  c1 and gets stuck. Since d(t , ,  x) = 4 and d ( t l ,  c 3 )  = 3, the robot 
relocates to c 3 .  In general, when the robot arrives at cz l - l ,  it moves to the 
top t2,-1 of the 0-magnet rooted at ~ 1 ~ ~ - ~  and gets stuck. Since d( tZ l - , ,  x) 
= 1 + ( 2 J  - 1) + 2 = 2 ’  + 2 and d ( t z l - l ,  uZ,+1-,) = 2 ’  + 1, the robot re- 
locates to uZl+1- , .  It follows that the GREEDY strategy leads the robot to 
the node b, forcing it to perform at least k penalty traversals. Further, the 
robot visits the tops of the 0-magnet and 1-magnet rooted at b. At this 
stage, n becomes the unique visited free node. The robot relocates to 
this node performing at least k more penalty traversals. Therefore, 

Suppose that g 2 2. After traversing P,(k), the robot moves to the top 
of the 0-magnet rooted at a and gets stuck. Following the above reasoning, 
as long as there exist active 0-magnets, the robot relocates to the centers 
of these magnets and visits their tops. When the robot gets stuck at  the top 
of the 0-magnet rooted at b, all the 0-magnets are dead. The nearest 
visited free node is now the center of the 1-magnet rooted at b. In general, 
when the robot gets stuck at the top of the h-magnet rooted at b ( h  even), 
all the h-magnets are dead and the nearest visited free node is the center 
of the ( h  + 1)-magnet rooted at b. The robot relocates to this node, and 
then moves to the top of the ( h  + 1)-magnet rooted at b and gets stuck. 
Recall that if a node on the ab-road is the root of an r-magnet then it is 
also the root of a q-magnet for each q < r. Therefore, whenever the robot 
gets stuck, the competitors for the nearest visited free node are the centers 
of ( h  + 1)- and ( h  + 2)-magnets. The chosen distance between two con- 
secutive ( h  + 1)-magnets guarantees that the nearest visited free node is 
always the center of a ( h  + 1)-magnet. Consequently, the robot kills, one 
by one, all the ( h  + 1)-magnets. This involves a new trip along the ab-road 
of S, ending at a ,  and hence at least k more penalty traversals. When the 
robot gets stuck at the top of the h-magnet rooted at a ( h  odd), the 
nearest visited free node is the center of the ( h  + 1)-magnet rooted at a .  
The robot kills, one by one, all the ( h  + 1)-magnets. This involves a new 
trip along the ab-road, ending at b, and hence at least k more penalty 
traversals. We conclude that, in order to explor S, the robot performs 
( g  + 1) trips along the ab-road, after the initial one, and hence performs 
at least ( g  + 1)k penalty traversals. 

9 G R r r n Y ( S ,  b )  2 2k. 

I 
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THEOREM 3.1. The penalty of algorithm GREEDY is not linear in the order 
of the graph. 

Pro05 We construct a family of graphs {G, : g 2 11 such that, for every 
g 2 1, 9G,,,, , , ,(Gg) 2 glV(G,)l. 

Let n,(i) denote I(S,[2'])l - (2' + l), i.e., the number of all nodes of 
S,[2'] apart from those belonging to its ab-road. We prove by induction on 
g 2 1 that 

For every i 2 2, n,(i) = 10 + i I ( i  + 2)'. Hence the inequality is true for 
g = 1. We suppose that it is true for g and prove it for g + 1. Suppose that 
g + 1 is odd (for g + 1 even, the argument is similar). By definition, 
S,+1[2i1 = M R + 1 0 S R [ 2 0 ] 0  . . .  SR[2 '~ '10S,[110M,+, .  It follows that 

n g + l ( i )  5 8 ( g  + 1) + n,(O) + 1 . 1  +n,(i - 1) + n,(O) 

I 8 ( g  + 1) + ( i  + l )n , ( i  - 1).  

By induction hypothesis, for i 2 g + 2, ng+ l(i) I 8(g + 1) + ( i  + l)(i + 
1)R'l I ( i  + 2)R" + ( i  + l)(i + 2)R'l = ( i  + 2)R". Hence, the inequal- 
ity is true for g + 1. 

Consequently, for every g 2 1 and i 2 g + 1, IV(S,[2'l)l 5 2 '  + 1 + ( i  
+ 2)"+'. By Lemma 3.1, 9GR,,,y(S,[2i]) 2 (g + 1)2i 2 (g + l>lV(S,[2i]>l 
-(g + 1)[1 + ( i  + 2)"+']. Let i ,  2 g + 1 be any integer for which 2in 2 
(g + 1)[1 + ( io  + 2)"+']. Let G, = S,[2'0]. It follows that 9GRrrny(G,) 2 

glV(G,>l. I 
Another natural way to explore a graph is given by the depth-first search 

strategy. The DFS exploration algorithm is defined as follows. Every time 
the current node is free, the robot takes an unexplored edge incident to 
the node. When stuck at a node, the robot relocates to the most recently 
visited free node, following a shortest path in the explored part of the 
graph. 

The reason why DFS may be inefficient is, in some sense, opposite to 
that for the GREEDY strategy. The DFS exploration algorithm "blindly" 
looks at its history, always choosing the recently visited free node, even 
when it is far away from the current node. Hence the robot will postpone 
exploration of regions close to the current node, in order to relocate to the 
recently visited node. The difficulty in constructing graphs for which DFS 
performs poorly lies in the fact that adding devices similar to magnets 
cannot help. Such cycle-like structures with pending unexplored edges are 
a natural way to create free visited nodes (and hence to "drag" the robot 
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away) but graphs obtained in this way are necessarily sparse; in particular 
their number of edges is linear in their order. Since, as we know, the 
penalty of DFS does not exceed the number of edges, this construction 
method cannot show that the penalty of DFS is not linear in the order of 
the graph. To prove the inefficiency of DFS we need dense graphs. 

For every positive even integer x = 2k, let R[xl = (V(R[x l ) ,  E(R[xI)) ,  
where, V ( R [ x ] )  = { a o , .  . . , a,,,, d , ,  . . . , d,, e l , .  . . , e,} U {bi, j, c,, : 0 I i I 
x , l  ~j 1k1 and E(R[x l )  = ~~b,,j,ail,~b,,j,ai+ll,~~~,j,ail,~ci,j,a,+ll:O I 

i I x, 1 I j I kl u Ub,, ,, 41,. . . , [b,,,, d k l ,  [c,,,, e l l , .  . . , [c,,,, ekll. See 
Fig. 2 for the graph R[41. 

Let C [ x ]  denote the following cycle in R [ x ] :  [ a o ,  b,, ,, a,, b,,, ,  a 2 , .  . . , 

a,, . . . , a , ,  c0,,, ao] .  Notice that C [ x ]  passes exactly once through all edges 
of R[xl  apart from those of type [b,, * ,  d , ]  and [ c x ,  * ,  e,]. 

Let G be a graph of order x 2 2, x = 2k, with a, as one of its nodes. 
RIG] denotes the graph defined by I/(R[GI) = I / (R[xl )  and E(R[GI) = 

E ( R [ x ] )  u E(G,)  u ... u E(G,-,), where, for every i E (1, .  . . , x - l } ,  G, 
is any graph with V(Gi)  = {bi, ,, . . . , bi,,, c,, ,, . . . , c , , , }  for which there 
exists an isomorphism f :  G + G, such that f(a,) = ci,,. Intuitively, R[G]  
is the graph R [ x ]  with isomorphic copies Gi of G inserted on sets of nodes 
{b,,,, . . . , bi,,, c,, ,, . . . , ci,,}. Notice that R[xI = R[N,I, where N, = ({a,, 

For every connected graph G with a ,  E V(G) ,  let p ( G )  denote 

LEMMA 3.2. Let x = 2k 2 2. If G is N, or any connected graph of order 

a,, b,,,, a,+,, C, , l ,  a,, . f f 9 a,, c O , l '  . . .  9 bO,k ,  a,, b,,ka,+l, c,,ki 

1 , 2  , . . . ,  x -  1},0). 

T D F S ( G ,  a,). For convenience, let additionally p(N,) = 0. 

x ,  with a ,  E H G ) ,  then 

1. 
2.  

IV(R[G])I =x2 + 3x + 2 ;  
p ( R [ G ] )  2 2x2 + ( X  - l )p(G) .  

di d2 

FIG. 2. The graph R[41 
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Pro05 1 .  Straightforward from the definition of V(R[ GI). 

2.  Suppose that the robot starts at node a ,  and moves according to 
the DFS exploration algorithms. Since R [ x ]  is a subgraph of R[G], C [ x ]  is 
also a cycle in R[G]. Since C [ x ]  is a simple cycle, there exists an adversary 
that, first, leads the robot along C[x] .  At the end of this trip, the robot 
gets stuck at a,. 

If G = N,, the most recently visited free node is c,,~. By definition of 
DFS, the robot relocates to c,,~. This requires 2x + 1 penalty traversals. 

If G # N, then G,, . . . , G, - , are connected components in the graph 
induced by the unexplored edges of R[G] .  In this case, the most recently 
visited free node is c , , ~ .  Therefore, the robot relocates to c , , ~ .  This node 
belongs to V(G,). By definition of DFS, the robot does not leave the nodes 
of G ,  before exploring all of its edges. Moreover, when this happens, c ~ , ~  
becomes the most recently visited free node. The robot relocates to this 
node, which belongs to V(G,). Iterating the above reasoning, it follows 
that the robot can be led to the node c,,~ by saturating all nodes of 
G,, . . . , G,- ,. Notice that this can be done so that the robot performs at 
least (x - l )p (G)  penalty traversals. Supplementary 2x + 1 penalty 
traversals are performed in order to reach nodes c,, k , .  . . , c , , ~ .  

We conclude that there exists an adversary that leads the robot from a ,  
to c , , ~  such that all edges, apart from those of the form [b,, * ,  d ,  I and 
1% * 1  e.1, are explored and the number of penalty traversals is at least 
2x + 1 + (x - l)p(G).  At this stage of exploration, the free visited nodes 
(in the reverse order of visiting) are c , , ~ ,  b,,,, c , , , ~  ,, . . . , x,, ,, bo, ,. There- 
fore, the robot has to relocate to these nodes, in the above order, and to 
explore the remaining edges. This requires (2k - 1)(2x + 1 )  = 2 x 2  - x - 
1 penalty traversals. Consequently, p ( R [ G ] )  2 2x2 + x + (x - l )p(G) .  I 

THEOREM 3.2. The penalty of algorithm DFS is not linear in the order of 
the graph. 

Pro08 We construct a family of graphs {G, : i 2 11 such that, for every 
i 2 1, PDFS(G, )  2 ilV(G,>l. 

For every positive even integer x, let H,[xI = R[xI and H,[xI = 

R[H,- ,[XI], for i 2 2. Notice that these graphs are well defined since, for 
every i 2 1 ,  IV(H,)I is even and a ,  E V(H,) .  

For k 2 0, let IIk denote the set of all nonzero polynomials of degree at 
most k ,  with nonnegative integer coefficients. We prove by induction on 
i 2 1 that there exists P, E IIZz-, such that 

IV(H,[x] ) l  =x2’ + P, (x )  and p ( H , [ x ] )  2 2i.x”. 
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By Lemma 3.2, IV(H,[xl)l = x2 + 3x + 2 and p ( H , [ x ] )  2 2x2;  hence the 
above property is true for i = 1. Supposing that the property is valid for 
i 2 1, we prove its validity for i + 1. 

Let y = IV(H,[xl)l; by induction hypothesis, there exists P, E 112,-, 
such that y = x2 '  + P,(x). By definition, IV(H,+,[xl>l = lV(R[yl)l. By 
Lemma 3.2(1), IV(H,+,[xl)l = y 2  + 3y + 2 = x 2 ' + '  + P,+,(x), where 
P,+,(x) = 2x2PL(x)  + P , ~ ( X )  + 3[x2' + P,(x)] + 2. Clearly, P,+, E 
I I zZ+~- , .  By Lemma 3.2(2), p(H,+,[xl)  2 2 y 2  + ( y  - l)p(H,[xl). By in- 
duction hypothesis, p(H,[xl)  > 2i.x". It follows that p(H,+, [x] )  > 2x2"' 
+x2'(2i)n2' + [P , (x)  - l ] p ( H , [ x ] )  2 2(i + 1)x2"'. This ends the proof by 
induction. 

Let i > 1. Since the degree of P, is at most 2 ,  - 1 ,  there exists x, 2 2 
such that x,"' > P,(x,). For G, = H J x , ]  we have IV(G,)l I 2x;' and hence 
PDFS(G,) 2 p ( G , )  2 iIV(G,>I. I 

4. AN EXPLORATION ALGORITHM WITH LINEAR PENALTY 

We present an algorithm which performs no more than 31V(G)I penalty 
traversals for every connected graph G. The main idea is to maintain most 
of the robot relocations along a (dynamically constructed) spanning tree 
of G. 

The algorithm EXPLORE(?), given below, controls the movements of the 
robot, where the node r E V(G)  is its initial position. Two arrays are used 
in the algorithm description: parent : V(G)  + V(G)  u {null, unassigned) 
and color : V ( G )  + {white, blue, red}. For every u E V(G)\{r}, parent[ul 
will represent the parent of ~1 in the spanning tree T of G that EXPLORE(?) 
will build. More exactly, parent(u) is the neighbor of c on the path joining 
~1 with r in T .  

 EXPLORE(^): parent[r] := null; 
parent[ul := unassigned for every u E V(G)\{r}; 
color[u] := white for every u E V(G); 

while c # null do 
r ;  L, := 

SATURATE( u ) ;  
if u has a neighbor u such that parent[u] = unassigned 
then 

parent[ul := c ;  
Ll := u' 

else 

Move to u ;  
u := parent[ u ] ;  
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Procedure SATURATE(U) is the crucial part of the algorithm. We describe 
it later in detail. The aim of this procedure is to perform a travel which 
starts and ends at c and saturates u. As a side effect of SATURATE(C), 
some white nodes turn red. 

The correctness of EXPLORE is straightforward. By the definition of 
SATURATE, every time the if instruction is reached, the robot knows all 
neighbors of u. Hence, all steps are well defined. Since every node is 
visited and saturated, the whole graph G is explored when the end of 
algorithm EXPLORE is reached. 

During the execution of EXPLORE, we can distinguish two types of 
penalty traversals: those required by the procedure SATURATE and those 
dictated directly by EXPLORE in its last line. We call the traversals of the 
second type external penalty tracersals. It is clear that the external penalty 
traversals are along the edges of a spanning tree T of G,  in depth-first 
order. At this level of the description of EXPLORE, we can state the 
following complexity result that points out the role of the dynamically 
constructed tree T.  

LEMMA 4.1. For every connectedgraph G, 9Exrl ,,,,,(G) I ZlV(G>l + p ,  
where p is the number of penalty traversals pegoimed during the executions of 
procedure SATURATE. 

In the case where the robot has to deal only with Eulerian graphs, our 
exploration strategy, based on depth-first search in an unknown tree, leads 
to a simple algorithm with linear penalty. Indeed, in this case, the proce- 
dure SATURATE(U) can simply tell the robot to take an unexplored edge as 
long as the current visited node is free. Since the graph is Eulerian, every 
node has an even degree and, therefore, the travel started at u ends also at 
u. Consequently, no penalty traversal is performed during any execution of 
SATURATE. Let EXPLORE’ denote the algorithm EXPLORE working only for 
Eulerian graphs, with procedure SATURATE defined as above. Clearly, for 
every Eulerian graph, 9 E X F L o R L I ( G )  I ZIV(G)l. 

Consider the general case. The travel, obtained by taking an unexplored 
edge as long as the currently visited node is free, does not necessarily end 
at the starting node. In order to bring the robot back to the starting node 
u ,  the procedure SATURATE(U) performs a sequence of free trips and 
maintains a bridge between the currently visited node and node u. 

A free trip is a maximal sequence of consecutive unexplored edge 
traversals. During the execution of SATURATE, some white nodes are 
colored blue. By the end of SATURATE, every blue node will become either 
white or red. A red node will never change its color. A bridge is any path 
(not necessarily elementary) in the explored part of G, all of whose nodes 
are blue. The only penalty traversals are involved when the robot relocates 
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between two consecutive free trips. The number of these penalty traversals 
is kept small by using bridges. 

Procedure SATURATE is defined as follows. 

SATURATE(U): if L] is saturated then return; 
color[u] := blue; 

while not ( u  = u and u saturated) do 
u := Ll' 

if u is incident to a free edge e then 
u := the other end of e ;  
color[ u ]  := blue; 

Let [u,,, u l , .  . . , u k ]  be a path from u to u where 
all nodes are blue and all edges are explored; 

color[ul := red; 

else 

,g:=,g' 1 '  

Move to u ;  
All blue nodes become white; 

LEMMA 4.2. 1. Procedure SATURATE(C) is well defined. 

2. 

3. 

4. 

Pro05 1. It is sufficient to prove the following property, for every i 2 1: 

P(i) :  If SATURATE(C) performs the ith iteration of the while loop then, 

Procedure SATURATE(U) stops and, at its end, the node u is satu- 

For euely execution of SATURATE, the number ofpenalty traversals is 

A red node does not change its color. 

rated and the robot is at u. 

equal to the number of blue nodes turned red. 

before this iteration, there is a bridge connecting u to u. 

Obviously, P(1) is true. Suppose that P( i )  is true, for some i 2 1, and 
suppose that SATURATE(U) performs the ( i  + 11th iteration of the while 
loop. Let u be the node where the robot is before the ith iteration. By 
induction hypothesis, there is a path B in the explored part of graph G, all 
its nodes being colored blue, which connects u to u. If u is not saturated, 
let u' be the node chosen by procedure SATURATE. Since this node will be 
colored blue, it follows that, before the ( i  + 11th iteration, the edge [u',  ul 
followed by the path B is a bridge connecting u' to c. If u is saturated, let 
[u,,. u l , .  . . , u k ]  be the path defined by procedure SATURATE. Notice that 
such a path is the bridge B. Clearly, before the ( i  + 11th iteration, the path 
[ u l , .  . . , u k ]  is a bridge connecting u1 to u. Hence, in both cases, P(i  + 1) 
is true. 
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2. After each iteration of the while loop, either a new edge is 
explored or a new mode is colored red. Notice that outside procedure 
SATURATE nodes do not change their color. By definition, SATURATE colors 
a node red only once. Since the number of edges to be explored and the 
number of nodes to be colored red are finite, there is an iteration where 
vertex c is reached again and no unexplored edge is incident to u. 

3. A maximal sequence of iterations, with u not saturated, defines a 
free trip for the robot. The only penalty traversal in SATURATE are 
involved when the robot moves from u to u l .  Each such move corresponds 
to a red coloring. 

4. See (2). I 
THEOREM 4.1. The penalg of algorithm EXPLORE is linear in the order of 

the graph. 

Pro05 We prove that, for every connected graph G, PEXPLOR,(G) 5 
3lV(G)l. By Lemma 4.1, it is sufficient to prove that the number of penalty 
traversals, performed during all executions of SATURATE, is at most I V(G)I. 
This follows immediately from Lemma 4.2(3,4). I 
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