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 THE JOURNAL OF SYMBOLIC LoGIC

 Volume 49, Number 3, Sept. 1984

 ON THE PERIOD OF SEQUENCES (A"(p))
 IN INTUITIONISTIC PROPOSITIONAL CALCULUS

 WIM RUITENBURG

 ?0. Abstract. In classical propositional calculus for each proposition A(p) the following

 holds: F- A(p) *- A3(p). In this paper we consider what remains of this in the intuitionistic case.
 It turns out that for each proposition A(p) the following holds: there is an n E N such that

 H-An(p) ++An+ 2(p).

 As a byproduct of the proof we give some theorems which may be useful elsewhere in
 propositional calculus.

 ?1. Finite order. Let A be a language for intuitionistic propositional calculus with
 atoms a, b, c,..., constants T, I, connective A, V, -+ and auxiliary symbols) and (.
 The formulas m A and A +-+ B are introduced as abbreviations for A - I and
 (A -+ B) A (B -+ A). Let Q be the Heyting algebra for this language A with as objects
 equivalence classes

 [A] = {B I-A4-+ B}

 and with the ordering induced by F-.
 Let A(p) be a formula, which may contain extra parameters q, r, s,.... We can

 interpret A(p) as a map from g to g sending [B] to [A(B)]. We begin by considering
 the order of A(p) as a map.

 Define A0(p) = p and A"+'(p) = A(AM(p)).
 1.1. PROPOSITION. In classical propositional calculus we have for all A(p)

 c A(p)4-+A3(p).
 PROOF. Use the definability of Boolean functions. Li
 So in the classical case A(p) has order at most 3 and the length of the loop is at

 most 2.

 Let F u {A (p), B, C} be a set of formulas. Then the Substitution Lemma gives that
 if F F- B -+C then F F- A(B) -+A(C). By using Proposition 1.1 and iterated
 substitution we get: for all A(p) and for all m > 1 we have

 Kc Am(p)4-+ Am + 2(p).

 Proposition 1.1 does not hold in the intuitionistic case. Consider

 A (p) = -i p v --i p. Then we only have F- A2(p) -+A3(p). This weaker result
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 suggests what to look for in the intuitionistic situation. We shall prove that for each
 formula A(p) there is an n E N such that F-A'(p) 4-+A2(p). Then for all m ? n we
 get

 F-Am(p)4-+ Am+ 2(p).

 1.2. LEMMA. For all A(p) and for all s, m, n E N such that s < m we have
 i) A(T), As(p) F- Am(p).

 ii) A ( T), As(p) F- (An + l (p) -- An(p)) - Ant(p).
 PROOF. i) is proved by induction on (m - s). Use FWAs(p) ++ (AS(p) ++ T).
 ii) By i) we get A(T) F- An(p) - An + (p), so

 F = {A(T), An+ 1(p)-+ A(p)} F- An(p)- An+ 1(p).

 By iterated substitution in A(p) we get F F- Ai(p) A-+ Al '(p), n < i < s.
 Therefore F, As(p) F- An(p). oi

 1.3. DEFINITION. Let A(p) be a formula and let F be a set of formulas. Then A(p)

 has bound n over F if there is a sequence T = Bo(p), Bj(p), ... ,Bn(p) of formulas
 satisfying the following condition: for each proposition variable C(p) = a or
 C(p) = p in A(p) and for each implication subformula C(p) = D(p) -+ E(p) of A(p)
 there is an i < n such that F F- C(T) +-+ Bi(T).

 Observe that such an n always exists.
 1.4. THEOREM. Let A(p) and B(p) be formulas, let F be a set of formulas, and let

 Fs = F u {A(T), As(p)} for some s e N. Let A (p) A B(p) have bound n over Fs. Then at
 least one of the following cases holds for a new variable q.

 i) Fs, A2n(p) q F- (B(q) +-+ B(T)) A (B(T) -, q).
 ii) Fs LA2n(p) q F- B(q) -+q.
 iii) Fs, A2n(p) q F- B(q).
 PROOF. By induction on the bound n. We may assume that B(p) is a subformula of

 A(p) by replacing A(p) by the equivalent formula A(p) A (B(p) v T). In that case
 A(p) has bound n over Fs.

 The case n = 0. Since the bound of A(p) over F is equal to n = 0 we have

 Fs F- a +-+ T for all proposition variables a # p and Fs F- B(T) +-+ T for all implication
 subformulas B(p). From Fs F- a for all proposition variables a # p it follows that
 each subformula B(q) of A(q) is equivalent to a formula of the Rieger-Nishimura
 lattice. The property Fs F- B(T) for implication subformulas B(p) implies that if there

 is a subformula B(p) such that s F- B(q) -+(q -L I), then Fs F- (T I )-+ T and Fs is
 inconsistent. So if Fs is consistent, then for each subformula B(p) we have
 Fs F- B(q) I or Fs F- B(q) - q or Fs F- B(q).

 Induction step on n. We prove the induction step by induction on the length of the
 subformula B(p). Let Asm = Fs u {Am(p) -- q}.

 The case for length = 1. If B(p) = p, B(p) = T or if B(p) = L, then we easily verify
 ii), iii) or i) with m = 0 instead of m = 2n. Assume B(p) = a for some variable a # p.

 If Fs F- a, then iii) holds. Assume Fs If a. Take F' = F7 u {a}. Then over the theory F'
 the formula A(p) has a lower bound and we apply induction on n. For the
 subformula A(p) of A(p) itself one of the following statements holds for all s ? 0:

 ,s,2n - 2 -s,2n - 2 u {a} F- A(q),

 s,2n-2 F- A(q)-+ q.
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 Substitute q = A'"-'(p) in the relations above. With Lemma 1.2 this gives us
 f u {a} F- A2,(p). So f, F- a -- A2,(p) and this implies that i) holds for B(p) = a.
 Induction step on the length. Write B(p) = C(p) D1 D(p) where C(p) and D(p)

 satisfy one of the conditions i), ii) and iii) and where D1 is one of the connective A,
 v or -A. Then we can make the following tables.

 D(p) D(p) D(p)
 A i) ii) iii) V i) ii) iii) - i) ii) iii)

 C(p) i) i) i) i) C(p) i) i) ii) iii) C(p) i) *iii) iii)
 ii) i) ii) ii) ii) ii) ii) iii) ii) * iii) iii)
 iii) i) ii) iii) iii) iii) iii) iii) iii) i) ii) iii)

 These tables express which condition will be satisfied by B(p) = C(p)FLD(p). Most
 of them are easy to verify. There are two cases which are more involved. Both are
 marked by *.

 Case (a): B(p) = C(p) -- D(p), where C(p) satisfies i) and D(p) satisfies i). We
 have As,2n F- B(q) B(T). If Fs F- B(T), then B(p) satisfies iii). Assume Fs lf B(T).
 Let Fr = Fs u {B(T)}. Then over the theory F' we find that A(p) has a lower
 bound. Apply induction. For A(p) as subformula of itself we have s,2n-2
 = isu2n-2 J {B(T)} F- A(q) or J,2n-2 F- A(q) -+q. Substitute q = A2- (p). Then
 F' F- A2n(p). So Fs F- B(T) A2n(p). Thus B(p) satisfies i).

 Case (b): B(p) = C(p) -- D(p), where C(p) satisfies ii) and D(p) satisfies i). If
 Fs F- B(T), then B(p) satisfies iii). So assume Fs If B(T). We shall prove that B(p)
 satisfies i). We easily see that As,2n F- B(T) -- q and As,2n F- B(T) -- B(q). It remains to
 show s,2n F- B(q) -- B(T). Let Fr = Fs u {B(T)}. Then A (p) has a lower bound over
 Fs; thus ',2n-2 = J {B(T)} F- A(q) or A' -2 F- A(q)4-+q. Substitute
 q = A2n-2(p). Then s F- B(T) - A2- 1(p). Let A"2n = J {B(q)}. Then s,2n F- q - D(T). Since 7 F- (B(T) -+D(T)) and 7 F- (B(T)-- A2- 1(p)), we have
 Al2l F- q - A2n- 1(p). Thus J"2n F- A2n(p) -- A2n- 1(p). Apply Lemma 1.2. Then we
 get A"2 F- A2n(p). Thus As,2n F- q and A"2n = us,2n U {B(q)} F- D(T). Thus
 As,2n [- B(q) -+B(T).
 This completes the proof of the induction steps. D1
 EXAMPLE (PIET RODENBURG). Let A(p) = ((p -- a) -- a) v (a -- p) and let B(p) =

 p -- a. Then we have F-A(T) A A2(p) and for all s we have

 A(T), As(p), A2(p) -- q F- (B(q) +-+ B(T)) A (B(T) -- q).

 If we replace A2(p) -- q by A(p) -- q, then we can substitute q = A(p) and s = 2,
 and we conclude that

 F-B(A(p)) -- a.

 Substitute p = I. Then we get F-i m a -- a. Contradiction. So the statement does
 not hold if we replace A2(p) -- q by A(p) -- q.

 1.5. COROLLARY. For each formula A(p) there is an m E N such that for all s E N
 we have

 A(T), As(p) F- Am(p).
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 PROOF. Take F = 0, B(p) = A(p) and q = A2n(p) in Theorem 1.4. Then one of the
 following holds:

 A(T), As(p) F- A2n + '(p) A A2n p)

 A(T), As(p) F- A2n+ l(p) -+A2n(p),

 A(T), As(p) F- A2 + 1 (p).

 So by Lemma 1.2 we have

 A(T), As(p) F- A2 n + 1 (p). 1

 1.6. LEMMA. Given A(p) and m such that for all s we have A(T), As(p) F- Am(p). Then

 A(T) F- Am(p) +-+ Am+ 1 (p).

 PROOF. By Lemma 1.2 we have A(T) F- Am(p) -- Am+1(p). Now take s = m + 1:

 A(T)[FAm(p) +Am+1(p). E

 1.7. LEMMA. For all x(p), m and n we have
 i) A2' + '(T) F- A"(T),
 ii) A2m+2(T) F- A2n(T).
 PROOF.

 i) A2m+l(T) A2m(T)(1) ii) A2m+2(T) A2m+l(T)(1)

 A(T) (1) A(T) (1)

 A2m(T) -, A(T) (4) A2m+ 1(T) A(T)

 A m(T) -+A(T) A2m + 1 (T) A (T)

 A2m+ 1(T) +A2(T) A2m+2(T) +A2(T)

 A2(T) A2(T)

 A2m(T) A2n(T)

 A(T)

 An(T)

 (*) Use F-A2m(T) +-+ (A2m(T) +-+ T) and substitution.
 (*) Apply Lemma 1.2i) with p = T.
 ($) Apply Lemma 1.2i) to A2(T) or use iterated substitution. D1

 Observe that 1.7ii) is not an easy corollary of 1.7i). With Lemma 1.7 we can prove
 theorems like F- A(T) -+A3(T).

 1.8. LEMMA. Given A(p) and m such that A(T) F- Am(p) A-+ Am (p), then we have

 I-Am+ 1(p) -Am+ 3(p).

 PROOF. The places in the derivations below where we use our assumption
 A(T) F- A m(p) A-+ Am '(p) are marked by (*). Observe that (*) is equivalent to: for all
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 n ? m we have A(T) F- A(p)4-+Am(p). First we show F-Am+l(p) +Am.(p):

 Am+1(p)(4) Am(p) (1) Am + 1 ("p)2) Am + 2 (p) (3)

 A(T) W A(T) (2)(*)
 Am +(p) (1)A(p) (3)

 Am(p) -+ Am+ 2(p) Am+ 2(p) + Am(p)

 Am(p) +Am+ 2(p)(

 Am+l(p)+Am+3(p)

 Am+3(p) (4)

 Am+ l( p) (p

 (#) Use substitution.
 ($) Use assumption (4).

 Next we show F-Am+3(p) - Am+1(p)

 Am+3(p)(4) Am(p) (3)

 Am+3(p)(l) Am+2(p) (2) A3(T) (m 1.7) ____ ___ ___ ___ (:1) _ (Lem m a 1.7)

 (T)(1() A2(T)(#
 Am(p) (2) Am+2(p) (3)

 Am+2(p) + Am(p) Am(p) -+ Am+2(p)

 Am(p)+Am+2(p)

 Am + 1(p) ++Am +3(p) $)

 Am+l(p) (4)

 Am+3(p) - Am` (p

 (4) Use substitution.
 ($) Use assumption (4). -1

 1.9. THEOREM (FINITE ORDER THEOREM). For all A(p) there is an m e N such that

 F-Amtp) -Am +2( p.

 PROOF. Combine 1.5, 1.6 and 1.8. E
 Observe that we also get a bound on m in Theorem 1.9. We say that A(p) has

 bound n if A(p) has bound n over F = 0. Then by 1.4, 1.5 and 1.6 we get after
 substituting q = A2,(p) and B(p) = A(p) that A(T) F- A2+ 1(p)4-+A2,+2(p). By
 Lemma 1.8 this gives
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 ?2. Examples. In this section we shall give some examples which show that the
 value m in Theorem 1.9 cannot be bounded.
 2.1. EXAMPLE. Consider the formula

 A(p) = (a, v (a, -+p)) A (a2 v (a2 -+p)) A ... A (a. V (a. -+p)).

 Then we can show F-A(T) and F-A" 1 (p), but also F/-AM(p). Thus we do not have
 -A n(p)- An + 2(p). We only show f/-An(p).

 Consider the following Kripke model.

 a'n + 1'
 paa2,a3,- an

 an

 I aa2,a3,.-,an

 a2,a3,. .,an

 2 an -lean

 al 1 ian

 Then ai [-Am(p) if and only if i + m > n + 1, so ao IV-An(p). Observe that we have
 F-A(T) and F-An + (p)- An + 2(p).

 2.2. EXAMPLE. For B(p) = A(p) A (an v (p -- an)) where A(p) is as in 2.1, and for
 the Kripke model of 2.1 we again have ai IFBk(p) if and only if i + k > n + 1
 (k < n + 1). But we only have oc F- Btn +'(p) and oc IF-BM(p) Bn + 2( p), and not a0 F-
 Bn(p).

 For special classes of formulas we can find a uniform bound on n such that for all
 formulas of that class we have F-An( p) +-+ An + 2(p).

 2.3. PROPOSITION. Let A(p) have no extra variables or constants but T and I. Then
 we have

 W-A 2(p) +-+ A4( p).

 PROOF. First proof. The formula A(p) is equivalent to a formula of the Rieger-
 Nishimura lattice. For almost all of these formulas we have F-A(T) and F- A2(p).
 The remaining cases are easy to verify. Of special interest are A(p) =-- p v

 mm p (F-A2(p) -+ A3(p)) and A(p) = m p (F-A(p)4-+ A3(p), i.e. F---i p+-+--i-I p).
 Second proof We immediately see that a formula A(p) with no variables but p has

 bound 1. For this special class of formulas when we go through the proof of
 Theorem 1.4 we find that we can take m = 0 instead of m = 2n, since if F, F/- B(T)
 then 1, F- -i B(T). It follows that A(T), As(p) F- A(p) for all s. Then apply 1.5, 1.6 and
 1.8: F-A2(p) -+A4( p).

 2.4. THEOREM. Let A(p) have at most one sort of extra variable a and T, and no I.
 Then we have

 F-A 3(p) +-+ A 5(p).

 PROOF. The formula A(p) is built up by a, p, T and the connectives. Therefore we
 have F-A(T) or F-A(T) -+a.
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 Assume F-A(T)4-+a. Then we have A(T)F-A(p)4-+p or A(T)F-A(p). By
 Lemma 1.6 and Lemma 1.8 we get F-A2(p) -+A4(p) and by substitution

 F-A 3(p) +-+ A 5(p).

 Assume F-A(T). The formula A(p) has bound 1. By Corollary 1.5 this implies
 As(p) F- A3(p) for all s. Take s = 5 and use Lemma 1.2i). Then we get
 F-A 3(p) -+A5(p). Li

 2.5. EXAMPLE. The following shows that Theorem 2.4 does not hold if we allow I

 to occur in A (p). Let r 1, ro, r1, r2,... and SO, s1, S2, be the following sequences of
 formulas:

 r1l=I, ro=a, so=ia, r1=av ia,

 rm = Sm-1 V Sm-2 (m ? 2),

 Sm = Sm-1 +rm-2 (m 2 1).

 If we add T. then these sequences form the Rieger-Nishimura lattice with the order-
 ing induced by F-.

 T

 \ / \

 \ / \
 r3/ \ S3

 \/ \/ --- ava=S2 * r2 = a v rl/\ 7* a

 a v -ia = / * - / . = a

 a =so* \ / r= a

 Now take as A(p) the following formula, which only uses a, p, I and the
 connectives:

 A(p) = (rO v (rO -+p)) A (r2 v (r2 -+p)) A ... A (r2. V (r2. P)) .

 Then for odd k < 2n (including k =-1) we have F-A(rk) 4-+ rk + 2 and F-An 2(p) (thus
 -A n +2(p) -*A n +4(p)).

 So if we include I we no longer have a uniform bound on n as in Theorem 2.4.
 2.6. EXAMPLE. In the classical situation we have

 F~cA( p) *A 3( p).

 This provides us with uniform interpolants: if we have A(p) F- c B, then
 A(p) F-c A(A(T)) and A(A(T)) F-c B. The interpolant A(A(T)) in which p does not
 occur does not depend on the choice of B.
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 This procedure no longer works in the intuitionistic case. Let A(p) be the
 following formula:

 A(p) = (a, v (a, -+p)) A ... A (a. V (a. -- p)) A (pi-- b) A ((pla.) v (ca p) V C)-

 Consider the following Kripke model.

 (an -s3 7p~alea25, an A C

 an+1 ala2,...,anA c

 n+1 2,...bbc c

 (X4 ! n - 1 and b

 a3 an, ,c

 a2 Ibc

 a1 IC

 Then we have 0o 1SAk(p) ak for 1 < k < n, 0o -A n+ l(p), ao JFAn+m+ l(p) b for
 odd m > 0 and ao FPAn+m+l(p) +c for even m > 0. So this model shows that
 A 'n + l(p) f/ A(T) v A 2(T). Thus also A(p) f/ A 2(T). In the model we have xo [F A(an ),

 so there still is the possibility that VB(p)A(B(T)) works as a uniform interpolant,
 where B(p) ranges over the subformulas of A(p).

 Acknowledgements. The author wishes to thank Albert Visser for providing some
 proof theoretic lemmas replacing model theoretic arguments. He would also like to
 thank Professor D. van Dalen and Piet Rodenburg for their useful comments.
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