Finding the longest isometric cycle in a graph

Proposed by : CHALOPIN Jérémie
Presented by : EL MASDOURI Reda

Aix-Marseille University,
Faculty of sciences
Luminy

Séminaire Tutoré
Finding the longest isometric cycle in a graph

The plan

1. Motivation
2. Preliminaries
3. Main results
4. LIC Algorithm
5. Complexity analysis
Finding the longest isometric cycle in a graph

Motivation

Some historic results

- In combinatory, the most fundamental problem is: under which conditions a graph posses some kind of cycles?
- The famous "seven bridges of Königsberg" problem.
- Finding a Hamiltonian cycle in a graph is NP-complete problem.
- Garey and Johnson proved that finding the longest cycle and the longest induced cycle in a graph are NP-complete problems.
- We can found the longest isometric cycle in a graph in a polynomial time.
Finding the longest isometric cycle in a graph

Motivation

Some historic results

- In combinatory, the most fundamental problem is: under which conditions a graph possesses some kind of cycles?
- The famous "seven bridges of Königsberg" problem.
- Finding a Hamiltonian cycle in a graph is NP-complete problem.
- Garey and Johnson proved that finding the longest cycle and the longest induced cycle in a graph are NP-complete problems.
- We can found the longest isometric cycle in a graph in a polynomial time.
Finding the longest isometric cycle in a graph

Motivation

Some historic results

- In combinatorial, the most fundamental problem is: under which conditions a graph possesses some kind of cycles?
- The famous "seven bridges of Königsberg" problem.
 - Finding a Hamiltonian cycle in a graph is NP-complete problem.
 - Garey and Johnson proved that finding the longest cycle and the longest induced cycle in a graph are NP-complete problems.
 - We can found the longest isometric cycle in a graph in a polynomial time.
In combinatory, the most fundamental problem is: under which conditions a graph possesses some kind of cycles?

- The famous "seven bridges of Königsberg" problem.
- Finding a Hamiltonian cycle in a graph is NP-complete problem.

- Garey and Johnson proved that finding the longest cycle and the longest induced cycle in a graph are NP-complete problems.
- We can find the longest isometric cycle in a graph in a polynomial time.
Finding the longest isometric cycle in a graph

Motivation

Some historic results

- In combinatory, the most fundamental problem is: under which conditions a graph possesses some kind of cycles?
- The famous "seven bridges of Königsberg" problem.
- Finding a Hamiltonian cycle in a graph is NP-complete problem.
- Garey and Johnson proved that finding the longest cycle and the longest induced cycle in a graph are NP-complete problems.
- We can find the longest isometric cycle in a graph in a polynomial time.
Finding the longest isometric cycle in a graph

Motivation

Some historic results

- In combinatory, the most fundamental problem is: under which conditions a graph posses some kind of cycles?
- The famous "seven bridges of Königsberg" problem.
- Finding a Hamiltonian cycle in a graph is NP-complete problem.
- Garey and Johnson proved that finding the longest cycle and the longest induced cycle in a graph are NP-complete problems.
- We can found the longest isometric cycle in a graph in a polynomial time.
A simple graph is a graph that does not have more than one edge between any two vertices and no edge starts and ends at the same vertex.

A graph is said to be connected if every pair of vertices in the graph is connected.

A walk is a sequence of vertices and edges of a graph.

If the first and last vertices of a walk are the same we say that is cyclic.

A path is a walk in which all vertices and also all edges are distinct.

A path that starts from a given vertex and ends at the same vertex is called a cycle.
A simple graph is a graph that does not have more than one edge between any two vertices and no edge starts and ends at the same vertex.

A graph is said to be connected if every pair of vertices in the graph is connected.

- A walk is a sequence of vertices and edges of a graph.
- If the first and last vertices of a walk are the same we say that is cyclic.
- A path is a walk in which all vertices and also all edges are distinct.
- A path that starts from a given vertex and ends at the same vertex is called a cycle.
Preliminaries

Definitions

- A simple graph is a graph that does not have more than one edge between any two vertices and no edge starts and ends at the same vertex.
- A graph is said to be connected if every pair of vertices in the graph is connected.
- A walk is a sequence of vertices and edges of a graph.
 - If the first and last vertices of a walk are the same we say that is cyclic.
 - A path is a walk in which all vertices and also all edges are distinct.
 - A path that starts from a given vertex and ends at the same vertex is called a cycle.
Definitions

- A simple graph is a graph that does not have more than one edge between any two vertices and no edge starts and ends at the same vertex.
- A graph is said to be connected if every pair of vertices in the graph is connected.
- A walk is a sequence of vertices and edges of a graph.
- If the first and last vertices of a walk are the same we say that is cyclic.
- A path is a walk in which all vertices and also all edges are distinct.
- A path that starts from a given vertex and ends at the same vertex is called a cycle.
A simple graph is a graph that does not have more than one edge between any two vertices and no edge starts and ends at the same vertex.

A graph is said to be connected if every pair of vertices in the graph is connected.

A walk is a sequence of vertices and edges of a graph.

If the first and last vertices of a walk are the same we say that is cyclic.

A path is a walk in which all vertices and also all edges are distinct.

A path that starts from a given vertex and ends at the same vertex is called a cycle.
A simple graph is a graph that does not have more than one edge between any two vertices and no edge starts and ends at the same vertex.

A graph is said to be connected if every pair of vertices in the graph is connected.

A walk is a sequence of vertices and edges of a graph.

If the first and last vertices of a walk are the same we say that is cyclic.

A path is a walk in which all vertices and also all edges are distinct.

A path that starts from a given vertex and ends at the same vertex is called a cycle.
Finding the longest isometric cycle in a graph

Preliminaries

Definitions

- The length of a walk is the number of edges in it.
- The distance between two vertices \(u \) and \(v \) in a graph \(G \) is the number of edges in a shortest path connecting them, denoted by \(d_G(u, v) \), and \(d_G(u, u) = 0 \), and \(d_G(u, v) = \infty \) if \(u \) and \(v \) are in different components of \(G \).
- A cycle in a graph \(G \) is isometric if the distance between two vertices in the cycle is equal to their distance in \(G \).
- A subgraph \(H \) of a graph \(G \) is said an isometric subgraph if for every \(u \) and \(v \) in \(V(H) \), we have \(d_H(u, v) = d_G(u, v) \).

Notice that an isometric subgraph is an induced subgraph.
Finding the longest isometric cycle in a graph

Preliminaries

Definitions

- The length of a walk is the number of edges in it.
- The distance between two vertices \(u \) and \(v \) in a graph \(G \) is the number of edges in a shortest path connecting them, denoted by \(d_G(u, v) \), and \(d_G(u, u) = 0 \), and \(d_G(u, v) = \infty \) if \(u \) and \(v \) are in different components of \(G \).
- A cycle in a graph \(G \) is isometric if the distance between two vertices in the cycle is equal to their distance in \(G \).
- A subgraph \(H \) of a graph \(G \) is said an isometric subgraph if for every \(u \) and \(v \) in \(V(H) \), we have \(d_H(u, v) = d_G(u, v) \).

Notice that an isometric subgraph is an induced subgraph.
Definitions

- The length of a walk is the number of edges in it.
- The distance between two vertices \(u \) and \(v \) in a graph \(G \) is the number of edges in a shortest path connecting them, denoted by \(d_G(u, v) \), and \(d_G(u, u) = 0 \), and \(d_G(u, v) = \infty \) if \(u \) and \(v \) are in different components of \(G \).
- A cycle in a graph \(G \) is isometric if the distance between two vertices in the cycle is equal to their distance in \(G \).
- A subgraph \(H \) of a graph \(G \) is said an isometric subgraph if for every \(u \) and \(v \) in \(V(H) \), we have \(d_H(u, v) = d_G(u, v) \).

Notice that an isometric subgraph is an induced subgraph.
Definitions

- The length of a walk is the number of edges in it.
- The distance between two vertices u and v in a graph G is the number of edges in a shortest path connecting them, denoted by $d_G(u, v)$, and $d_G(u, u) = 0$, and $d_G(u, v) = \infty$ if u and v are in different components of G.
- A cycle in a graph G is isometric if the distance between two vertices in the cycle is equal to their distance in G.
- A subgraph H of a graph G is said an isometric subgraph if for every u and v in $V(H)$, we have $d_H(u, v) = d_G(u, v)$.

Notice that an isometric subgraph is an induced subgraph.
Finding the longest isometric cycle in a graph

Preliminaries

Definitions

- The length of a walk is the number of edges in it.
- The distance between two vertices \(u \) and \(v \) in a graph \(G \) is the number of edges in a shortest path connecting them, denoted by \(d_G(u, v) \), and \(d_G(u, u) = 0 \), and \(d_G(u, v) = \infty \) if \(u \) and \(v \) are in different components of \(G \).
- A cycle in a graph \(G \) is isometric if the distance between two vertices in the cycle is equal to their distance in \(G \).
- A subgraph \(H \) of a graph \(G \) is said an isometric subgraph if for every \(u \) and \(v \) in \(V(H) \), we have \(d_H(u, v) = d_G(u, v) \).

Notice that an isometric subgraph is an induced subgraph.
Let G be a undirected graph, the p-th power G^p of G is another graph that has the same set of vertices, but in which two vertices are adjacent when their distance in G is at most p.

$$G^p = (V(G), \{(u, v) : d_G(u, v) \leq p\})$$

Example

Let G be a undirected graph, the p-th power G^p of G is another graph that has the same set of vertices, but in which two vertices are adjacent when their distance in G is at most p.

$$G^p = (V(G), \{(u, v) : d_G(u, v) \leq p\})$$
Let G a simple, connected, unweighted and undirected graph, and let $k \geq 3$. From G we construct the graph G_k such that:

- $V(G_k) = \{(u, v) / d_G(u, v) = \lfloor \frac{k}{2} \rfloor \land u, v \in V(G)\}$
- $E(G_k) = \{((u, v), (a, b)) / (u, a) \in E(G) \land (v, b) \in E(G)\}$

Lemma

$$d_{G_k}((u, v), (a, b)) \geq \max \{d_G(u, a), d_G(v, b)\}$$

Proof:
If $P = \{(u, v), (a_1, b_1), \ldots, (a, b)\}$ is the shortest path from (u, v) to (a, b) in G_k, then $P_1 = \{u, a_1, \ldots, a\}$ and $P_2 = \{v, b_1, \ldots, b\}$ are paths in G. Thus P, P_1 and P_2 all have the same length. So the result.
Auxiliary graph

Let G a simple, connected, unweighted and undirected graph, and let $k \geq 3$. From G we construct the graph G_k such that:

- $V(G_k) = \left\{ (u, v) \mid d_G(u, v) = \left\lfloor \frac{k}{2} \right\rfloor \land u, v \in V(G) \right\}$
- $E(G_k) = \left\{ ((u, v), (a, b)) \mid (u, a) \in E(G) \land (v, b) \in E(G) \right\}$

Lemma

$$d_{G_k} ((u, v), (a, b)) \geq \max \left\{ d_G(u, a), d_G(v, b) \right\}$$

Proof:

If $P = \{(u, v), (a_1, b_1), \ldots, (a, b)\}$ is the shortest path from (u, v) to (a, b) in G_k, then $P_1 = \{u, a_1, \ldots, a\}$ and $P_2 = \{v, b_1, \ldots, b\}$ are paths in G. Thus P, P_1 and P_2 all have the same length. So the result.
Let G a simple, connected, unweighted and undirected graph, and let $k \geq 3$. From G we construct the graph G_k such that:

- $V(G_k) = \{(u, v)/d_G(u, v) = \lfloor \frac{k}{2} \rfloor \land u, v \in V(G)\}$
- $E(G_k) = \{((u, v), (a, b))/(u, a) \in E(G) \land (v, b) \in E(G)\}$

Lemma

$$d_{G_k}((u, v), (a, b)) \geq \max \{d_G(u, a), d_G(v, b)\}$$

Proof:

If $P = \{(u, v), (a_1, b_1), \ldots, (a, b)\}$ is the shortest path from (u, v) to (a, b) in G_k, then $P_1 = \{u, a_1, \ldots, a\}$ and $P_2 = \{v, b_1, \ldots, b\}$ are paths in G. Thus P, P_1 and P_2 all have the same length. So the result.
Finding the longest isometric cycle in a graph

Preliminaries

Auxiliary graph

Let G a simple, connected, unweighted and undirected graph, and let $k \geq 3$. From G we construct the graph G_k such that:

1. $V(G_k) = \left\{ (u, v)/d_G(u, v) = \left\lfloor \frac{k}{2} \right\rfloor \land u, v \in V(G) \right\}$
2. $E(G_k) = \left\{ ((u, v), (a, b)) / (u, a) \in E(G) \land (v, b) \in E(G) \right\}$

Lemma

$$d_{G_k}((u, v), (a, b)) \geq \max \{d_G(u, a), d_G(v, b)\}$$

Proof:
If $P = \{ (u, v), (a_1, b_1), ..., (a, b) \}$ is the shortest path from (u, v) to (a, b) in G_k, then $P_1 = \{ u, a_1, ..., a \}$ and $P_2 = \{ v, b_1, ..., b \}$ are paths in G. Thus P, P_1 and P_2 all have the same length. So the result.
Finding the longest isometric cycle in a graph

Preliminaries

Particular case

Lemma

A cycle of length k is an isometric cycle if and only if the distance in G between every pair of diametrically opposite vertices u and v in the cycle is $\left\lfloor \frac{k}{2} \right\rfloor$.

Proof:

\Rightarrow) \checkmark

\Leftarrow) If the cycle is not isometric, then there exist a pair of vertices u and v such that their distance in the graph is smaller than the distance in the cycle. Let x be a vertex in the cycle diametrically opposite to u such that v lies on the shortest path from u to x in the cycle, Then

$$\left\lfloor \frac{k}{2} \right\rfloor = d_G(u, x) \leq d_G(u, v) + d_G(x, v) < d_{cycle}(u, v) + d_{cycle}(v, x) = d_{cycle}(u, x) = \left\lfloor \frac{k}{2} \right\rfloor$$
Finding the longest isometric cycle in a graph

Preliminaries

Particular case

Lemma

A cycle of length k is an isometric cycle if and only if the distance in G between every pair of diametrically opposite vertices u and v in the cycle is $\left\lfloor \frac{k}{2} \right\rfloor$.

Proof:

\Rightarrow)

If the cycle is not isometric, then there exist a pair of vertices u and v such that their distance in the graph is smaller than the distance in the cycle. Let x be a vertex in the cycle diametrically opposite to u such that v lies on the shortest path from u to x in the cycle, Then

$$\left\lfloor \frac{k}{2} \right\rfloor = d_G(u, x) \leq d_G(u, v) + d_G(x, v) < d_{\text{cycle}}(u, v) + d_{\text{cycle}}(v, x) = d_{\text{cycle}}(u, x) = \left\lfloor \frac{k}{2} \right\rfloor$$
The vertices of G_k represent pairs of vertices that might end up as diametrically opposite vertices in an isometric cycle of G.

(u, v) and (a, b) are adjacent if the pairs that they represent could be adjacent pairs of diametrically opposite vertices in an isometric cycle of G.
The vertices of G_k represent pairs of vertices that might end up as diametrically opposite vertices in an isometric cycle of G.

(u, v) and (a, b) are adjacent if the pairs that they represent could be adjacent pairs of diametrically opposite vertices in an isometric cycle of G.
Finding the longest isometric cycle in a graph

Main results

Lemma

If k is even and there is an isometric cycle of length k in G going through u and v then $d_{G_k}((u,v), (v,u)) = \frac{k}{2}$

Proof

Let $C = \left\{ c_1, ..., c_{\frac{k}{2}}, c_{\frac{k}{2}+1}, ..., c_k \right\}$ be an isometric cycle in G of length k, with $c_1 = u$
As $(u,v) \in G_k$ then $d_G(u,v) = \frac{k}{2}$, and we know that C is isometric thus $c_{\frac{k}{2}+1} = v$.
The vertices $(c_1, c_{\frac{k}{2}+1}), (c_2, c_{\frac{k}{2}+2}), ..., (c_k, c_k), (c_{\frac{k}{2}+1}, c_1)$ are in G_k and there is an edge between each consecutive pairs of them, thus $d_{G_k}((u,v), (v,u)) \leq \frac{k}{2}$.
By the first lemma one has $d_{G_k}((u,v), (v,u)) \geq \frac{k}{2}$.
Finding the longest isometric cycle in a graph

Main results

Lemma

If k is even and there is an isometric cycle of length k in G going through u and v then $d_{G_k}((u,v), (v,u)) = \frac{k}{2}$

Proof

Let $C = \{c_1, \ldots, c_{\frac{k}{2}}, c_{\frac{k}{2}+1}, \ldots, c_k\}$ be an isometric cycle in G of length k, with $c_1 = u$.

As $(u,v) \in G_k$ then $d_G(u,v) = \frac{k}{2}$, and we know that C is isometric thus $c_{\frac{k}{2}+1} = v$.

The vertices $(c_1, c_{\frac{k}{2}+1}), (c_2, c_{\frac{k}{2}+2}), \ldots, (c_{\frac{k}{2}}, c_k), (c_{\frac{k}{2}+1}, c_1)$ are in G_k and there is an edge between each consecutive pairs of them, thus $d_{G_k}((u,v), (v,u)) \leq \frac{k}{2}$.

By the first lemma one has $d_{G_k}((u,v), (v,u)) \geq \frac{k}{2}$.

Finding the longest isometric cycle in a graph
Lemma

If \(k \) is even and \(d_{G_k}((u,v),(v,u)) = \frac{k}{2} \), then there is an isometric cycle of length \(k \) in \(G \) going through \(u \) and \(v \).

Proof

Let \(d_{G_k}((u,v),(v,u)) = \frac{k}{2} \) and \(P = \{(u,v), (a_2, b_2), ..., (a_{\frac{k}{2}-1}, b_{\frac{k}{2}-1}), (v,u)\} \) be a shortest path between \((u,v)\) and \((v,u)\).

Obviously, \(W = \{u, a_2, a_3, ..., v, b_2, ..., u\} \) is a cyclic walk of length \(k \), and it's a subgraph in \(G \).

We suppose that there is a pair of vertices \(a \) and \(b \) in \(W \) with \(d_G(a, b) < d_W(a, b) \).

Let \(x \) be a vertex in \(W \) such that \((a, x)\) or \((x, a)\) is in \(P \).

As \(x \) and \(a \) are diametrically opposite in \(W \), there is a walk of length \(\frac{k}{2} \) from \(a \) to \(x \) going through \(b \), thus \(d_W(a, b) + d_W(b, x) \leq \frac{k}{2} \).

Thus, \(\frac{k}{2} = d_G(a, x) \leq d_G(a, b) + d_G(b, x) < d_W(a, b) + d_W(b, x) \leq \frac{k}{2} \).

Impossible.
Finding the longest isometric cycle in a graph

Main results

Lemma

If \(k \) is even and \(d_{G_k}((u,v),(v,u)) = \frac{k}{2} \), then there is an isometric cycle of length \(k \) in \(G \) going through \(u \) and \(v \).

Proof

Let \(d_{G_k}((u,v),(v,u)) = \frac{k}{2} \) and \(P = \{(u,v),(a_2,b_2),\ldots,(a_{\frac{k}{2}-1},b_{\frac{k}{2}-1}),(v,u)\} \) be a shortest path between \((u,v)\) and \((v,u)\).

Obviously, \(W = \{u,a_2,a_3,\ldots,v,b_2,\ldots,u\} \) is a cyclic walk of length \(k \), and it’s a subgraph in \(G \).

We suppose that there is a pair of vertices \(a \) and \(b \) in \(W \) with \(d_G(a,b) < d_W(a,b) \).

Let \(x \) be a vertex in \(W \) such that \((a,x)\) or \((x,a)\) is in \(P \).

As \(x \) and \(a \) are diametrically opposite in \(W \), there is a walk of length \(\frac{k}{2} \) from \(a \) to \(x \) going through \(b \), thus \(d_W(a,b) + d_W(b,x) \leq \frac{k}{2} \).

Thus, \(\frac{k}{2} = d_G(a,x) \leq d_G(a,b) + d_G(b,x) < d_W(a,b) + d_W(b,x) \leq \frac{k}{2} \), impossible.
Finding the longest isometric cycle in a graph

Main results

Corollary

If k is even, there is an isometric cycle of length k in G if and only if there is a pair of vertices u and v with $d_{G_k}((u, v), (v, u)) = \frac{k}{2}$
The analogous results when k is odd are more technical.

Definition

For a vertex $(u, v) \in G_k$ we define the set

$$M'_k(u, v) = \{(u, x)/(u, x) \in V(G_k) \land (v, x) \in E(G)\}$$

Lemma

If k is odd and there is an isometric cycle of length k in G, going through u and v, then $d_{G_k}((u, v), (v, x)) = \left\lfloor \frac{k}{2} \right\rfloor$ where (v, x) is a vertex in $M'_k(v, u)$.

Proof

Assume G has an isometric cycle C of length k,

$$C = \{c_1, c_2, \ldots, c_{\left\lfloor \frac{k}{2} \right\rfloor}, c_{\left\lfloor \frac{k}{2} \right\rfloor}+1, \ldots, c_k\}$$

with $c_1 = u, c_{\left\lfloor \frac{k}{2} \right\rfloor}+1 = v$ and $c_k = x$.

As the last proof the vertices $(c_1, c_{\left\lfloor \frac{k}{2} \right\rfloor}+1), \ldots, (c_{\left\lfloor \frac{k}{2} \right\rfloor}, c_k-1)$ and $(c_{\left\lfloor \frac{k}{2} \right\rfloor}+1, c_k)$ are in G_k, also there is an edge between each consecutive vertices, moreover $(c_{\left\lfloor \frac{k}{2} \right\rfloor}+1, c_k) \in M'_k(v, u)$ because $c_{\left\lfloor \frac{k}{2} \right\rfloor}+1 = v$ and $(c_k, c_1) \in E(G)$. Then $d_{G_k}((u, v), (v, x)) \leq \left\lfloor \frac{k}{2} \right\rfloor$.

The result holds so.
The analogous results when \(k \) is odd are more technical.

Definition

For a vertex \((u, v) \in G_k\) we define the set
\[
M'_k(u, v) = \{(u, x)/ (u, x) \in V(G_k) \land (v, x) \in E(G)\}
\]

Lemma

If \(k \) is odd and there is an isometric cycle of length \(k \) in \(G \), going through \(u \) and \(v \), then \(d_{G_k}((u, v), (v, x)) = \left\lfloor \frac{k}{2} \right\rfloor \) where \((v, x)\) is a vertex in \(M'_k(v, u) \).

Proof

Assume \(G \) has an isometric cycle \(C \) of length \(k \),
\[
C = \{c_1, c_2, ..., c_{\lfloor \frac{k}{2} \rfloor}, c_{\lfloor \frac{k}{2} \rfloor} + 1, ..., c_k\}
\]
with \(c_1 = u, c_{\lfloor \frac{k}{2} \rfloor} + 1 = v \) and \(c_k = x \).

As the last proof the vertices \((c_1, c_{\lfloor \frac{k}{2} \rfloor} + 1), ..., (c_{\lfloor \frac{k}{2} \rfloor}, c_{k-1}) \) and \((c_{\lfloor \frac{k}{2} \rfloor} + 1, c_k) \)
are in \(G_k \), also there is an edge between aech consecutive vertices, moreover
\((c_{\lfloor \frac{k}{2} \rfloor} + 1, c_k) \in M'_k(v, u) \) because \(c_{\lfloor \frac{k}{2} \rfloor} + 1 = v \) and \((c_k, c_1) \in E(G)\).

Then \(d_{G_k}((u, v), (v, x)) \leq \left\lfloor \frac{k}{2} \right\rfloor \)
The result holds so.
The analogous results when k is odd are more technical.

Definition

For a vertex $(u, v) \in G_k$ we define the set

$$M'_k(u, v) = \{(u, x)/(u, x) \in V(G_k) \land (v, x) \in E(G)\}$$

Lemma

If k is odd and there is an isometric cycle of length k in G, going through u and v, then $d_{G_k}((u, v), (v, x)) = \left\lfloor \frac{k}{2} \right\rfloor$ where (v, x) is a vertex in $M'_k(v, u)$.

Proof

Assume G has an isometric cycle C of length k,

$$C = \{c_1, c_2, \ldots, c_{\left\lfloor \frac{k}{2} \right\rfloor}, c_{\left\lfloor \frac{k}{2} \right\rfloor}+1, \ldots, c_k\}$$

with $c_1 = u, c_{\left\lfloor \frac{k}{2} \right\rfloor}+1 = v$ and $c_k = x$.

As the last proof the vertices $(c_1, c_{\left\lfloor \frac{k}{2} \right\rfloor}+1), \ldots, (c_{\left\lfloor \frac{k}{2} \right\rfloor}, c_k)$ and $(c_{\left\lfloor \frac{k}{2} \right\rfloor}+1, c_k)$ are in G_k, also there is an edge between each consecutive vertices, moreover

$$c_{\left\lfloor \frac{k}{2} \right\rfloor}+1, c_k \in M'_k(v, u)$$

because $c_{\left\lfloor \frac{k}{2} \right\rfloor}+1 = v$ and $(c_k, c_1) \in E(G)$.

Then $d_{G_k}((u, v), (v, x)) \leq \left\lfloor \frac{k}{2} \right\rfloor$

The result holds so.
The analogous results when k is odd are more technical.

Definition

For a vertex $(u, v) \in G_k$ we define the set

\[M'_k(u, v) = \{(u, x) / (u, x) \in V(G_k) \land (v, x) \in E(G)\} \]

Lemma

If k is odd and there is an isometric cycle of length k in G, going through u and v, then $d_{G_k}((u, v), (v, x)) = \left\lfloor \frac{k}{2} \right\rfloor$ where (v, x) is a vertex in $M'_k(v, u)$.

Proof

Assume G has an isometric cycle C of length k,

\[C = \left\{ c_1, c_2, ..., c_{\lfloor \frac{k}{2} \rfloor}, c_{\lfloor \frac{k}{2} \rfloor+1}, ..., c_k \right\} \text{ with } c_1 = u, c_{\lfloor \frac{k}{2} \rfloor+1} = v \text{ and } c_k = x. \]

As the last proof the vertices $\left(c_1, c_{\lfloor \frac{k}{2} \rfloor+1} \right), ..., \left(c_{\lfloor \frac{k}{2} \rfloor}, c_{k-1} \right) \text{ and } \left(c_{\lfloor \frac{k}{2} \rfloor+1}, c_k \right)$ are in G_k, also there is an edge between each consecutive vertices, moreover $\left(c_{\lfloor \frac{k}{2} \rfloor+1}, c_k \right) \in M'_k(v, u)$ because $c_{\lfloor \frac{k}{2} \rfloor+1} = v \text{ and } (c_k, c_1) \in E(G)$.

Then $d_{G_k}((u, v), (v, x)) \leq \left\lfloor \frac{k}{2} \right\rfloor$

The result holds so.
Lemma

If \(k \) is odd and the distance in \(G_k \) between \((u, v)\) and \((v, x)\) \(\in M_k^t(v, u)\) is \(\lfloor \frac{k}{2} \rfloor\), then there is an isometric cycle of length \(k\) in \(G\) going through \(u\) and \(v\).

Proof

Let \(d_{G_k}((u, v), (v, x)) = \lfloor \frac{k}{2} \rfloor\) and let's \(P = \{(u, v), (a_2, b_2), \ldots, (a_{\lfloor \frac{k}{2} \rfloor}, b_{\lfloor \frac{k}{2} \rfloor}), (v, x)\}\) a shortest path between \((u, v)\) and \((v, x)\).

One remark \(W = \{u, a_2, \ldots, a_{\lfloor \frac{k}{2} \rfloor}, v, b_2, \ldots, b_{\lfloor \frac{k}{2} \rfloor}, x, u\}\) is a subgraph of \(G\) and cyclic walk.

Suppose that there is a pair of vertices \(a\) and \(b\) in \(W\) with \(d_G(a, b) < d_W(a, b)\).

We can found a vertex \(z \in V(W)\) such that either \((a, z)\) or \((z, a)\) is in \(P\) and \(d_W(a, b) + d_W(b, z) \leq \lfloor \frac{k}{2} \rfloor\).

Then, \(d_G(a, z) \leq d_G(a, b) + d_G(b, z) < d_W(a, b) + d_W(b, z) \leq \lfloor \frac{k}{2} \rfloor\), contradiction.
Lemma

If k is odd and the distance in G_k between (u, v) and $(v, x) \in M_k^i(v, u)$ is $\left\lfloor \frac{k}{2} \right\rfloor$, then there is an isometric cycle of length k in G going through u and v.

Proof

Let $d_{G_k}((u, v), (v, x)) = \left\lfloor \frac{k}{2} \right\rfloor$ and let's $P = \{(u, v), (a_2, b_2), ..., (a_{\left\lfloor \frac{k}{2} \right\rfloor}, b_{\left\lfloor \frac{k}{2} \right\rfloor}), (v, x)\}$ a shortest path between (u, v) and (v, x).

One remark $W = \{u, a_2, ..., a_{\left\lfloor \frac{k}{2} \right\rfloor}, v, b_2, ..., b_{\left\lfloor \frac{k}{2} \right\rfloor}, x, u\}$ is a subgraph of G and cyclic walk.

Suppose that there is a pair of vertices a and b in W with $d_G(a, b) < d_W(a, b)$.

We can found a vertex $z \in V(W)$ such that either (a, z) or (z, a) is in P and $d_W(a, b) + d_W(b, z) \leq \left\lfloor \frac{k}{2} \right\rfloor$.

Then, $d_G(a, z) \leq d_G(a, b) + d_G(b, z) < d_W(a, b) + d_W(b, z) \leq \left\lfloor \frac{k}{2} \right\rfloor$, contradiction.
Finding the longest isometric cycle in a graph

Main results

Corollary

If k is odd, there is an isometric cycle of length k in G if and only if there are vertices u, v and x so that $(v, x) \in M'_k(v, x)$ and $d_{G_k}((u, v), (v, x)) = \lfloor \frac{k}{2} \rfloor$

Main Theorem

G has an isometric cycle of length k if and only if there are vertices $u, v, x \in V(G)$ so that $(v, x) \in M_k(v, u)$ and $d_{G_k}((u, v), (v, x)) = \lfloor \frac{k}{2} \rfloor$

Where: $M_k(u, v) = \begin{cases} (u, v) & \text{if } k \text{ is even} \\ M'_k(u, v) & \text{if } k \text{ is odd} \end{cases}$
Finding the longest isometric cycle in a graph

Main results

Corollary
If \(k \) is odd, there is an isometric cycle of length \(k \) in \(G \) if and only if there are vertices \(u, v \) and \(x \) so that \((v, x) \in M'_k(v, x) \) and \(d_{G_k}((u, v), (v, x)) = \lfloor \frac{k}{2} \rfloor \)

Main Theorem
\(G \) has an isometric cycle of length \(k \) if and only if there are vertices \(u, v, x \in V(G) \) so that \((v, x) \in M_k(v, u) \) and \(d_{G_k}((u, v), (v, x)) = \lfloor \frac{k}{2} \rfloor \)

Where:
\[
M_k(u, v) = \begin{cases}
(u, v) & \text{if } k \text{ is even} \\
M'_k(u, v) & \text{if } k \text{ is odd}
\end{cases}
\]
Finding the longest isometric cycle in a graph

LIC Algorithm

Algorithm

For a given k, showing if a graph G has an isometric cycle using G_k, we check if there is a pair of vertices (u, v) and (v, x) in $V(G_k)$ such that $(v, x) \in M_k(v, u)$ and $d_{G_k}((u, v), (v, x)) = \left\lfloor \frac{k}{2} \right\rfloor$.

Remark

By the first lemma we had $d_{G_k}((u, v), (v, x)) \geq \left\lfloor \frac{k}{2} \right\rfloor$. Thus we have to search for vertices satisfying just the inequality $d_{G_k}((u, v), (v, x)) \leq \left\lfloor \frac{k}{2} \right\rfloor$.
For a given k, showing if a graph G has an isometric cycle using G_k we check if there is a pair of vertices (u, v) and (v, x) in $V(G_k)$ such that $(v, x) \in M_k(v, u)$ and $d_{G_k}((u, v), (v, x)) = \lfloor \frac{k}{2} \rfloor$.

Remark
By the first lemma we had $d_{G_k}((u, v), (v, x)) \geq \lfloor \frac{k}{2} \rfloor$. Thus we have to search for vertices satisfying just the inequality $d_{G_k}((u, v), (v, x)) \leq \lfloor \frac{k}{2} \rfloor$.
For a given k, showing if a graph G has an isometric cycle using G_k we check if there is a pair of vertices (u, v) and (v, x) in $V(G_k)$ such that $(v, x) \in M_k(v, u)$ and $d_{G_k}((u, v), (v, x)) = \lfloor \frac{k}{2} \rfloor$.

Remark

By the first lemma we had $d_{G_k}((u, v), (v, x)) \geq \lfloor \frac{k}{2} \rfloor$. Thus we have to search for vertices satisfying just the inequality $d_{G_k}((u, v), (v, x)) \leq \lfloor \frac{k}{2} \rfloor$.
Finding the longest isometric cycle in a graph

LIC Algorithm

Longest isometric cycle (LIC) algorithm

Input: a graph $G = (V, E)$.
Output: The length of the longest isometric cycle in G, noted ans.

begin
 $ans := 0$
 Compute the distance matrix of G.
 if G is a tree then
 return ans
 end-if
 for every k from 3 to n do
 $V_k := \emptyset$
 for every u and v in V do
 if $d(u, v) = \lfloor k/2 \rfloor$ then
 $V_k := V_k \cup \{(u, v)\}$
 end-if
 end-for
 $E_k := \emptyset$
 for every (u, v) and (w, x) in V_k do
 if $(u, w) \in E \land (v, x) \in E$ then
 $E_k := E_k \cup \{[(u, v), (w, x)]\}$
 end-if
 end-for
 $G_k := (V_k, E_k)$
 Compute $G_k^{\lfloor k/2 \rfloor} = (V_k, E_k^{\lfloor k/2 \rfloor})$
 for every triple of vertices (u, v, x) in V do
 if $(u, v) \in V(G_k) \land (v, x) \in M_k(v, u) \land [(u, v), (v, x)] \in E_k^{\lfloor k/2 \rfloor}$ then
 $ans := k$
 end-if
 end-for
 end-for
 return ans
end
Finding the longest isometric cycle in a graph

LIC Algorithm

Theorem
LIC algorithm computes the length of the longest isometric cycle of a graph G.

Proof
- If G is a tree, it has no cycle and the algorithm return 0.
- If G has a cycle, it must have an isometric cycle of length at least 3 and at most n.
- If k' is the length of the longest isometric cycle in G.
 By the main theorem there exist vertices $(u, v) \in V(G_k)$ and $(v, x) \in M(v, u)$ such that $d_{G_k}((u, v), (v, x)) = \left\lfloor \frac{k}{2} \right\rfloor$, thus

$(u, v), (v, x) \in E_k^{\lfloor \frac{k}{2} \rfloor}$. So the algorithm return $ans = k'$ when $k = k'$.

Now if $k > k'$, the same theorem implies that there isn’t any vertices $(u, v), (v, x)$ who satisfy the above conditions. So the command $ans = k$ will not be executed.

Then the algorithm return $ans = k'$.
Finding the longest isometric cycle in a graph

LIC Algorithm

Theorem

LIC algorithm computes the length of the longest isometric cycle of a graph G.

Proof

- If G is a tree, it has no cycle and the algorithm return 0.
- If G has a cycle, it must have an isometric cycle of length at least 3 and at most n.
- If k' is the length of the longest isometric cycle in G. By the main theorem there exist vertices $(u, v) \in V(G_k)$ and $(v, x) \in M(v, u)$ such that $d_{G_k}((u, v), (v, x)) = \lfloor \frac{k}{2} \rfloor$, thus $((u, v), (v, x)) \in E_k^{\lfloor \frac{k}{2} \rfloor}$. So the algorithm return $ans = k'$ when $k = k'$.

Now if $k > k'$, the same theorem implies that there isn’t any vertices $(u, v), (v, x)$ who satisfy the above conditions. So the command $ans = k$ will not be executed.

Then the algorithm return $ans = k'$.

Finding the longest isometric cycle in a graph
Finding the longest isometric cycle in a graph

Complexity analysis

Folklor algorithm for computing graph powers

To compute G^x we write x to base 2 and let d_{i+1} the i-th digit in this string counting from right to left.

Now we find G^{2^k} for $2^k \leq x$ and compute the matrix product $\prod_{i=0}^{\lfloor \log(x) \rfloor} A_i$ where

$$A_i = \begin{cases} G^{2^i} & \text{if } d_i = 1 \\ id & \text{else} \end{cases}$$

If n^α is the time needed to multiply tow n by n matrices. Then the time complexity of folklore algorithm is $|V(G)|^\alpha \times \log(x)$.
Folklor algorithm for computing graph powers

To compute G^x we write x to base 2 and let d_{i+1} the i-th digit in this string counting from right to left.

Now we find G^{2^k} for $2^k \leq x$ and compute the matrix product $\prod_{i=0}^{\lfloor \log(x) \rfloor} A_i$ where

$$A_i = \begin{cases} G^{2^i} & \text{if } d_i = 1 \\ \text{id} & \text{else} \end{cases}.$$

If n^α is the time needed to multiply two n by n matrices. Then the time complexity of folklore algorithm is $|V(G)|^\alpha \times \log(x)$.

Finding the longest isometric cycle in a graph
The distance matrix of G and finding out whether it's acyclic are computed in $O(n^3)$ time.

For a given k, the set V_k is computed in $O(n^2)$.

We observe that E_k is computed in $O(|V_k|^2)$.

By the folklore algorithm, computing $G^\lfloor \frac{k}{2} \rfloor_k$ from G_k takes $O(|V(G)|^\alpha \times \log(\lfloor \frac{k}{2} \rfloor))$ times.

The last loop iterates over all triples $(u, v, x) \in V$, so it's calculated in $O(n^3)$.
Finding the longest isometric cycle in a graph

Complexity analysis

Complexity analysis of LIC algorithm steps

- The distance matrix of G and finding out whether it's acyclic are computed in $O(n^3)$ time.
- For a given k, the set V_k is computed in $O(n^2)$.
- We observe that E_k is computed in $O(|V_k|^2)$.
- By the folklore algorithm, computing $G^\lfloor \frac{k}{2} \rfloor_k$ from G_k takes $O(|V(G)|^\alpha \times \log(\lfloor \frac{k}{2} \rfloor))$ times.
- The last loop iterates over all triples $(u, v, x) \in V$, so it's calculated in $O(n^3)$.
The distance matrix of G and finding out whether it's acyclic are computed in $O(n^3)$ time.

For a given k, the set V_k is computed in $O(n^2)$.

We observe that E_k is computed in $O(|V_k|^2)$.

By the folklore algorithm, computing $G_k^{\lfloor \frac{k}{2} \rfloor}$ from G_k takes $O(|V(G)|^\alpha \times \log(\lfloor \frac{k}{2} \rfloor))$ times.

The last loop iterates over all triples $(u, v, x) \in V$, so it's calculated in $O(n^3)$.
The distance matrix of G and finding out whether it's acyclic are computed in $O(n^3)$ time.

For a given k, the set V_k is computed in $O(n^2)$.

We observe that E_k is computed in $O(|V_k|^2)$.

By the folklore algorithm, computing $G_k^{\left\lfloor \frac{k}{2} \right\rfloor}$ from G_k takes $O(|V(G)|^\alpha \times \log(\left\lfloor \frac{k}{2} \right\rfloor))$ times.

The last loop iterates over all triples $(u, v, x) \in V$, so it's calculated in $O(n^3)$.
The distance matrix of G and finding out whether it's acyclic are computed in $O(n^3)$ time.

For a given k, the set V_k is computed in $O(n^2)$.

We observe that E_k is computed in $O(|V_k|^2)$.

By the folklore algorithm, computing $G_k^{\lfloor \frac{k}{2} \rfloor}$ from G_k takes $O(|V(G)|^\alpha \times \log(\lfloor \frac{k}{2} \rfloor))$ times.

The last loop iterates over all triples $(u, v, x) \in V$, so it's calculated in $O(n^3)$.
The distance matrix of G and finding out whether it's acyclic are computed in $O(n^3)$ time.

For a given k, the set V_k is computed in $O(n^2)$.

We observe that E_k is computed in $O(|V_k|^2)$.

By the folklore algorithm, computing $G_k^{\lfloor \frac{k}{2} \rfloor}$ from G_k takes $O(|V(G)|^\alpha \times \log(\lfloor \frac{k}{2} \rfloor))$ times.

The last loop iterates over all triples $(u, v, x) \in V$, so it's calculated in $O(n^3)$.

Finding the longest isometric cycle in a graph

Complexity analysis

Remark

\[\sum_{k=3}^{n} |V_k| \leq 2n^2 \]

Proof

For given \(k_1 \) and \(k_2 \) with \(\lfloor \frac{k_1}{2} \rfloor \neq \lfloor \frac{k_2}{2} \rfloor \), then \(V_{k_1} \) and \(V_{k_2} \) are pairwise disjoint subsets of \(V^2 \).
If \(\lfloor \frac{k_1}{2} \rfloor = \lfloor \frac{k_2}{2} \rfloor \), then \(V_{k_1} = V_{k_2} \) by \(G_k \) definition.
We sum over all even and odd \(k \)s we obtain

\[
\sum_{k=3}^{n} |V_k| = \sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} |V_{2k+1}| + \sum_{k=2}^{\lfloor \frac{n}{2} \rfloor} |V_{2k}|
\leq |V|^2 + |V|^2 = 2n^2
\]
Theorem

If $O(n^\alpha)$ is the time needed to multiply two n by n matrices and $\alpha \geq 2$, then LIC algorithm terminates in $O(n^\alpha \log(n))$ steps.

Proof

Let T be the total number of steps performed by the algorithm. From the discussion above,

$$
T = O(n^3) + \sum_{k=3}^{n} \left[O(n^2) + O(|V_k|^2) + O(|V_k|^\alpha \log\left\lfloor \frac{k}{2} \right\rfloor) + O(n^3) \right]
$$

Rearranging our terms and summing the terms independent on k, we obtain

$$
T = O(n^4) + \sum_{k=3}^{n} \left[O(|V_k|^\alpha \log\left\lfloor \frac{k}{2} \right\rfloor) \right]
$$

As $\log\left\lfloor \frac{k}{2} \right\rfloor = O(\log(n))$, thus $T = O(n^4) + O(\log(n)) \sum_{k=3}^{n} O(|V_k|^\alpha)$

Also we have n^α is a convex function so we can put the summation inside the O, moreover $\sum_{k=3}^{n} |V_k|^\alpha \leq \left(\sum_{k=3}^{n} |V_k| \right)^\alpha$.

Finding the longest isometric cycle in a graph

Complexity analysis

Theorem

If $O(n^\alpha)$ is the time needed to multiply two n by n matrices and $\alpha \geq 2$, then LIC algorithm terminates in $O(n^\alpha \log(n))$ steps.

Proof

Let T be the total number of steps performed by the algorithm. From the discussion above,

$$T = O(n^3) + \sum_{k=3}^{n} \left[O(n^2) + O(|V_k|^2) + O(|V_k|^\alpha \log \left\lfloor \frac{k}{2} \right\rfloor) + O(n^3) \right]$$

Rearranging our terms and summing the terms independent on k, we obtain

$$T = O(n^4) + \sum_{k=3}^{n} \left[O(|V_k|^\alpha \log \left\lfloor \frac{k}{2} \right\rfloor) \right]$$

As $\log \left\lfloor \frac{k}{2} \right\rfloor = O(\log(n))$, thus $T = O(n^4) + O(\log(n)) \sum_{k=3}^{n} O(|V_k|^\alpha)$

Also we have n^α is a convex function so we can put the summation inside the O, moreover $\sum_{k=3}^{n} |V_k|^\alpha \leq \left(\sum_{k=3}^{n} |V_k| \right)^\alpha$.
Finding the longest isometric cycle in a graph

Complexity analysis

Proof

This yields $T = O(n^4) + O(\log(n))O \left[(\sum_{k=3}^{n} |V_k|)^\alpha \right]$. The remark implies the following simplification: $T = O(n^4) + O(\log(n)(2n^2)^\alpha)$. Finally, we have $2\alpha \geq 4$, thus $T = O(n^{2\alpha} \log(n))$.

Theorem [1]

Two n by n matrices can be multiplied in $O(n^{2.376})$ time.

Corollary

LIC algorithm runs in $O(n^{4.752} \log(n))$ time.
Proof

This yields \(T = O(n^4) + O(\log(n))O \left[\left(\sum_{k=3}^{n} |V_k| \right)^\alpha \right] \).

The remark implies the following simplification: \(T = O(n^4) + O(\log(n)(2n^2)^\alpha) \).

Finally, we have \(2\alpha \geq 4 \), thus \(T = O(n^{2\alpha} \log(n)) \).

Theorem [1]

Two \(n \) by \(n \) matrices can be multiplied in \(O(n^{2,376}) \) time.

Corollary

LIC algorithm runs in \(O(n^{4,752} \log(n)) \) time.
Proving

This yields \(T = O(n^4) + O(\log(n))O \left[\left(\sum_{k=3}^{n} |V_k| \right)^\alpha \right] \).

The remark implies the following simplification: \(T = O(n^4) + O(\log(n)(2n^2)^\alpha) \).

Finally, we have \(2\alpha \geq 4 \), thus \(T = O(n^{2\alpha} \log(n)) \).

Theorem [1]

Two \(n \) by \(n \) matrices can be multiplied in \(O(n^{2.376}) \) time.

Corollary

LIC algorithm runs in \(O(n^{4.752} \log(n)) \) time.
References

Thank you for your attention