A bit of nondeterminism makes pushdown automata expressive and concise

joint work with Shibashis Guha, Ismaël Jecker, Martin Zimmermann

Karoliina Lehtinen
6.1.2022

CNRS, Aix-Marseille Univ, LIS
Determinism vs Nondeterminism
Determinism vs nondeterminism for pushdown automata

<table>
<thead>
<tr>
<th>DPDA</th>
<th>PDA</th>
</tr>
</thead>
</table>

- **Expressivity:** $\text{D-CFL} \subset \text{GFG-CFL} \subset \text{CFL}$
- **Solving Games:** ExpTime undecidable
- **Universality:** ExpTime undecidable
- **Succinctness:** (at least) Exponential, non-recursive, already on finite words!
Determinism vs nondeterminism for pushdown automata

<table>
<thead>
<tr>
<th></th>
<th>DPDA</th>
<th>PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressivity</td>
<td>D-CFL</td>
<td>CFL</td>
</tr>
</tbody>
</table>

- **Expressivity**:
 - **D-PDA (Deterministic PDA)**:
 - Expresses **D-CFL**
 - **PDA (Pushdown Automaton)**:
 - Expresses **CFL**

- **Solving Games**:
 - **ExpTime**
 - **Undecidable**

- **Universality**:
 - **ExpTime**
 - **Undecidable**

- **Succinctness**:
 - **(at least) Exponential**
 - **Non-recursive**

 Already on finite words!
Determinism vs nondeterminism for pushdown automata

<table>
<thead>
<tr>
<th>Feature</th>
<th>DPDA</th>
<th>PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressivity</td>
<td>D-CFL</td>
<td>CFL</td>
</tr>
<tr>
<td>Solving Games</td>
<td>(\text{ExpTime})</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

\(\text{D-CFL} \subset\ GFG-CFL \subset\ \text{CFL}\)
Determinism vs nondeterminism for pushdown automata

<table>
<thead>
<tr>
<th></th>
<th>DPDA</th>
<th>PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressivity</td>
<td>D-CFL</td>
<td>CFL</td>
</tr>
<tr>
<td>Solving Games</td>
<td>ExpTime</td>
<td>undecidable</td>
</tr>
<tr>
<td>Universality</td>
<td>ExpTime</td>
<td>undecidable</td>
</tr>
</tbody>
</table>
Determinism vs nondeterminism for pushdown automata

<table>
<thead>
<tr>
<th></th>
<th>DPDA</th>
<th>PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressivity</td>
<td>D-CFL</td>
<td>CFL</td>
</tr>
<tr>
<td>Solving Games</td>
<td>(\text{ExpTime})</td>
<td>undecidable</td>
</tr>
<tr>
<td>Universality</td>
<td>(\text{ExpTime})</td>
<td>undecidable</td>
</tr>
<tr>
<td>Succinctness</td>
<td></td>
<td>Non-recursive</td>
</tr>
</tbody>
</table>
Determinism vs nondeterminism for pushdown automata

<table>
<thead>
<tr>
<th></th>
<th>DPDA</th>
<th>HD-PDA</th>
<th>PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressivity</td>
<td>D-CFL</td>
<td></td>
<td>CFL</td>
</tr>
<tr>
<td>Solving Games</td>
<td>ExpTime</td>
<td></td>
<td>undecidable</td>
</tr>
<tr>
<td>Universality</td>
<td>ExpTime</td>
<td></td>
<td>undecidable</td>
</tr>
<tr>
<td>Succinctness</td>
<td></td>
<td></td>
<td>Non-recursive</td>
</tr>
</tbody>
</table>

- D-CFL: Deterministic Context-Free Languages
- GFG-CFL: Generalized Greibach Form Context-Free Languages
- CFL: Context-Free Languages
- ExpTime: Exponential Time
- undecidable
<table>
<thead>
<tr>
<th></th>
<th>DPDA</th>
<th>HD-PDA</th>
<th>PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressivity</td>
<td>D-CFL</td>
<td>\subset</td>
<td>GFG-CFL</td>
</tr>
<tr>
<td>Solving Games</td>
<td>ExpTime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universality</td>
<td>ExpTime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Succinctness</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Determinism vs Nondeterminism for Pushdown Automata

<table>
<thead>
<tr>
<th></th>
<th>DPDA</th>
<th>HD-PDA</th>
<th>PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressivity</td>
<td>D-CFL \subsetneq GFG-CFL \subsetneq CFL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solving Games</td>
<td>ExpTime</td>
<td>ExpTime</td>
<td>undecidable</td>
</tr>
<tr>
<td>Universality</td>
<td>ExpTime</td>
<td>ExpTime</td>
<td>undecidable</td>
</tr>
<tr>
<td>Succinctness</td>
<td></td>
<td></td>
<td>Non-recursive</td>
</tr>
</tbody>
</table>

- **DPDA**
- **HD-PDA**
- **PDA**
Determinism vs nondeterminism for pushdown automata

<table>
<thead>
<tr>
<th></th>
<th>DPDA</th>
<th>HD-PDA</th>
<th>PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressivity</td>
<td>D-CFL</td>
<td>(\subsetneq) GFG-CFL</td>
<td>(\subsetneq) CFL</td>
</tr>
<tr>
<td>Solving Games</td>
<td>(\text{ExpTime})</td>
<td>(\text{ExpTime})</td>
<td>undecidable</td>
</tr>
<tr>
<td>Universality</td>
<td>(\text{ExpTime})</td>
<td>(\text{ExpTime})</td>
<td>undecidable</td>
</tr>
<tr>
<td>Succinctness</td>
<td>(at least) Exponential</td>
<td>Non-recursive</td>
<td></td>
</tr>
</tbody>
</table>
Determinism vs nondeterminism for pushdown automata

<table>
<thead>
<tr>
<th></th>
<th>DPDA</th>
<th>HD-PDA</th>
<th>PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressivity</td>
<td>D-CFL</td>
<td>\subset</td>
<td>GFG-CFL \subset</td>
</tr>
<tr>
<td>Solving Games</td>
<td>ExpTime</td>
<td>ExpTime</td>
<td>ExpTime</td>
</tr>
<tr>
<td>Universality</td>
<td>ExpTime</td>
<td>ExpTime</td>
<td>ExpTime</td>
</tr>
<tr>
<td>Succinctness</td>
<td>(at least) Exponential</td>
<td></td>
<td>Non-recursive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Already on finite words!</td>
</tr>
</tbody>
</table>
A run is accepting if the last letter is a.
An automaton A is history deterministic if there is a resolver:

$$ r: \Delta^* \times \Sigma \to \Delta $$

that induces an accepting run for all words in $L(A)$.

Equivalently, Eve wins the following game on A:

- Adam chooses letters $a_i \in \Sigma$
- Eve responds with transitions τ_i over a_i
- Eve wins if $a_0 a_1 ... \in L(A)$ or $\tau_0 \tau_2 ...$ is accepting.
An automaton A is *history deterministic* if there is a resolver:

$$r : \Delta^* \times \Sigma \rightarrow \Delta$$

that induces an accepting run for all words in $L(A)$.
An automaton A is *history deterministic* if there is a *resolver*:

$$r : \Delta^* \times \Sigma \rightarrow \Delta$$

that induces an accepting run for all words in $L(A)$

Equivalently, Eve wins the following game on A:

- Adam chooses letters $a_i \in \Sigma$
- Eve responds with transitions τ_i over a_i
- Eve wins if $a_0a_1... \notin L(A)$ or $\tau_0\tau_2...$ is accepting.
History-determinism
History-deterministic Pushdown Automaton

\[\{a^i\a^ib^k\mid k \leq \max(i, j)\} \notin \text{DCFL} \]
\{ a^i a^i b^k \mid k \leq \max(i, j) \} \notin \text{DCFL}
What are History-Deterministic automata good for?

Environment

System
What are History-Deterministic automata good for?

The System wins if \((a_0)^n(b_0)^n(a_1)^n(b_1)^n \ldots\) satisfies the specification.
What are History-Deterministic automata good for?

The System wins if the scheduling is fair.
What are History Deterministic automata good for?

Solving games with winning condition $L(\mathcal{A})$:

- Undecidable for \mathcal{A} a PDA;
What are History Deterministic automata good for?

Solving games with winning condition $L(A)$:

- Undecidable for A a PDA;
- **ExpTime** for A a DPDA;
What are History Deterministic automata good for?

Solving games with winning condition $L(A)$:

- Undecidable for A a PDA;
- ExpTime for A a DPDA;
- ExpTime for A a HD-PDA.
Solving games with HD winning conditions

Play is $w = (a_0 b_0) (a_1 b_1) ...$ and run ρ on w in A. Eve wins if ρ is accepting.

If A is HD-PDA, then Eve wins whenever she wins the game on $L(A)$. This game has a DPA winning condition, i.e. solvable in ExpTime.
Solving games with HD winning conditions

Play is \(w = (a_0 b_0)(a_1 b_1) \ldots \) and run \(\rho \) on \(w \) in \(A \).

Eve wins if \(\rho \) is accepting.

If \(A \) is HD-PDA, then Eve wins whenever she wins the game on \(L(A) \).

This game has a DPA winning condition, i.e. solvable in ExpTime.
Solving games with HD winning conditions

\[\text{Play is } w = (a_0, b_0)(a_1, b_1) \ldots \text{ and run } \rho \text{ on } w \text{ in } A. \]

Eve wins if \(\rho \) is accepting.

If \(A \) is HD-PDA, then Eve wins whenever she wins the game on \(L(A) \).

This game has a DPA winning condition, i.e. solvable in ExpTime.
Solving games with HD winning conditions

Play is \(w = (a_0, b_0)(a_1, b_1) \ldots \) and run \(\rho \) on \(w \) in \(A \).

Eve wins if \(\rho \) is accepting.

If \(A \) is HD-PDA, then Eve wins whenever she wins the game on \(L(A) \).

This game has a DPA winning condition, i.e. solvable in ExpTime.
Solving games with HD winning conditions

Play is $w = (a_0, b_0)(a_1, b_1)\ldots$ and run ρ on w in A.

Eve wins if ρ is accepting.

If A is HD-PDA, then Eve wins whenever she wins the game on $L(A)$.

This game has a DPA winning condition, i.e. solvable in ExpTime.
Solving games with HD winning conditions

Play is $w = \begin{pmatrix} a_0 \cr b_0 \end{pmatrix} \begin{pmatrix} a_1 \cr b_1 \end{pmatrix} \ldots$ and run ρ on w in A.

Eve wins if ρ is accepting.

If A is HD-PDA, then Eve wins whenever she wins the game on $L(A)$.

This game has a DPA winning condition, i.e. solvable in ExpTime.
Solving games with HD winning conditions

Play is \(w = (a_0)_{b_0} (a_1)_{b_1} \ldots \) and run \(\rho \) on \(w \) in \(A \).

Eve wins if \(\rho \) is accepting.
Solving games with HD winning conditions

Play is \(w = \left(a_0 b_0 \right) \left(a_1 b_1 \right) \ldots \) and run \(\rho \) on \(w \) in \(\mathcal{A} \).

Eve wins if \(\rho \) is accepting.

If \(\mathcal{A} \) is HD-PDA, then Eve wins whenever she wins the game on \(L(\mathcal{A}) \).
Solving games with HD winning conditions

Play is \(w = (a_0 b_0) (a_1 b_1) \ldots \) and run \(\rho \) on \(w \) in \(A \).

Eve wins if \(\rho \) is accepting.

If \(A \) is HD-PDA, then Eve wins whenever she wins the game on \(L(A) \).

This game has a \textit{DPA} winning condition, i.e. solvable in \textit{ExpTime}.
What are history deterministic automata good for?

Solving games with context-free winning conditions:

- Undecidable for pushdown automata
What are history deterministic automata good for?

Solving games with context-free winning conditions:

- Undecidable for pushdown automata
- \text{ExpTime}-complete for history deterministic automata
What are history deterministic automata good for?

Solving games with context-free winning conditions:

- Undecidable for pushdown automata
- \textsc{ExpTime}-complete for history deterministic automata
- By reduction to solving games with deterministic winning condition.
What are history determinism automata good for?

- Solving games without determinism
What are history determinism automata good for?

- Solving games without determinism
- Succinctness
Succinctness of HD-PDA (idea)

\[c_3 = 000$001$010$011$100$101$110$111 \]
c_3 = 000\$001\$010\$011\$100\$101\$110\$111

L_n = \{ w \in \{0, 1, \$, \#\} \mid w \neq c_n\# \}
Succinctness of HD-PDA (idea)

\[c_3 = 000$001$010$011$100$101$110$111 \]

\[L_n = \{ w \in \{0, 1, $, \#\} \mid w \neq c_n\# \} \]

- DPDA is of size \(O(2^n) \).
Succinctness of HD-PDA (idea)

\[c_3 = 000$001$010$011$100$101$110$111 \]

\[L_n = \{ w \in \{0, 1, $, \#\} \mid w \neq c_n\# \} \]

- DPDA is of size \(O(2^n)\).
- HD-PDA of size \(O(n)\).
Determinism vs nondeterminism for PDA

<table>
<thead>
<tr>
<th></th>
<th>DPDA</th>
<th>HD-PDA</th>
<th>PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressivity</td>
<td>D-CFL</td>
<td>\subseteq</td>
<td>CFL</td>
</tr>
<tr>
<td>Solving Games</td>
<td>ExpTime</td>
<td>ExpTime</td>
<td>undecidable</td>
</tr>
<tr>
<td>Universality</td>
<td>ExpTime</td>
<td>ExpTime</td>
<td>undecidable</td>
</tr>
<tr>
<td>Succinctness</td>
<td>(at least) Exponential</td>
<td>Non-recursive</td>
<td></td>
</tr>
</tbody>
</table>
The bad news
Recognising HD-automata

- Undecidable whether an automaton is HD-PDA
- Undecidable whether a *language* is recognised by a HD-PDA.
What about closure properties?

No closure under:

- union
- intersection
- complementation
- set difference
- homomorphism
History-deterministic Visibly Pushdown Automata

- Recognisable in ExpTime
- Closure properties
- Exponentially more succinct than DVPA.
History-deterministic Visibly Pushdown Automata

- Recognisable in ExpTime
History-deterministic Visibly Pushdown Automata

- Recognisable in \textit{ExpTime}
- Closure properties
History-deterministic Visibly Pushdown Automata

- Recognisable in \(\text{ExpTime} \)
- Closure properties
- Exponentially more succinct than DVPA.
Conclusion

History-deterministic pushdown automata

- More expressive than DPDA
- More succinct than DPDA
- Decidable games and universality
- Poor closure properties and decidability
- HD-VPA to mitigate

Open:

- HD-PDA vs PDA succinctness gap
- Resolver complexity

[Good-for-games ω-pushdown automata. LICS 2020. L., Zimmermann]

lehtinen@lis-lab.fr