$\begin{array}{c} {\rm Motivations}\\ {\rm Algebraic} \ \lambda\mbox{-calculus}\\ {\rm On} \ {\rm soundness}\\ {\rm On} \ {\rm normalization}\\ {\rm Other} \ {\rm approaches} \end{array}$

Algebraic λ -calculus On linear combinations of terms

Lionel Vaux

Institut de Mathématiques de Luminy, Marseille vaux@iml.univ-mrs.fr

Rewriting Techniques and Applications, 2007, Paris

Lionel Vaux (IML)

$\begin{array}{c} {\sf Motivations}\\ {\sf Algebraic} \ \lambda\mbox{-calculus}\\ {\sf On soundness}\\ {\sf On normalization}\\ {\sf Other approaches} \end{array}$

Background

There are models of linear logic where

- types are interpreted by vector spaces (more generally *modules over rigs*);
- proofs are interpreted by linear maps;
- linear maps from !A to B are analytic maps from A to B.

Thomas Ehrhard.

On Köthe sequence spaces and linear logic. *MSCS*, 12 :579–623, 2001.

Thomas Ehrhard.

Finiteness spaces.

MSCS, 15(4) :615-646, 2005.

Differential calculus

- Usual translation of simple types : $A \Rightarrow B = !A \multimap B$.
- Ehrhard-Regnier's differential λ -calculus : terms as analytic functions between vector spaces.
 - Differentiation.
 - But also sums and linear combinations.
- Exists in pure and typed flavours.

Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. *TCS*, 309 :1–41, 2003.

Differential calculus

- Usual translation of simple types : $A \Rightarrow B = !A \multimap B$.
- Ehrhard-Regnier's differential λ -calculus : terms as analytic functions between vector spaces.
 - Differentiation.
 - But also sums and linear combinations.
- Exists in pure and typed flavours.
- Reduction may behave strangely. . .

Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. *TCS*, 309 :1–41, 2003.

Differential calculus

- Usual translation of simple types : $A \Rightarrow B = !A \multimap B$.
- Ehrhard-Regnier's differential λ -calculus : terms as analytic functions between vector spaces.
 - Differentiation.
 - But also sums and linear combinations.
- Exists in pure and typed flavours.
- Reduction may behave strangely... only because of coefficients in linear combinations.

Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. *TCS*, 309 :1–41, 2003.

 $\begin{array}{c} {\sf Motivations}\\ {\sf Algebraic} \ \lambda\mbox{-calculus}\\ {\sf On soundness}\\ {\sf On normalization}\\ {\sf Other approaches} \end{array}$

Terms as functions between vector spaces

Basic ideas

- Extend the set of terms so that if forms a vector space.
- Mappings with values in a vector space form a vector space :

$$(a.f+b.g)[x] = a.f[x]+b.g[x]$$

In λ -ish words :

$$(a.s+b.t) u = a.(s) u + b.(t) u$$

 $\lambda x (a.s+b.t) = a.\lambda x s + b.\lambda x t$

Algebraic λ -terms Extending β -reduction

Definitions

Definition (Rig)

We call rig any tuple $(\mathsf{R},+,0,\times,1)$ where

 $\bullet~(\mathsf{R},+,0)$ and $(\mathsf{R},\times,1)$ are commutative monoids;

•
$$0 \times a = 0$$
 and $(a + b) \times c = (a \times c) + (b \times c)$.

Definition (Module)

A module over a rig R (or R-module) is a tuple $(V, +, \vec{0}, .)$ where

- $(V, +, \vec{0})$ is a commutative monoid;
- external product (.) is left and right additive : $0.v = a.\vec{0} = \vec{0}$, (a + b).v = a.v + b.v and a.(v + w) = a.v + a.w
- 1.v = v and $a.b.v = (a \times b).v$.

Algebraic λ -terms Extending β -reduction

Morphology

Definition (Raw terms)

Let R be a fixed rig.

The set Λ_{R} of raw terms (σ, τ, \dots) is given by :

$$\sigma, \tau ::= x \mid \lambda x \sigma \mid (\sigma) \tau \mid \vec{0} \mid a.\sigma \mid \sigma + \tau .$$

We will often write $\sum_{i=1}^{n} a_i . \sigma_i$ for

$$a_1.\sigma_1 + \cdots + a_n.\sigma_n + \vec{0}$$
.

Definition (Structural equality)

We write \sim for the transitive closure of $\alpha\text{-equivalence}$ and AC of +.

Lionel Vaux (IML)

Image: Image:

RTA'07 6 / 26

글 🕨 🖌 글

Algebraic λ -terms Extending β -reduction

Canonical forms

Definition

We define sets A_R of atomic terms (s,t,\dots) and C_R of of canonical terms $(S,\,T,\dots)$ by :

- any variable x is an atomic term;
- if $x \in \mathcal{V}$ and $s \in \mathsf{A}_\mathsf{R}$ then $\lambda x \, s \in \mathsf{A}_\mathsf{R}$;
- if $s \in \mathsf{A}_\mathsf{R}$ and $T \in \mathsf{C}_\mathsf{R}$ then $(s) \ T \in \mathsf{A}_\mathsf{R}$;
- if $a_1, \ldots, a_n \in \mathsf{R}^{\bullet}$ and $s_1, \ldots, s_n \in \mathsf{A}_{\mathsf{R}}$ are pairwise distinct ($\not\sim$) then $\sum_{i=1}^n a_i . s_i \in \mathsf{C}_{\mathsf{R}}$.

If $s \in \mathsf{A}_\mathsf{R}$ we write $ec{s} = 1.s + ec{0} \in \mathsf{C}_\mathsf{R}.$

3 🕨 🖌 🗄

Algebraic λ -terms Extending β -reduction

Canonization

Define can : $\Lambda_R \longrightarrow C_R$ inductively

- $\operatorname{can}(x) = ec{x}$;
- if $an(\sigma) = \sum_{i=1}^n a_i.s_i$ then $an(\lambda x \, \sigma) = \sum_{i=1}^n a_i.\lambda x \, s_i$;
- if $\operatorname{can}(\sigma) = \sum_{i=1}^{n} a_i \cdot s_i$ and $\operatorname{can}(\tau) = T$ then $\operatorname{can}((\sigma) \tau) = \sum_{i=1}^{n} a_i \cdot (s_i) T$;
- $can(\vec{0}) = \vec{0};$
- if $\operatorname{can}(\sigma) = \sum_{i=1}^n a_i.s_i$ and $\operatorname{can}(\tau) = \sum_{i=n+1}^{n+p} a_i.s_i$ then

$$agamma(\sigma+ au) = ext{cansum}\left(\sum_{i=1}^{n+p} a_i.s_i
ight)$$
 :

• if $can(\sigma) = \sum_{i=1}^{n} a_i . s_i$ then $can(a.\sigma) = cansum(\sum_{i=1}^{n} (a \times a_i) . s_i)$.

Algebraic λ -terms Extending β -reduction

Implementation of algebraic identities

Representation

We write $\sigma =_{\mathsf{R}} \tau$ iff $\operatorname{can}(\sigma) \sim \operatorname{can}(\tau)$. Then :

- $=_{\mathsf{R}}$ is an equivalence relation;
- $(\Lambda_{\mathsf{R}}/{=_{\mathsf{R}}},+,\vec{0},.)$ is an R-module;
- each $=_{R}$ -class has a unique canonical representative (up to \sim).

Algebraic terms

We now consider terms up to $=_{\mathsf{R}}$:

- we write Δ_R for the set of all $=_R$ -classes of atomic terms (which we call simple terms);
- $\Lambda_{\rm R}/{=}_{\rm R}$ is generated by $\Delta_{\rm R}$;

• we call algebraic terms the elements of R $\langle \Delta_{\text{R}} \rangle = (\Lambda_{\text{R}}/{=_{\text{R}}}).$

Algebraic λ -terms Extending β -reduction

Extending β -reduction

Idea

Define a reduction relation on R $\langle \Delta_{\text{R}} \rangle$ such that :

- if σ is simple then $(\lambda x \sigma) \tau \to \sigma [x := \tau]$;
- if σ is simple, $\sigma \to \sigma'$ and $a \neq 0$ then $a.\sigma + \tau \to a.\sigma' + \tau$.

Warning

It cannot be defined by induction on terms : if $a, b \in \mathbb{R}^{\bullet}$ with a + b = 0then $\vec{0} =_{\mathbb{R}} a.\sigma + b.\sigma$ may reduce.

∃ → (∃ →

Algebraic λ -terms Extending β -reduction

Extending β -reduction

Definition

We define \rightarrow on algebraic terms by the following statements :

Reduction of simple terms :

•
$$(\lambda x \ s) \ T \to s \ [x := T];$$

• if $s \to S'$ then

$$egin{array}{rcl} \lambda x \, s & o & \lambda x \, S' \ (s) \ T & o & (S') \ T \ a.s + \ T & o & a.S' + \ T ext{ as soon as } a
eq 0 \end{array}$$

Image: Image:

Extension to all terms : if $T \to T'$ then $(s) \ T \to (s) \ T'$.

Algebraic λ -terms Extending β -reduction

Examples

- Every ordinary β -reduction is a valid reduction of algebraic λ -calculus : if $s \to_{\Lambda} t$ then $s \to t$.
- If $\mathsf{R} = \mathbf{Z}$, and s o S' :

$$ec{\mathsf{0}} =_{\mathsf{R}} s - s o S' - s$$
 .

• More generally, if $\exists a \in \mathsf{R} \text{ s.t. } a+1=0$:

$$S' =_{\mathsf{R}} (s + as) + S'
ightarrow s + (aS' + S') =_{\mathsf{R}} s$$
 .

• If $\mathsf{R} = \mathbf{Q}$ and $s \to S'$:

$$s =_{\mathsf{R}} \frac{1}{2}s + \frac{1}{2}s \rightarrow \frac{1}{2}s + \frac{1}{2}S' \rightarrow \frac{1}{4}s + \frac{3}{4}S' \rightarrow \cdots$$

Algebraic λ -terms Extending β -reduction

Confluence

Tait–Martin-Löf

Introduce parallel reduction \rightrightarrows such that

$$ightarrow \subset
ightarrow \subset
ightarrow^*$$
 .

Denote by $S \downarrow$ the term obtained by firing all redexes in S.

Lemma

For all terms S and S' such that $S \rightrightarrows S'$, we have $S' \rightrightarrows S \downarrow$.

This holds only thanks to the way we reduce linear combinations.

Theorem

Reduction \rightarrow enjoys Church-Rosser.

 $\begin{array}{c} {\sf Motivations}\\ {\sf Algebraic} \ \lambda\mbox{-calculus}\\ {\sf On \ soundness}\\ {\sf On \ normalization}\\ {\sf Other \ approaches} \end{array}$

The positive case Collapse

Positive rig

Definition

A rig R is said to be positive if a + b = 0 implies a = b = 0.

Examples :

- The set N of natural integers.
- \bullet Sets \mathbf{Q}^+ and \mathbf{R}^+ of non negative numbers.
- The set $R[\xi_0, \xi_1, ...]$ of polynomials over indeterminates $\xi_0, \xi_1, ...,$ with coefficients taken in a positive rig R.

The positive case Collapse

Conservativity

Assume R is positive.

Lemma

If $s \in \Lambda$ and $s \to^* S'$ then there is $t \in \Lambda$ such that $S' \to^* t$ and $s \to^*_\Lambda t$.

Theorem

If
$$s, s' \in \Lambda$$
, then $s \leftrightarrow s'$ iff $s \leftrightarrow_{\Lambda} s'$.

Corollary

Reductional equality is sound.

Lione	Vaux	(IMI.)	
LIONC	vaux i	(""""")	

Image: Image:

Collapse

Indeterminate forms

Something is rotten in the state of Denmark.

• Let Y be a fixed point of ordinary λ -calculus. Write $\infty_{\sigma} = (Y) (\lambda x (x + \sigma))$:

$$\infty_{\sigma} \rightarrow \sigma + \infty_{\sigma}$$
 .

• Assume $-1 \in \mathbb{R}$:

 $0 =_{\mathsf{R}} \infty_{\sigma} - \infty_{\sigma} !$

Lionel Vaux (IML)

⊒⊳ ∢∃⊳

 $\begin{array}{c} {\sf Motivations}\\ {\sf Algebraic} \ \lambda\mbox{-calculus}\\ {\sf On \ soundness}\\ {\sf On \ normalization}\\ {\sf Other \ approaches} \end{array}$

The positive case Collapse

Indeterminate forms

Something is rotten in the state of Denmark.

• Let Y be a fixed point of ordinary λ -calculus. Write $\infty_{\sigma} = (Y) (\lambda x (x + \sigma))$:

$$\infty_{\sigma} \rightarrow \sigma + \infty_{\sigma}$$
 .

• Assume $-1 \in R$:

 $0 =_{\mathsf{R}} \infty_{\sigma} - \infty_{\sigma} !$

Theorem

Assume R is not positive and $a, b \in R^{\bullet}$ are such that a + b = 0. Then, for all $\sigma \in R \langle \Delta_R \rangle$, $\vec{0} \rightarrow^* a.\sigma$ and $a.\sigma \rightarrow^* \vec{0}$.

Lionel Vaux (IML)

《■▶ ■ つへの RTA'07 16 / 26

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Conditions for strong normalization A weak normalization scheme

Typing

$\Gamma, x: A \vdash x$	c:A	$\frac{\Gamma, \boldsymbol{x} : \boldsymbol{A} \vdash \boldsymbol{\sigma} : \boldsymbol{B}}{\Gamma \vdash \lambda \boldsymbol{x} \boldsymbol{\sigma} :}$	$A \Rightarrow B$
	$\frac{\Gamma \vdash \sigma : A \Rightarrow B}{\Gamma \vdash (\sigma) \tau}$		
$\Gamma \vdash \vec{0} : A$	$\frac{\Gamma \vdash \sigma : A}{\Gamma \vdash a.\sigma : A}$	$\frac{\Gamma \vdash \sigma : A}{\Gamma \vdash \sigma}$	

æ **RTA'07** 17 / 26

E > < E >

Image: A matched block of the second seco

Conditions for strong normalization A weak normalization scheme

Necessary conditions

Positivity

If

If R is not positive, every term reduces. Moreover, typability isn't compatible with $=_{R}$.

Finite splitting

$$f \mathsf{R} = \mathbf{Q}^+ \text{ and } s \to S':$$

$$s =_{\mathsf{R}} \frac{1}{2}s + \frac{1}{2}s \to \frac{1}{2}s + \frac{1}{2}s' \to \frac{1}{4}s + \frac{3}{4}s' \to \cdots$$

Hence, for all $a \in R$,

$$\{(a_1,\ldots,a_n)\in \left(\mathsf{R}^ullet
ight)^n\,;\,\,n\in \mathbf{N}\,\, ext{and}\,\,a=a_1+\cdots+a_n\}$$

must be finite.

Lionel Vaux (IML)

Conditions for strong normalization A weak normalization scheme

Sufficient conditions

Definition (Width)

Define $w : \mathsf{R} \longrightarrow \mathbf{N}$ by : $w(a) = \max \{ n \in \mathbf{N}; \exists (a_1, \ldots, a_n) \in (\mathsf{R}^{\bullet})^n; a = a_1 + \cdots + a_n \}.$

Theorem

If w is a morphism of rigs, then all typable terms are SN.

Example

 $\mathbf{N}[\xi_1,\xi_2,\dots].$

글 🕨 🖌 글

 $\begin{array}{c} {\sf Motivations}\\ {\sf Algebraic} \ \lambda\mbox{-calculus}\\ {\sf On \ soundness}\\ {\sf On \ normalization}\\ {\sf Other \ approaches} \end{array}$

Conditions for strong normalization A weak normalization scheme

Sketch of proof

Adapt your own favourite proof by reducibily, using the following lemma.

Lemma

Write N_R for the set of simple SN terms. Then the set of all SN terms is $R \langle N_R \rangle$.

Proof: Let $S \in \mathsf{R} \langle \mathsf{N}_{\mathsf{R}} \rangle$. One proves that S is SN by induction on

$$\sum_{s\in\mathsf{A}_{\mathsf{R}}}w\left(S_{s}
ight)\left|s
ight|$$

 $\begin{array}{c} {\sf Motivations}\\ {\sf Algebraic} \ \lambda\mbox{-calculus}\\ {\sf On} \ {\sf soundness}\\ {\sf On} \ {\sf normalization}\\ {\sf Other} \ {\sf approaches} \end{array}$

Conditions for strong normalization A weak normalization scheme

Weak normalization scheme

Assume R is positive and $\sigma \in \mathsf{R} \langle \Delta_{\mathsf{R}} \rangle$ is typable.

Algorithm

- Replace scalars occurring in can(σ) with formal pairwise distinct indeterminates (ξ₁, ξ₂,...).
- The object τ thus obtained lies in R' $\langle \Delta_{\mathsf{R}'} \rangle$, where R' = N[ξ_1, ξ_2, \dots].
- τ is also typable and SN applies in R' $\langle \Delta_{\mathsf{R}'} \rangle$.
- Replace indeterminates by their values in the NF of τ : this is the normal form of σ .

Failure is expected !

Assume :

- $\bullet~(+,\vec{0},.)$ are part of the syntax and make the set of terms a R-module;
- reduction is contextual;
- ordinary β -reductions are valid reductions.

Then, as soon as $-1 \in \mathsf{R}$:

$$(\lambda x x) \infty_y + (-1) . \infty_y \to^* \begin{cases} \vec{0} \\ y \end{cases}$$

Hence the calculus is either unsound or non confluent.

Failure is expected !

Assume :

- $\bullet~(+,\vec{0},.)$ are part of the syntax and make the set of terms a R-module;
- reduction is contextual;
- ordinary β -reductions are valid reductions.

Then, as soon as $-1 \in \mathsf{R}$:

$$(\lambda x \, x) \, \infty_y + (-1) . \infty_y \to^* \left\{ egin{array}{c} ec 0 \\ y \end{array}
ight.$$

Hence the calculus is either unsound or non confluent. Something has to fail.

 $\begin{array}{c} {\rm Motivations}\\ {\rm Algebraic} \ \lambda\mbox{-calculus}\\ {\rm On} \ {\rm soundness}\\ {\rm On} \ {\rm normalization}\\ {\rm Other} \ {\rm approaches} \end{array}$

Drop confluence

Motto : Reduce only in canonical forms.

Details

- Consider only atomic and canonical terms.
- Define reduction in the natural way (canonize after each elementary reduction step).

Expected outcome

- Typable terms are SN.
- Conservative over ordinary λ -calculus.
- Can be somehow simulated in our setting as a *reduction strategy* (cf. weak normalization).
- Not confluent (whatever R).

 $\begin{array}{c} {\sf Motivations}\\ {\sf Algebraic} \ \lambda\mbox{-calculus}\\ {\sf On} \ {\sf soundness}\\ {\sf On} \ {\sf normalization}\\ {\sf Other} \ {\sf approaches} \end{array}$

Motto : Avoid fixed points by typing.

Details

Consider Church-style terms up to *typed* algebraic equality : types are R-modules.

Expected outcome

- Should be SN, hence sound.
- Confluence?

 $\begin{array}{c} {\rm Motivations}\\ {\rm Algebraic} \ \lambda\mbox{-calculus}\\ {\rm On} \ {\rm soundness}\\ {\rm On} \ {\rm normalization}\\ {\rm Other} \ {\rm approaches} \end{array}$

Drop contextuality

Motto : Perform algebraic rewriting only on values.

Details

Adapt Arrighi-Dowek's work on *linear* algebraic λ -calculus.

- Work on raw terms (equality : \sim).
- Introduce algebraic equality as part of reduction, allowing algebraic rewriting steps only on closed normal terms.

Pablo Arrighi and Gilles Dowek.

Linear-algebraic lambda-calculus : higher-order, encodings and confluence.

Manuscript, 2006.

 $\begin{array}{c} {\sf Motivations}\\ {\sf Algebraic}\ \lambda\mbox{-calculus}\\ {\sf On}\ {\sf soundness}\\ {\sf On}\ {\sf normalization}\\ {\sf Other}\ {\sf approaches} \end{array}$

Drop contextuality

Expected outcome

- Conservative over ordinary λ -calculus.
- Confluent and sound.
- The set of terms is not an R-module.
- Reduction is not contextual.
- Normalization properties?

 $\begin{array}{c} {\rm Motivations}\\ {\rm Algebraic} \ \lambda\mbox{-calculus}\\ {\rm On} \ {\rm soundness}\\ {\rm On} \ {\rm normalization}\\ {\rm Other} \ {\rm approaches} \end{array}$

Drop soundness

Motto : β -reduction upto algebraic equality.

Details	
This was the topic of the talk.	

Outcome

- The set of terms is R-module w.r.t. syntactic sum and external product.
- Contextual and confluent reduction.
- Sometimes not conservative over ordinary λ -calculus, and even unsound.

THE END