Algebraic λ-calculus
On linear combinations of terms

Lionel Vaux
Institut de Mathématiques de Luminy, Marseille
vaux@iml.univ-mrs.fr

Rewriting Techniques and Applications, 2007, Paris
Background

There are models of linear logic where

- types are interpreted by vector spaces (more generally modules over rigs);
- proofs are interpreted by linear maps;
- linear maps from $!A$ to B are analytic maps from A to B.

Thomas Ehrhard.

On Köthe sequence spaces and linear logic.

Thomas Ehrhard.

Finiteness spaces.
Usual translation of simple types: $A \Rightarrow B = !A \rightarrow B$.

Ehrhard-Regnier’s differential λ-calculus: terms as analytic functions between vector spaces.
- Differentiation.
- But also sums and linear combinations.

Exists in pure and typed flavours.

Thomas Ehrhard and Laurent Regnier.
The differential lambda-calculus.
Differential calculus

- Usual translation of simple types: $A \Rightarrow B = !A \to B$.
- Ehrhard-Regnier’s differential λ-calculus: terms as analytic functions between vector spaces.
 - Differentiation.
 - But also sums and linear combinations.
- Exists in pure and typed flavours.
- Reduction may behave strangely...
Differential calculus

- Usual translation of simple types: $A \Rightarrow B = !A \rightarrow B$.
- Ehrhard-Regnier’s differential λ-calculus: terms as analytic functions between vector spaces.
 - Differentiation.
 - But also sums and linear combinations.
- Exists in pure and typed flavours.
- Reduction may behave strangely... only because of coefficients in linear combinations.

Thomas Ehrhard and Laurent Regnier.
The differential lambda-calculus.
Terms as functions between vector spaces

Basic ideas

- Extend the set of terms so that if forms a vector space.
- Mappings with values in a vector space form a vector space:

\[(a.f + b.g)[x] = a.f[x] + b.g[x]\]

In \(\lambda\)-ish words:

\[\lambda x (a.s + b.t) u = a.(s) u + b.(t) u\]
\[\lambda x (a.s + b.t) = a.\lambda x s + b.\lambda x t\]
Definitions

Definition (Rig)

We call *rig* any tuple \((R, +, 0, \times, 1)\) where

- \((R, +, 0)\) and \((R, \times, 1)\) are commutative monoids;
- \(0 \times a = 0\) and \((a + b) \times c = (a \times c) + (b \times c)\).

Definition (Module)

A module over a rig \(R\) (or \(R\)-module) is a tuple \((V, +, \vec{0}, .)\) where

- \((V, +, \vec{0})\) is a commutative monoid;
- external product \((.)\) is left and right additive: \(0.v = a.\vec{0} = \vec{0}\), \((a + b).v = a.v + b.v\) and \(a.(v + w) = a.v + a.w\);
- \(1.v = v\) and \(a.b.v = (a \times b).v\).
Motivations
Algebraic λ-calculus
On soundness
On normalization
Other approaches

Algebraic λ-terms
Extending β-reduction

Morphology

Definition (Raw terms)

Let R be a fixed rig.
The set Λ_R of raw terms (σ, τ, \ldots) is given by:

$$\sigma, \tau ::= x \mid \lambda x \sigma \mid (\sigma) \tau \mid \vec{0} \mid a.\sigma \mid \sigma + \tau .$$

We will often write $\sum_{i=1}^{n} a_i.\sigma_i$ for

$$a_1.\sigma_1 + \cdots + a_n.\sigma_n + \vec{0} .$$

Definition (Structural equality)

We write \sim for the transitive closure of α-equivalence and AC of $+$.
Definition

We define sets A_R of atomic terms (s, t, \ldots) and C_R of of canonical terms (S, T, \ldots) by:

- any variable x is an atomic term;
- if $x \in V$ and $s \in A_R$ then $\lambda x \ s \in A_R$;
- if $s \in A_R$ and $T \in C_R$ then $(s) \ T \in A_R$;
- if $a_1, \ldots, a_n \in R^*$ and $s_1, \ldots, s_n \in A_R$ are pairwise distinct ($\not\sim$) then $\sum_{i=1}^{n} a_i \cdot s_i \in C_R$.

If $s \in A_R$ we write $\vec{s} = 1.s + \vec{0} \in C_R$.
Canonization

Define $\text{can} : \Lambda_R \rightarrow C_R$ inductively

- $\text{can}(x) = \vec{x}$;
- if $\text{can}(\sigma) = \sum_{i=1}^{n} a_i.s_i$ then $\text{can}(\lambda x \sigma) = \sum_{i=1}^{n} a_i.\lambda x s_i$;
- if $\text{can}(\sigma) = \sum_{i=1}^{n} a_i.s_i$ and $\text{can}(\tau) = T$
 then $\text{can}((\sigma)\tau) = \sum_{i=1}^{n} a_i.(s_i) T$;
- $\text{can}(\vec{0}) = \vec{0}$;
- if $\text{can}(\sigma) = \sum_{i=1}^{n} a_i.s_i$ and $\text{can}(\tau) = \sum_{i=n+1}^{n+p} a_i.s_i$ then

$$\text{can}(\sigma + \tau) = \text{cansum} \left(\sum_{i=1}^{n+p} a_i.s_i \right) ;$$

- if $\text{can}(\sigma) = \sum_{i=1}^{n} a_i.s_i$ then $\text{can}(a.\sigma) = \text{cansum} (\sum_{i=1}^{n} (a \times a_i).s_i)$.
Implementation of algebraic identities

Representation

We write $\sigma \equiv_R \tau$ iff $\text{can}(\sigma) \sim \text{can}(\tau)$. Then:

- \equiv_R is an equivalence relation;
- $(\Lambda_R/\equiv_R, +, 0, \cdot)$ is an R-module;
- each \equiv_R-class has a unique canonical representative (up to \sim).

Algebraic terms

We now consider terms up to \equiv_R:

- we write Δ_R for the set of all \equiv_R-classes of atomic terms (which we call simple terms);
- Λ_R/\equiv_R is generated by Δ_R;
- we call algebraic terms the elements of $R\langle \Delta_R \rangle = (\Lambda_R/\equiv_R)$.

Lionel Vaux (IML)
Idea

Define a reduction relation on $R\langle \Delta_R \rangle$ such that:

- if σ is simple then $(\lambda x \sigma) \tau \rightarrow \sigma[x := \tau]$;
- if σ is simple, $\sigma \rightarrow \sigma'$ and $a \neq 0$ then $a.\sigma + \tau \rightarrow a.\sigma' + \tau$.

Warning

It cannot be defined by induction on terms: if $a, b \in R^\bullet$ with $a + b = 0$ then $\vec{0} =_R a.\sigma + b.\sigma$ may reduce.
Extending β-reduction

Definition

We define \rightarrow on algebraic terms by the following statements:

Reduction of simple terms:

- $$(\lambda x \ s) \ T \rightarrow s \ [x := T];$$
- if $s \rightarrow S'$ then

 $$\lambda x \ s \rightarrow \lambda x \ S'$$
 $$s \ T \rightarrow (S') \ T$$
 $$a \cdot s + T \rightarrow a \cdot S' + T \text{ as soon as } a \neq 0$$

Extension to all terms: if $T \rightarrow T'$ then $(s) \ T \rightarrow (s) \ T'$.
Examples

- Every ordinary β-reduction is a valid reduction of algebraic λ-calculus: if $s \rightarrow_{\Lambda} t$ then $s \rightarrow t$.
- If $R = \mathbb{Z}$, and $s \rightarrow S'$:
 \[
 \bar{0} =_{R} s - s \rightarrow S' - s.
 \]
- More generally, if $\exists a \in R \text{ s.t. } a + 1 = 0$:
 \[
 S' =_{R} (s + as) + S' \rightarrow s + (aS' + S') =_{R} s.
 \]
- If $R = \mathbb{Q}$ and $s \rightarrow S'$:
 \[
 s =_{R} \frac{1}{2} s + \frac{1}{2} s \rightarrow \frac{1}{2} s + \frac{1}{2} S' \rightarrow \frac{1}{4} s + \frac{3}{4} S' \rightarrow \cdots
 \]
Confluence

Tait–Martin-Löf

Introduce parallel reduction \Rightarrow such that

$$\rightarrow \subset \Rightarrow \subset \rightarrow^*.$$

Denote by $S \downarrow$ the term obtained by firing all redexes in S.

Lemma

For all terms S and S' such that $S \Rightarrow S'$, we have $S' \Rightarrow S \downarrow$.

This holds only thanks to the way we reduce linear combinations.

Theorem

Reduction \rightarrow enjoys Church-Rosser.
Positive rig

Definition

A rig \(R \) is said to be positive if \(a + b = 0 \) implies \(a = b = 0 \).

Examples:

- The set \(\mathbb{N} \) of natural integers.
- Sets \(\mathbb{Q}^+ \) and \(\mathbb{R}^+ \) of non-negative numbers.
- The set \(R[\xi_0, \xi_1, \ldots] \) of polynomials over indeterminates \(\xi_0, \xi_1, \ldots \), with coefficients taken in a positive rig \(R \).
Conservativity

Assume R is positive.

Lemma

If \(s \in \Lambda \) and \(s \rightarrow^* S' \) then there is \(t \in \Lambda \) such that \(S' \rightarrow^* t \) and \(s \rightarrow^* \Lambda t \).

Theorem

If \(s, s' \in \Lambda \), then \(s \leftrightarrow s' \) iff \(s \leftrightarrow\Lambda s' \).

Corollary

Reductional equality is sound.
Indeterminate forms

Something is rotten in the state of Denmark.

- Let Y be a fixed point of ordinary λ-calculus. Write $\infty_\sigma = (Y)(\lambda x (x + \sigma))$:

$$\infty_\sigma \rightarrow \sigma + \infty_\sigma.$$

- Assume $-1 \in \mathbb{R}$:

$$0 =_{\mathbb{R}} \infty_\sigma - \infty_\sigma!$$
Indeterminate forms

Something is rotten in the state of Denmark.

- Let Y be a fixed point of ordinary λ-calculus. Write $\infty_\sigma = (Y)(\lambda x \ (x + \sigma))$:
 \[
 \infty_\sigma \rightarrow \sigma + \infty_\sigma.
 \]

- Assume $-1 \in R$:
 \[
 0 =_R \infty_\sigma - \infty_\sigma!\]

Theorem

Assume R is not positive and $a, b \in R^\bullet$ are such that $a + b = 0$. Then, for all $\sigma \in R\langle \Delta_R \rangle$, $\vec{0} \rightarrow^* a.\sigma$ and $a.\sigma \rightarrow^* \vec{0}$.

Lionel Vaux (IML)
Motivations
Algebraic λ-calculus
On soundness
On normalization
Other approaches

Conditions for strong normalization
A weak normalization scheme

Typing

\[\Gamma, x : A \vdash x : A \]
\[\Gamma \vdash \lambda x \sigma : A \Rightarrow B \]

\[\Gamma \vdash \sigma : A \Rightarrow B \]
\[\Gamma \vdash \tau : A \]
\[\Gamma \vdash (\sigma) \tau : B \]

\[\Gamma \vdash 0 : A \]
\[\Gamma \vdash \sigma : A \]
\[\Gamma \vdash a.\sigma : A \]

\[\Gamma \vdash \sigma : A \]
\[\Gamma \vdash \tau : A \]
\[\Gamma \vdash \sigma + \tau : A \]
Necessary conditions

Positivity

If R is not positive, every term reduces. Moreover, typability isn’t compatible with \equiv_R.

Finite splitting

If $R = \mathbb{Q}^+$ and $s \rightarrow S'$:

$$s =_R \frac{1}{2} s + \frac{1}{2} s \rightarrow \frac{1}{2} s + \frac{1}{2} s' \rightarrow \frac{1}{4} s + \frac{3}{4} s' \rightarrow \ldots$$

Hence, for all $a \in R$,

$$\{(a_1, \ldots, a_n) \in (R^\bullet)^n ; \ n \in \mathbb{N} \text{ and } a = a_1 + \cdots + a_n\}$$

must be finite.
Sufficient conditions

Definition (Width)
Define $w : \mathbb{R} \rightarrow \mathbb{N}$ by:

$$w(a) = \max \{ n \in \mathbb{N} ; \exists (a_1, \ldots, a_n) \in (\mathbb{R}^\cdot)^n ; a = a_1 + \cdots + a_n \}.$$

Theorem
If w is a morphism of rigs, then all typable terms are SN.

Example
$\mathbb{N}[\xi_1, \xi_2, \ldots]$.
Sketch of proof

Adapt your own favourite proof by reducibly, using the following lemma.

Lemma

Write N_R for the set of simple SN terms. Then the set of all SN terms is $R\langle N_R \rangle$.

Proof: Let $S \in R\langle N_R \rangle$. One proves that S is SN by induction on

$$\sum_{s \in A_R} w(S_s) |s| .$$
Assume R is positive and $\sigma \in R\langle \Delta_R \rangle$ is typable.

Algorithm

- Replace scalars occurring in $\text{can}(\sigma)$ with formal pairwise distinct indeterminates (ξ_1, ξ_2, \ldots).
- The object τ thus obtained lies in $R'\langle \Delta_{R'} \rangle$, where $R' = \mathbb{N}[\xi_1, \xi_2, \ldots]$.
- τ is also typable and SN applies in $R'\langle \Delta_{R'} \rangle$.
- Replace indeterminates by their values in the NF of τ: this is the normal form of σ.
Assume:
- $(+, \vec{0}, .)$ are part of the syntax and make the set of terms a R-module;
- reduction is contextual;
- ordinary β-reductions are valid reductions.

Then, as soon as $-1 \in R$:

$$(\lambda x \ x) \infty y + (-1) \infty y \rightarrow^* \begin{cases} \vec{0} \\ y \end{cases}$$

Hence the calculus is either unsound or non confluent.
Failure is expected!

Assume:
- $(+, \vec{0}, .)$ are part of the syntax and make the set of terms a R-module;
- reduction is contextual;
- ordinary β-reductions are valid reductions.

Then, as soon as $-1 \in R$:

$$(\lambda x x) \infty y + (-1) \infty y \rightarrow^* \{ \vec{0} \} y$$

Hence the calculus is either unsound or non confluent.

Something has to fail.
Motivations
- Algebraic λ-calculus
- On soundness
- On normalization
- Other approaches

Drop confluence

Motto: Reduce only in canonical forms.

Details
- Consider only atomic and canonical terms.
- Define reduction in the natural way (canonize after each elementary reduction step).

Expected outcome
- Typable terms are SN.
- Conservative over ordinary λ-calculus.
- Can be somehow simulated in our setting as a *reduction strategy* (cf. weak normalization).
- Not confluent (whatever R).
Motto: Avoid fixed points by typing.

Details
Consider Church-style terms up to typed algebraic equality: types are R-modules.

Expected outcome
- Should be SN, hence sound.
- Confluence?
Drop contextuality

Motto: Perform algebraic rewriting only on values.

Details

Adapt Arrighi-Dowek’s work on linear algebraic \(\lambda \)-calculus.

- Work on raw terms (equality: \(\sim \)).
- Introduce algebraic equality as part of reduction, allowing algebraic rewriting steps only on closed normal terms.

Pablo Arrighi and Gilles Dowek.
Linear-algebraic lambda-calculus: higher-order, encodings and confluence.
Manuscript, 2006.
Expected outcome

- Conservative over ordinary λ-calculus.
- Confluent and sound.
- The set of terms is not an R-module.
- Reduction is not contextual.
- Normalization properties?
Motto : β-reduction upto algebraic equality.

Details
This was the topic of the talk.

Outcome
- The set of terms is R-module w.r.t. syntactic sum and external product.
- Contextual and confluent reduction.
- Sometimes not conservative over ordinary λ-calculus, and even unsound.

THE END