The algebraic λ-calculus is a conservative extension

 of the ordinary λ-calculusAxel Kerinec (LIPN, Sorbonne Paris Nord, France)
Lionel Vaux Auclair (I2M, Aix Marseille, France)

HOR 2023, 4 July 2023, Roma

A long story short

Theorem

the algebraic λ-calculus is a conservative extension of the ordinary λ-calculus:

$$
\text { if } M, N \in \Lambda \text { and } M \simeq_{\mathbf{A}} N \text { then } M \simeq_{\beta} N
$$

A long story short

Theorem

the algebraic λ-calculus is a conservative extension of the ordinary λ-calculus:

$$
\text { if } M, N \in \Lambda \text { and } M \simeq_{\mathbf{A}} N \text { then } M \simeq_{\beta} N
$$

(Ehrhard-Regnier, TCS, 2003)

A long story short

Definition

We say \mathbf{A} is positive if: $a+b=0$ implies $a=b=0$.

Theorem

If \mathbf{A} is positive, then
the algebraic λ-calculus is a conservative extension of the ordinary λ-calculus:

$$
\text { if } M, N \in \Lambda \text { and } M \simeq_{\mathbf{A}} N \text { then } M \simeq_{\beta} N .
$$

(Ehrhard-Regnier, TCS, 2003) (V., 2007-2009)

A long story short

Definition

We say \mathbf{A} is positive if: $a+b=0$ implies $a=b=0$.

Theorem

If \mathbf{A} is positive, then
the algebraic λ-calculus is a conservative extension of the ordinary λ-calculus:

$$
\text { if } M, N \in \Lambda \text { and } M \simeq_{\mathbf{A}} N \text { then } M \simeq_{\beta} N .
$$

(Ehrhard-Regnies, TCS, 2003) (V.., 200-2009) (Kerinec-V., $2019 \rightsquigarrow$ this talk)

What is the algebraic λ-calculus about?

- λ-calculus with linear combinations of terms (β-reduction modulo vector space equations)
- A generic framework for studying various forms of non-determinism (plain/counting/probabilistic/quantum/...)
- A language for morphisms in cartesian closed categories of (non necessarily linear) maps between (particular) vector spaces

The algebraic λ-calculus (V., RTA 2007)

$$
\Lambda_{\mathbf{A}} \ni M, N, \ldots::=x|\lambda x . M| M N|M+N| \mathbf{0} \mid a \cdot M \quad(a \in \mathbf{A}, \text { some semiring })
$$

$$
\begin{array}{rlrl}
(\lambda x \cdot M) N \rightarrow_{\mathbf{A}} M[N / x] & \\
(M+N) P & =M P+N P & \lambda x \cdot(M+N) & =\lambda x \cdot M+\lambda x \cdot N \\
\mathbf{0} P & =\mathbf{0} & \lambda x \cdot 0 & =0 \\
(a . M) P & =a . M P & \lambda x \cdot(a \cdot M) & =a \cdot \lambda x \cdot M
\end{array}
$$

+ module equations + contextuality:

$$
M \rightarrow_{\mathbf{A}} M^{\prime} \quad \Longrightarrow \quad a \cdot M+N \rightarrow_{\mathbf{A}} a \cdot M^{\prime}+N \quad(a \neq 0)
$$

The algebraic λ-calculus (V., RTA 2007)

$$
\begin{array}{rlrl}
\Lambda_{\mathbf{A}} \ni M, N, \ldots::=x|\lambda x . M| M N|M+N| \mathbf{0} \mid a \cdot M & (a \in \mathbf{A}, \text { some semiring }) \\
& \begin{array}{rlrl}
& \\
(\lambda x . M) N \rightarrow_{\mathbf{A}} & M[N / x]
\end{array} \\
(M+N) P & =M P+N P & \lambda x \cdot(M+N) & =\lambda x \cdot M+\lambda x \cdot N \\
\mathbf{0} P & =\mathbf{0} & \lambda x \cdot 0 & =0 \\
(a . M) P & =a \cdot M P & \lambda x \cdot(a \cdot M) & =a \cdot \lambda x \cdot M
\end{array}
$$

+ module equations + contextuality:

$$
M \rightarrow_{\mathbf{A}} M^{\prime} \quad \Longrightarrow \quad a \cdot M+N \rightarrow_{\mathbf{A}} a \cdot M^{\prime}+N \quad(a \neq 0)
$$

Theorem (Ehrhard-Regnier, TCS, 2003)
This reduction is confluent.

What is the algebraic λ-calculus about?

- λ-calculus with linear combinations of terms (β-reduction modulo vector space equations)
- A generic framework for studying various forms of non-determinism (plain/counting/probabilistic/quantum/...)
- A language for morphisms in cartesian closed categories of (non necessarily linear) maps between (particular) vector spaces
- The differential λ-calculus (Ehrhard-Regnier, TCS, 2003) without differentiation

A museum of horrors

$$
\begin{aligned}
\infty_{M} & := \\
& \rightarrow_{\mathbf{A}}^{*} M+\infty_{M}(\lambda x .(M+x)) \\
& \rightarrow_{\mathbf{A}}^{*} n M+\infty_{M}
\end{aligned}
$$

$$
\begin{aligned}
M & =\frac{1}{2} M+\frac{1}{2} M \\
& \rightarrow_{\mathbf{A}} \quad \frac{1}{2} M+\frac{1}{2} M^{\prime}
\end{aligned}
$$

$$
\mathbf{0}=M-M \rightarrow_{\mathbf{A}} M^{\prime}-M
$$

$$
\mathbf{0}=\infty_{M}-\infty_{M} \simeq_{\mathbf{A}} M
$$

A museum of horrors

$$
\begin{aligned}
\infty_{M} & := \\
& \rightarrow_{\mathbf{A}}^{*} M+\infty_{M}(\lambda x .(M+x)) \\
& \rightarrow_{\mathbf{A}}^{*} n M+\infty_{M}
\end{aligned}
$$

$$
\begin{aligned}
M & =\frac{1}{2} M+\frac{1}{2} M \\
& \rightarrow_{\mathbf{A}} \quad \frac{1}{2} M+\frac{1}{2} M^{\prime}
\end{aligned}
$$

$$
\mathbf{0}=M-M \rightarrow_{\mathbf{A}} M^{\prime}-M
$$

$$
\mathbf{0}=\infty_{M}-\infty_{M} \simeq_{\mathbf{A}} M
$$

A museum of horrors

$$
\begin{array}{rll}
M & = & \frac{1}{2} M+\frac{1}{2} M \\
& \rightarrow_{\mathbf{A}} \frac{1}{2} M+\frac{1}{2} M^{\prime}
\end{array}
$$

$$
\mathbf{0}=M-M \rightarrow_{\mathbf{A}} M^{\prime}-M
$$

$$
\mathbf{0}=\infty_{M}-\infty_{M} \simeq_{\mathbf{A}} M
$$

A museum of horrors

breaks strong normalizability of typed terms

$$
M=\frac{1}{2} M+\frac{1}{2} M
$$

$$
\rightarrow_{\mathbf{A}} \quad \frac{1}{2} M+\frac{1}{2} M^{\prime}
$$

$$
\mathbf{0}=\infty_{M}-\infty_{M} \simeq_{\mathbf{A}} M
$$

A museum of horrors

$$
\begin{array}{rll}
\infty_{M} & := & \operatorname{Fix}(\lambda x .(M+x)) \\
& \rightarrow_{\mathbf{A}}^{*} M+\infty_{M} \\
& \rightarrow_{\mathbf{A}}^{*} n M+\infty_{M} \\
& m_{i}
\end{array}
$$

$$
\mathbf{0}=\infty_{M}-\infty_{M} \simeq_{\mathbf{A}} M
$$

Possible fixes

- Algebraic rewriting on closed normal forms (Arrighi-Dowek, RTA'08).
- Remove the identity $\mathbf{0}=0 . M$ (Valiron, DCM 2010).
- Typing, Church-style (we have models: Ehrhard, MSCS, 2005, Valiron, MSCS, 2013, etc.).
- V., RTA'07: consider positive coefficients only (then confluence implies consistency).

Conservativity in the positive case

Definition

We say \mathbf{A} is positive if: $a+b=0$ implies $a=b=0$.

Theorem

If \mathbf{A} is positive, then
the algebraic λ-calculus is a conservative extension of the ordinary λ-calculus:

$$
\text { if } M, N \in \Lambda \text { and } M \simeq_{\mathbf{A}} N \text { then } M \simeq_{\beta} N .
$$

(Ehrhard-Regnier, TCS, 2003) (V.. 200-2009) (Kerinec-V., $2019 \rightsquigarrow$ this talk)

A first conservativity proof (Ehrhard-Regnier, 2003)

Theorem (TeReSe, Exercise 1.3.21.(iii))
If an abstract rewrite system (A, \rightarrow) is a sub-ARS of $\left(A^{\prime}, \rightarrow^{\prime}\right)$ and \rightarrow^{\prime} is confluent then $\left(A^{\prime}, \simeq^{\prime}\right)$ is conservative over (A, \simeq).

Since $\rightarrow_{\mathbf{A}}$ extends \rightarrow_{β}, and $\rightarrow_{\mathbf{A}}$ is confluent, $\rightarrow_{\mathbf{A}}$ must be conservative.

A first conservativity non-proof (Ehrhard-Regnier, 2003)

Theorem (TeReSe, Exercise 1.3.21.(iii))

If an abstract rewrite system (A, \rightarrow) is a sub-ARS of $\left(A^{\prime}, \rightarrow^{\prime}\right)$ and \rightarrow^{\prime} is confluent then $\left(A^{\prime}, \simeq^{\prime}\right)$ is conservative over (A, \simeq).

Since $\rightarrow_{\mathbf{A}}$ extends \rightarrow_{β}, and $\rightarrow_{\mathbf{A}}$ is confluent, $\rightarrow_{\mathbf{A}}$ must be conservative. But that would work when $-1 \in \mathbf{A}$ too!

A first conservativity non-proof (Ehrhard-Regnier, 2003)

Theorem (TeReSe, Exercise 1.3.21.(iii))

If an abstract rewrite system (A, \rightarrow) is a sub-ARS of $\left(A^{\prime}, \rightarrow^{\prime}\right)$ and \rightarrow^{\prime} is confluent then $\left(A^{\prime}, \simeq^{\prime}\right)$ is conservative over (A, \simeq).

Since $\rightarrow_{\mathbf{A}}$ extends \rightarrow_{β}, and $\rightarrow_{\mathbf{A}}$ is confluent, $\rightarrow_{\mathbf{A}}$ must be conservative. But that would work when $-1 \in \mathbf{A}$ too!

Definition

(A, \rightarrow) is a sub-ARS of $\left(A^{\prime}, \rightarrow^{\prime}\right)$ if:

- $A \subseteq A^{\prime}$ and $\rightarrow \subseteq \rightarrow^{\prime}$,
- if $a \rightarrow^{\prime} a^{\prime}$ with $a \in A$ then $a \rightarrow a^{\prime}$.
$\rightarrow_{\mathbf{A}}$ does not extend \rightarrow_{β} in this sense!
Even with positive coefficients: $M \rightarrow_{\mathbf{A}} \frac{1}{2} M^{\prime}+\frac{1}{2} M$

Conservativity of iterated reduction is sufficient

Let $\mathrm{F}(S)$ denote the full parallel reduct of S (fire all redexes simultaneously).

Lemma

If $S \rightarrow_{\mathbf{A}}^{n} S^{\prime}$ then $S^{\prime} \rightarrow_{\mathbf{A}}^{*} \mathrm{~F}^{n}(S)$.
TODO
If $M, N \in \Lambda$ and $M \rightarrow{ }_{\mathbf{A}}^{*} N$ then $M \rightarrow{ }_{\beta}^{*} N$.

Theorem

If $M, N \in \Lambda$ and $M \simeq_{\mathbf{A}} N$ then $M \simeq_{\beta} N$.
Proof. - By confluence, there is P such that $M \rightarrow_{\mathbf{A}}^{*} P$ and $N \rightarrow_{\mathbf{A}}^{*} P$.

- By the Lemma, $P \rightarrow{ }_{\mathbf{A}}^{*} \mathrm{~F}^{*}(N)$ hence $M \rightarrow_{\mathbf{A}}^{*} \mathrm{~F}^{*}(N)$.
- We obtain $M \rightarrow{ }_{\beta}^{*} \mathrm{~F}^{*}(N)$ using TODO.

Another conservativity proof (V., RTA'07)

Idea

Extract $N \in \Lambda$ from S such that $M \rightarrow_{\mathbf{A}}^{*} S$: then $M \rightarrow_{\beta}^{*} N$.

$$
\overline{x \triangleleft x} \frac{M \triangleleft S}{\lambda x . M \triangleleft \lambda x . S} \quad \frac{M \triangleleft S \quad N \triangleleft T}{M N \triangleleft S T} \quad \frac{M \triangleleft S \quad(a \neq 0)}{M \triangleleft a . S+T}
$$

Lemma

Assume A is positive. If $S \rightarrow_{\mathbf{A}} S^{\prime}$ and $M^{\prime} \triangleleft S^{\prime}$ then there exists $M \triangleleft S$ with $M \rightarrow_{\beta} M^{\prime}$.

Proof. Since A is positive, M^{\prime} necessarily comes from subterms of S^{\prime}, obtained by reducing subterms of S.

Another conservativity non-proof (V., RTA'07)

Idea

Extract $N \in \Lambda$ from S such that $M \rightarrow_{\mathbf{A}}^{*} S$: then $M \rightarrow_{\beta}^{*} N$.

$$
\overline{x \triangleleft x} \frac{M \triangleleft S}{\lambda x . M \triangleleft \lambda x . S} \quad \frac{M \triangleleft S \quad N \triangleleft T}{M N \triangleleft S T} \quad \frac{M \triangleleft S \quad(a \neq 0)}{M \triangleleft a . S+T}
$$

Lemma

Assume A is positive. If $S \rightarrow_{\mathbf{A}} S^{\prime}$ and $M^{\prime} \triangleleft S^{\prime}$ then there exists $M \triangleleft S$ with $M \rightarrow_{\beta} M^{\prime}$.

Wrong!

$$
S=\Delta(M+N) \rightarrow_{\mathbf{A}}(M+N)(M+N) \triangleright M N
$$

but we only have $S \triangleright \Delta M$ and $S \triangleright \Delta N$

Another conservativity non-proof (V., RTA'07)

Idea

Extract $N \in \Lambda$ from S such that $M \rightarrow_{\mathbf{A}}^{*} S$: then $M \rightarrow_{\beta}^{*} N$.

$$
\overline{x \triangleleft x} \frac{M \triangleleft S}{\lambda x . M \triangleleft \lambda x . S} \quad \frac{M \triangleleft S \quad N \triangleleft T}{M N \triangleleft S T} \quad \frac{M \triangleleft S \quad(a \neq 0)}{M \triangleleft a . S+T}
$$

Lemma

Assume A is positive. If $S \rightarrow_{\mathbf{A}} S^{\prime}$ and $M^{\prime} \triangleleft S^{\prime}$ then there exists $M \triangleleft S$ with $M \rightarrow_{\beta} M^{\prime}$.

Wrong!

$$
S=\Delta(M+N) \rightarrow_{\mathbf{A}}(M+N)(M+N) \triangleright M N
$$

$$
\text { but we only have } S \triangleright \Delta M \text { and } S \triangleright \Delta N
$$

Note that there is no $P \in \Lambda$ s.t. $P \rightarrow_{\mathbf{A}}^{*} S=\Delta(M+N)$.

A mashup of β-reductions

Goal

Define $\vdash \subset \Lambda \times \Lambda_{\mathbf{A}}$ such that

$$
\Lambda \ni M \rightarrow_{\mathbf{A}}^{*} S \Rightarrow M \vdash S \text { and } M \vdash N \in \Lambda \Rightarrow M \rightarrow_{\beta}^{*} N
$$

Mashup

Paste together β-reduction sequences, then continue below constructors.

$$
\begin{gathered}
\frac{M \rightarrow_{\beta}^{*} x}{M \vdash x} \quad \frac{M \rightarrow_{\beta}^{*} \lambda x . N \quad N \vdash S}{M \vdash \lambda x . S} \quad \frac{M \rightarrow{ }_{\beta}^{*} N P \quad N \vdash S \quad P \vdash T}{M \vdash S T} \\
\frac{M \vdash \mathbf{M}}{M \vdash S} \frac{M \vdash T}{M \vdash S+T} \quad \frac{M \vdash S}{M \vdash a . S}
\end{gathered}
$$

Here it goes

Lemma
If $M \in \Lambda$ then $M \vdash M$.
Lemma
If $M \vdash N \in \Lambda$ then $M \rightarrow{ }_{\beta}^{*} N$.

Lemma

If $M \rightarrow_{\beta} M^{\prime} \vdash S$ then $M \vdash S$.
Proof. Easy inductions.

Here it goes

Lemma

If $M \in \Lambda$ then $M \vdash M$.
Lemma
If $M \vdash N \in \Lambda$ then $M \rightarrow{ }_{\beta}^{*} N$.
Lemma
If $M \rightarrow_{\beta} M^{\prime} \vdash S$ then $M \vdash S$.

Lemma

If $M \vdash S$ and $N \vdash T$ then $M[N / x] \vdash S[T / x]$.
Proof. Easy induction on the derivation of $M \vdash S$, using the previous Lemma in the variable case.

Here it goes

Lemma

If $M \in \Lambda$ then $M \vdash M$.
Lemma
If $M \vdash N \in \Lambda$ then $M \rightarrow{ }_{\beta}^{*} N$.
Lemma
If $M \rightarrow_{\beta} M^{\prime} \vdash S$ then $M \vdash S$.

Lemma

If $M \vdash S$ and $N \vdash T$ then $M[N / x] \vdash S[T / x]$.
Lemma
If $M \vdash S \rightarrow_{\mathbf{A}} S^{\prime}$ then $M \vdash S^{\prime}$.
Proof. Easy induction on S, using the previous Lemma in the redex case.

Here it goes

Lemma
If $M \in \Lambda$ then $M \vdash M$.
Lemma
If $M \vdash N \in \Lambda$ then $M \rightarrow{ }_{\beta}^{*} N$.

Lemma

If $M \rightarrow_{\beta} M^{\prime} \vdash S$ then $M \vdash S$.

Lemma

If $M \vdash S$ and $N \vdash T$ then $M[N / x] \vdash S[T / x]$.
Lemma
If $M \vdash S \rightarrow_{\mathbf{A}} S^{\prime}$ then $M \vdash S^{\prime}$.

Theorem

If $M, M^{\prime} \in \Lambda$ and $M \rightarrow_{\mathbf{A}}^{*} M^{\prime}$ then $M \rightarrow_{\beta}^{*} M^{\prime}$.
Proof. $M \vdash M$ and $M \rightarrow_{\mathbf{A}}^{*} M^{\prime}$ hence $M \vdash M^{\prime}$ and then $M \rightarrow_{\beta}^{*} M^{\prime}$.

Conclusions

- Of course, this is the well known /please help us find the reference/ technique.

Conclusions

- Of course, this is the well known /please help us find the reference/ technique.
- In fact we have:

$$
M \vdash S \triangleright N \in \Lambda \Rightarrow M \rightarrow_{\beta}^{*} N
$$

Conclusions

- Of course, this is the well known /please help us find the reference/ technique.
- In fact we have:

$$
M \vdash S \triangleright N \in \Lambda \Rightarrow M \rightarrow_{\beta}^{*} N
$$

- This can be applied elsewhere: e.g., for the conservativity of reduction of resource terms through the Taylor expansion of λ-terms (Rémy Cerda's talk at TLLA 2023).

