The algebraic λ -calculus is a conservative extension of the ordinary λ -calculus

Axel Kerinec (LIPN, Sorbonne Paris Nord, France) Lionel Vaux Auclair (I2M, Aix Marseille, France)

HOR 2023, 4 July 2023, Roma

Theorem

the algebraic λ -calculus is a conservative extension of the ordinary λ -calculus: if $M, N \in \Lambda$ and $M \simeq_{\mathbf{A}} N$ then $M \simeq_{\beta} N$.

Theorem

the algebraic λ -calculus is a conservative extension of the ordinary λ -calculus: if $M, N \in \Lambda$ and $M \simeq_{\mathbf{A}} N$ then $M \simeq_{\beta} N$.

(Ehrhard–Regnier, TCS, 2003)

Definition

We say A is positive if: a + b = 0 implies a = b = 0.

Theorem

If \mathbf{A} is positive, then

the algebraic λ -calculus is a conservative extension of the ordinary λ -calculus:

if $M, N \in \Lambda$ and $M \simeq_{\mathbf{A}} N$ then $M \simeq_{\beta} N$.

(Ehrhard-Regnier, TCS, 2003) (V., 2007–2009)

Definition

We say A is positive if: a + b = 0 implies a = b = 0.

Theorem

If **A** is positive, then the algebraic λ -calculus is a conservative extension of the ordinary λ -calculus:

if $M, N \in \Lambda$ and $M \simeq_{\mathbf{A}} N$ then $M \simeq_{\beta} N$.

(Ehrhard-Regnier, TCS, 2003) (V., 2007-2009) (Kerinec-V., 2019 \rightsquigarrow this talk)

What is the algebraic λ -calculus about?

- λ-calculus with linear combinations of terms (β-reduction modulo vector space equations)
- A generic framework for studying various forms of non-determinism (plain/counting/probabilistic/quantum/...)
- A language for morphisms in cartesian closed categories of (non necessarily linear) maps between (particular) vector spaces

The algebraic λ -calculus (V., RTA 2007)

$$\begin{split} \Lambda_{\mathbf{A}} \ni M, N, \dots &::= x \mid \lambda x.M \mid M N \mid M + N \mid \mathbf{0} \mid a.M \quad (a \in \mathbf{A}, \text{ some semiring}) \\ & (\lambda x.M) N \rightarrow_{\mathbf{A}} M[N/x] \\ & (M+N) P = M P + N P \qquad \lambda x.(M+N) = \lambda x.M + \lambda x.N \\ & \mathbf{0} P = \mathbf{0} \qquad \qquad \lambda x.0 = \mathbf{0} \\ & (a.M) P = a.M P \qquad \qquad \lambda x.(a.M) = a.\lambda x.M \end{split}$$

+ module equations + contextuality:

$$M \rightarrow_{\mathbf{A}} M' \implies a.M + N \rightarrow_{\mathbf{A}} a.M' + N \qquad (a \neq 0)$$

The algebraic λ -calculus (V., RTA 2007)

$$\begin{split} \Lambda_{\mathbf{A}} \ni M, N, \dots &::= x \mid \lambda x.M \mid M N \mid M + N \mid \mathbf{0} \mid a.M \quad (a \in \mathbf{A}, \text{ some semiring}) \\ & (\lambda x.M) N \rightarrow_{\mathbf{A}} M[N/x] \\ & (M+N) P = M P + N P \qquad \lambda x.(M+N) = \lambda x.M + \lambda x.N \\ & \mathbf{0} P = \mathbf{0} \qquad \qquad \lambda x.0 = \mathbf{0} \\ & (a.M) P = a.M P \qquad \qquad \lambda x.(a.M) = a.\lambda x.M \end{split}$$

+ module equations + contextuality:

$$M \rightarrow_{\mathbf{A}} M' \implies a.M + N \rightarrow_{\mathbf{A}} a.M' + N \qquad (a \neq 0)$$

Theorem (Ehrhard–Regnier, TCS, 2003)

This reduction is confluent.

What is the algebraic λ -calculus about?

- λ-calculus with linear combinations of terms (β-reduction modulo vector space equations)
- A generic framework for studying various forms of non-determinism (plain/counting/probabilistic/quantum/...)
- A language for morphisms in cartesian closed categories of (non necessarily linear) maps between (particular) vector spaces
- $\bullet\,$ The differential $\lambda\text{-}\mathrm{calculus}$ (Ehrhard–Regnier, TCS, 2003) without differentiation

$$\begin{aligned} & \infty_M & := & \mathsf{Fix}(\lambda x.(M+x)) \\ & \to^*_{\mathbf{A}} & M + \infty_M \\ & \to^*_{\mathbf{A}} & nM + \infty_M \end{aligned}$$

$$M = \frac{1}{2}M + \frac{1}{2}M$$
$$\rightarrow_{\mathbf{A}} \frac{1}{2}M + \frac{1}{2}M'$$

$$\mathbf{0} = M - M \to_{\mathbf{A}} M' - M$$

$$\mathbf{0} = \infty_M - \infty_M \simeq_\mathbf{A} M$$

6/14

$$\infty_{M} := \operatorname{Fix}(\lambda x.(M+x))$$

$$\rightarrow_{\mathbf{A}}^{*} M + \infty_{M}$$

$$\rightarrow_{\mathbf{A}}^{*} nM + \infty_{M}$$

$$\dots$$

$$M = \frac{1}{2}M + \frac{1}{2}M$$

$$\rightarrow_{\mathbf{A}} \frac{1}{2}M + \frac{1}{2}M'$$

$$\mathbf{0} = M - M \to_{\mathbf{A}} M' - M$$

$$\mathbf{0} = \infty_M - \infty_M \simeq_\mathbf{A} M$$

6/14

$$\infty_M := \operatorname{Fix}(\lambda x.(M+x))$$

$$\rightarrow^*_{\mathbf{A}} \quad M + \infty_M$$

$$\rightarrow^*_{\mathbf{A}} \quad nM + \infty_M$$

$$\cdots$$

breaks strong
normalizability
of typed terms
$$M = \frac{1}{2}M + \frac{1}{2}M$$
$$\rightarrow_{\mathbf{A}} \frac{1}{2}M + \frac{1}{2}M'$$

$$\mathbf{0} = M - M \to_{\mathbf{A}} M' - M$$

$$\mathbf{0} = \infty_M - \infty_M \simeq_\mathbf{A} M$$

$$\infty_M := \operatorname{Fix}(\lambda x.(M+x))$$

$$\rightarrow^*_{\mathbf{A}} \quad M + \infty_M$$

$$\rightarrow^*_{\mathbf{A}} \quad nM + \infty_M$$

$$\cdots$$

breaks strong
normalizability
of typed terms
$$M = \frac{1}{2}M + \frac{1}{2}M$$
$$\rightarrow_{\mathbf{A}} \frac{1}{2}M + \frac{1}{2}M'$$

$$\mathbf{0} = M - M \to_{\mathbf{A}} M' - M$$

$$\mathbf{0} = \infty_M - \infty_M \simeq_\mathbf{A} M$$

breaks strong $\infty_M := \operatorname{Fix}(\lambda x.(M+x))$ normalizability $\rightarrow^*_{\mathbf{A}} \quad M + \infty_M$ of typed terms $\rightarrow^*_{\mathbf{\Delta}} \quad nM + \infty_M$ · · · · · $M = \frac{1}{2}M + \frac{1}{2}M$ $\rightarrow_{\mathbf{A}} \quad \frac{1}{2}M + \frac{1}{2}M'$ $\mathbf{0} = M - M \rightarrow_{\mathbf{A}} M' - M$ no normal forms up to vector space equations, β -equality is unsound! $\mathbf{0} = \infty_M - \infty_M \simeq_\mathbf{A} M$ 6/14

- Algebraic rewriting on closed normal forms (Arrighi–Dowek, RTA'08).
- Remove the identity $\mathbf{0} = 0.M$ (Valiron, DCM 2010).
- Typing, Church-style (we have models: Ehrhard, MSCS, 2005, Valiron, MSCS, 2013, etc.).
- V., RTA'07: consider positive coefficients only (then confluence implies consistency).

Conservativity in the positive case

Definition

We say A is positive if: a + b = 0 implies a = b = 0.

Theorem

If **A** is positive, then the algebraic λ -calculus is a conservative extension of the ordinary λ -calculus:

if $M, N \in \Lambda$ and $M \simeq_{\mathbf{A}} N$ then $M \simeq_{\beta} N$.

(Ehrhard-Regnier, TCS, 2003) (V., 2007-2009) (Kerinec-V., 2019 \rightsquigarrow this talk)

A first conservativity proof (Ehrhard–Regnier, 2003)

Theorem (TeReSe, Exercise 1.3.21.(iii))

If an abstract rewrite system (A, \rightarrow) is a sub-ARS of (A', \rightarrow') and \rightarrow' is confluent then (A', \simeq') is conservative over (A, \simeq) .

Since $\rightarrow_{\mathbf{A}}$ extends \rightarrow_{β} , and $\rightarrow_{\mathbf{A}}$ is confluent, $\rightarrow_{\mathbf{A}}$ must be conservative.

A first conservativity non-proof (Ehrhard–Regnier, 2003)

Theorem (TeReSe, Exercise 1.3.21.(iii))

If an abstract rewrite system (A, \rightarrow) is a sub-ARS of (A', \rightarrow') and \rightarrow' is confluent then (A', \simeq') is conservative over (A, \simeq) .

Since $\rightarrow_{\mathbf{A}}$ extends \rightarrow_{β} , and $\rightarrow_{\mathbf{A}}$ is confluent, $\rightarrow_{\mathbf{A}}$ must be conservative. But that would work when $-1 \in \mathbf{A}$ too! A first conservativity non-proof (Ehrhard–Regnier, 2003)

Theorem (TeReSe, Exercise 1.3.21.(iii))

If an abstract rewrite system (A, \rightarrow) is a sub-ARS of (A', \rightarrow') and \rightarrow' is confluent then (A', \simeq') is conservative over (A, \simeq) .

Since $\rightarrow_{\mathbf{A}}$ extends \rightarrow_{β} , and $\rightarrow_{\mathbf{A}}$ is confluent, $\rightarrow_{\mathbf{A}}$ must be conservative. But that would work when $-1 \in \mathbf{A}$ too!

Definition

$$(A, \rightarrow)$$
 is a sub-ARS of (A', \rightarrow') if:

•
$$A \subseteq A' \text{ and } \to \subseteq \to'$$

• if
$$a \to a'$$
 with $a \in A$ then $a \to a'$.

$\rightarrow_{\mathbf{A}}$ does not extend \rightarrow_{β} in this sense!

Even with positive coefficients: $M \to_{\mathbf{A}} \frac{1}{2}M' + \frac{1}{2}M$

Conservativity of iterated reduction is sufficient

Let F(S) denote the full parallel reduct of S (fire all redexes simultaneously).

Lemma

If $S \to^n_{\mathbf{A}} S'$ then $S' \to^*_{\mathbf{A}} \mathsf{F}^n(S)$.

TODO

If $M, N \in \Lambda$ and $M \to^*_{\mathbf{A}} N$ then $M \to^*_{\beta} N$.

Theorem

If $M, N \in \Lambda$ and $M \simeq_{\mathbf{A}} N$ then $M \simeq_{\beta} N$.

Proof. • By confluence, there is P such that $M \to_{\mathbf{A}}^{*} P$ and $N \to_{\mathbf{A}}^{*} P$. • By the Lemma, $P \to_{\mathbf{A}}^{*} \mathsf{F}^{*}(N)$ hence $M \to_{\mathbf{A}}^{*} \mathsf{F}^{*}(N)$.

• We obtain $M \to_{\beta}^{*} \mathsf{F}^{*}(N)$ using TODO.

Another conservativity proof (V., RTA'07)

Idea

Extract $N \in \Lambda$ from S such that $M \to^*_{\mathbf{A}} S$: then $M \to^*_{\beta} N$.

	$M \triangleleft S$	$M \triangleleft S$	$N \triangleleft T$	$M \triangleleft S$	$(a \neq 0)$
$\overline{x \triangleleft x}$	$\overline{\lambda x.M \triangleleft \lambda x.S}$	$MN \triangleleft ST$		$M \triangleleft a.S + T$	

Lemma

Assume **A** is positive. If $S \to_{\mathbf{A}} S'$ and $M' \triangleleft S'$ then there exists $M \triangleleft S$ with $M \to_{\beta} M'$.

Proof. Since A is positive, M' necessarily comes from subterms of S', obtained by reducing subterms of S.

Another conservativity non-proof (V., RTA'07)

Idea

Extract $N \in \Lambda$ from S such that $M \to^*_{\mathbf{A}} S$: then $M \to^*_{\beta} N$.

Assume **A** is positive. If $S \to_{\mathbf{A}} S'$ and $M' \triangleleft S'$ then there exists $M \triangleleft S$ with $M \to_{\beta} M'$.

Wrong!

 $S = \Delta \left(M + N \right) \rightarrow_{\mathbf{A}} \left(M + N \right) \left(M + N \right) \triangleright M N$ but we only have $S \triangleright \Delta M$ and $S \triangleright \Delta N$

Another conservativity non-proof (V., RTA'07)

Idea

Extract $N \in \Lambda$ from S such that $M \to^*_{\mathbf{A}} S$: then $M \to^*_{\beta} N$.

Lemma

Assume **A** is positive. If $S \to_{\mathbf{A}} S'$ and $M' \triangleleft S'$ then there exists $M \triangleleft S$ with $M \to_{\beta} M'$.

Wrong!

 $S = \Delta \left(M + N \right) \to_{\mathbf{A}} \left(M + N \right) \left(M + N \right) \triangleright M N$

but we only have $S \triangleright \Delta M$ and $S \triangleright \Delta N$

Note that there is no $P \in \Lambda$ s.t. $P \rightarrow^*_{\mathbf{A}} S = \Delta(M + N)$.

A mashup of β -reductions

Goal

Define $\vdash \subset \Lambda \times \Lambda_{\mathbf{A}}$ such that

 $\Lambda \ni M \to_{\mathbf{A}}^* S \ \Rightarrow \ M \vdash S \quad \text{and} \quad M \vdash N \in \Lambda \ \Rightarrow \ M \to_{\beta}^* N$

Mashup

Paste together β -reduction sequences, then continue below constructors.

$$\frac{M \to_{\beta}^{*} x}{M \vdash x} \qquad \frac{M \to_{\beta}^{*} \lambda x. N \quad N \vdash S}{M \vdash \lambda x. S} \qquad \frac{M \to_{\beta}^{*} NP \quad N \vdash S \quad P \vdash T}{M \vdash ST}$$
$$\frac{M \vdash S \quad M \vdash T}{M \vdash S + T} \qquad \frac{M \vdash S}{M \vdash a. S}$$

Lemma

If $M \in \Lambda$ then $M \vdash M$.

Lemma

If $M \vdash N \in \Lambda$ then $M \rightarrow^*_{\beta} N$.

Lemma

If $M \to_{\beta} M' \vdash S$ then $M \vdash S$.

Proof. Easy inductions.

Lemma

If $M \in \Lambda$ then $M \vdash M$.

Lemma

If $M \vdash N \in \Lambda$ then $M \rightarrow^*_{\beta} N$.

Lemma

If $M \to_{\beta} M' \vdash S$ then $M \vdash S$.

Lemma

If $M \vdash S$ and $N \vdash T$ then $M[N/x] \vdash S[T/x]$.

Proof. Easy induction on the derivation of $M \vdash S$, using the previous Lemma in the variable case.

Lemma

If $M \in \Lambda$ then $M \vdash M$.

Lemma

```
If M \vdash N \in \Lambda then M \rightarrow^*_{\beta} N.
```

Lemma

```
If M \to_{\beta} M' \vdash S then M \vdash S.
```

Lemma

```
If M \vdash S and N \vdash T then M[N/x] \vdash S[T/x].
```

Lemma

If $M \vdash S \rightarrow_{\mathbf{A}} S'$ then $M \vdash S'$.

Proof. Easy induction on S, using the previous Lemma in the redex case.

Lemma

If $M \in \Lambda$ then $M \vdash M$.

Lemma

```
If M \vdash N \in \Lambda then M \rightarrow^*_{\beta} N.
```

Lemma

```
If M \to_{\beta} M' \vdash S then M \vdash S.
```

Lemma

```
If M \vdash S and N \vdash T then M[N/x] \vdash S[T/x].
```

Lemma

If $M \vdash S \rightarrow_{\mathbf{A}} S'$ then $M \vdash S'$.

Theorem

If $M, M' \in \Lambda$ and $M \to^*_{\mathbf{A}} M'$ then $M \to^*_{\beta} M'$.

Proof. $M \vdash M$ and $M \rightarrow^*_{\mathbf{A}} M'$ hence $M \vdash M'$ and then $M \rightarrow^*_{\beta} M'$.

Conclusions

• Of course, this is the well known /please help us find the reference/ technique.

Conclusions

- Of course, this is the well known */please help us find the reference/* technique.
- In fact we have:

 $M \vdash S \triangleright N \in \Lambda \ \Rightarrow \ M \rightarrow^*_\beta N$

Conclusions

- Of course, this is the well known */please help us find the reference/* technique.
- In fact we have:

$$M \vdash S \triangleright N \in \Lambda \implies M \to_{\beta}^* N$$

• This can be applied elsewhere: e.g., for the conservativity of reduction of resource terms through the Taylor expansion of λ -terms (Rémy Cerda's talk at TLLA 2023).