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A long story short

Definition
We say A is positive if: a+ b = 0 implies a = b = 0.

Theorem

If A is positive, then

the algebraic λ-calculus is a conservative extension of the ordinary λ-calculus:

if M,N ∈ Λ and M 'A N then M 'β N .

(Ehrhard–Regnier, TCS, 2003) (V., 2007–2009) (Kerinec–V., 2019  this talk)
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What is the algebraic λ-calculus about?

λ-calculus with linear combinations of terms
(β-reduction modulo vector space equations)

A generic framework for studying various forms of non-determinism
(plain/counting/probabilistic/quantum/. . . )

A language for morphisms in cartesian closed categories of
(non necessarily linear) maps between (particular) vector spaces

The differential λ-calculus (Ehrhard–Regnier, TCS, 2003) without
differentiation
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The algebraic λ-calculus (V., RTA 2007)

ΛA 3M,N, . . . ::= x | λx.M |M N |M +N | 0 | a.M (a ∈ A, some semiring)

(λx.M)N →A M [N/x]

(M +N)P = M P +N P λx.(M +N) = λx.M + λx.N

0P = 0 λx.0 = 0
(a.M)P = a.M P λx.(a.M) = a.λx.M

+ module equations + contextuality:

M →A M ′ =⇒ a.M +N →A a.M ′ +N (a 6= 0)

Theorem (Ehrhard–Regnier, TCS, 2003)
This reduction is confluent.
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A museum of horrors

∞M := Fix(λx.(M + x))
→∗A M +∞M

→∗A nM +∞M

. . .

M = 1
2M + 1

2M

→A
1
2M + 1

2M
′

breaks strong
normalizability
of typed terms

0 = M −M →A M ′ −M

no normal forms

0 =∞M −∞M 'A M

up to vector
space equations,

β-equality is unsound!
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Possible fixes

Algebraic rewriting on closed normal forms (Arrighi–Dowek, RTA’08).
Remove the identity 0 = 0.M (Valiron, DCM 2010).
Typing, Church-style
(we have models: Ehrhard, MSCS, 2005, Valiron, MSCS, 2013, etc.).
V., RTA’07: consider positive coefficients only
(then confluence implies consistency).
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Conservativity in the positive case

Definition
We say A is positive if: a+ b = 0 implies a = b = 0.

Theorem
If A is positive, then
the algebraic λ-calculus is a conservative extension of the ordinary λ-calculus:

if M,N ∈ Λ and M 'A N then M 'β N .

(Ehrhard–Regnier, TCS, 2003) (V., 2007–2009) (Kerinec–V., 2019  this talk)
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A first conservativity proof (Ehrhard–Regnier, 2003)

Theorem (TeReSe, Exercise 1.3.21.(iii))
If an abstract rewrite system (A,→) is a sub-ARS of (A′,→′) and →′ is
confluent then (A′,'′) is conservative over (A,').

Since →A extends →β , and →A is confluent, →A must be conservative.

But that would work when −1 ∈ A too!

Definition
(A,→) is a sub-ARS of (A′,→′) if:

A ⊆ A′ and → ⊆→′,
if a→′ a′ with a ∈ A then a→ a′.

→A does not extend →β in this sense!
Even with positive coefficients: M →A

1
2M

′ + 1
2M
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Conservativity of iterated reduction is sufficient

Let F(S) denote the full parallel reduct of S (fire all redexes simultaneously).

Lemma
If S →n

A S′ then S′ →∗A Fn(S).

TODO
If M,N ∈ Λ and M →∗A N then M →∗β N .

Theorem
If M,N ∈ Λ and M 'A N then M 'β N .

Proof. By confluence, there is P such that M →∗A P and N →∗A P .
By the Lemma, P →∗A F∗(N) hence M →∗A F∗(N).
We obtain M →∗β F∗(N) using TODO.
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Another conservativity proof (V., RTA’07)
Idea
Extract N ∈ Λ from S such that M →∗A S: then M →∗β N .

x / x

M / S

λx.M / λx.S

M / S N / T

M N / S T

M / S (a 6= 0)
M / a.S + T

Lemma
Assume A is positive. If S →A S′ and M ′ / S′ then there exists M /S with
M →β M

′.

Proof. Since A is positive, M ′ necessarily comes from subterms of S′,
obtained by reducing subterms of S.

Note that there is no P ∈ Λ s.t. P →∗A S = ∆ (M +N).
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A mashup of β-reductions

Goal
Define ` ⊂ Λ× ΛA such that

Λ 3M →∗A S ⇒ M ` S and M ` N ∈ Λ ⇒ M →∗β N

Mashup
Paste together β-reduction sequences, then continue below constructors.

M →∗β x

M ` x

M →∗β λx.N N ` S

M ` λx.S

M →∗β N P N ` S P ` T

M ` S T

M ` 0
M ` S M ` T
M ` S + T

M ` S
M ` a.S
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Here it goes
Lemma
If M ∈ Λ then M `M .

Lemma
If M ` N ∈ Λ then M →∗β N .

Lemma
If M →β M

′ ` S then M ` S.

Proof. Easy inductions.

Lemma
If M ` S and N ` T then M [N/x] ` S[T/x].

Lemma
If M ` S →A S′ then M ` S′.

Theorem
If M,M ′ ∈ Λ and M →∗A M ′ then M →∗β M ′.

Proof. M `M and M →∗A M ′ hence M `M ′ and then M →∗β M ′.

13/14



Here it goes
Lemma
If M ∈ Λ then M `M .

Lemma
If M ` N ∈ Λ then M →∗β N .

Lemma
If M →β M

′ ` S then M ` S.

Lemma
If M ` S and N ` T then M [N/x] ` S[T/x].

Proof. Easy induction on the derivation of M ` S, using the previous Lemma
in the variable case.

Lemma
If M ` S →A S′ then M ` S′.

Theorem
If M,M ′ ∈ Λ and M →∗A M ′ then M →∗β M ′.

Proof. M `M and M →∗A M ′ hence M `M ′ and then M →∗β M ′.

13/14



Here it goes
Lemma
If M ∈ Λ then M `M .

Lemma
If M ` N ∈ Λ then M →∗β N .

Lemma
If M →β M

′ ` S then M ` S.

Lemma
If M ` S and N ` T then M [N/x] ` S[T/x].

Lemma
If M ` S →A S′ then M ` S′.

Proof. Easy induction on S, using the previous Lemma in the redex case.

Theorem
If M,M ′ ∈ Λ and M →∗A M ′ then M →∗β M ′.

Proof. M `M and M →∗A M ′ hence M `M ′ and then M →∗β M ′.

13/14



Here it goes
Lemma
If M ∈ Λ then M `M .

Lemma
If M ` N ∈ Λ then M →∗β N .

Lemma
If M →β M

′ ` S then M ` S.

Lemma
If M ` S and N ` T then M [N/x] ` S[T/x].

Lemma
If M ` S →A S′ then M ` S′.

Theorem
If M,M ′ ∈ Λ and M →∗A M ′ then M →∗β M ′.

Proof. M `M and M →∗A M ′ hence M `M ′ and then M →∗β M ′.
13/14



Conclusions

Of course, this is the well known /please help us find the reference/
technique.

In fact we have:
M ` S . N ∈ Λ ⇒ M →∗β N

This can be applied elsewhere: e.g., for the conservativity of reduction of
resource terms through the Taylor expansion of λ-terms (Rémy Cerda’s
talk at TLLA 2023).
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