The algebraic λ -calculus, 12 years later: a conservativity proof at last

Lionel Vaux Auclair

Institut de Mathématiques de Marseille, Université d'Aix-Marseille, France

Journées Scalp 2019, Lyon, 2019-10-18

Non-determinism in the λ -calculus

 $M, N, \dots ::= x \mid \lambda x.M \mid MN \mid M+N$ $\lambda x.MN \rightarrow_{\beta} M [N/x]$

and

 $M + N \rightarrow_+ M$ (or N)

Non-determinism in the λ -calculus, contextually

 $M, N, \dots ::= x \mid \lambda x.M \mid M N \mid M + N$ $\lambda x.M N \rightarrow_{\beta} M [N/x]$

up to:

M + NP = MP + NP $\lambda x.(M + N) = \lambda x.M + \lambda x.N$

somehow implicitly call-by-name

$$M, N, \dots ::= x \mid \lambda x.M \mid M N \mid M + N \mid 0$$

 $\lambda x.M N \rightarrow_{\beta} M [N/x]$

up to:

$$M + N P = M P + N P \qquad \qquad \lambda x. (M + N) = \lambda x.M + \lambda x.N$$
$$0 P = 0 \qquad \qquad \lambda x.0 = 0$$

 $somehow\ implicitly\ call-by-name$

 $M, N, \dots ::= x \mid \lambda x.M \mid M N \mid M + N \mid 0 \mid a.M \quad (a \in \mathbf{A}, \text{ some semiring})$ $\lambda x.M N \to_{\beta} M [N/x]$

up to:

M + NP = MP + NP0P = 0a.MP = a.MP

$$\begin{split} \lambda x. \left(M + N \right) &= \lambda x. M + \lambda x. N \\ \lambda x. 0 &= 0 \\ \lambda x. \left(a. M \right) &= a. \lambda x. M \end{split}$$

 $somehow\ implicitly\ call-by-name$

 $M, N, \dots ::= x \mid \lambda x.M \mid M N \mid M + N \mid 0 \mid a.M \quad (a \in \mathbf{A}, \text{ some semiring})$ $\lambda x.M N \to_{\beta} M [N/x]$

up to:

$$\begin{aligned} M + N \, P &= M \, P + N \, P & \lambda x. \, (M + N) &= \lambda x. M + \lambda x. N \\ 0 \, P &= 0 & \lambda x. 0 &= 0 \\ a. M \, P &= a. M \, P & \lambda x. \, (a. M) &= a. \lambda x. M \end{aligned}$$

up to module equations:

M + N = N + M 0.M = 0 a.M + b.M = (a + b).M ...

 $M, N, \dots ::= x \mid \lambda x.M \mid MN \mid M+N \mid 0 \mid a.M \quad (a \in \mathbf{A}, \text{ some semiring})$ $\lambda x.MN \to_{\beta} M [N/x]$

up to:

$$\begin{aligned} M + N \, P &= M \, P + N \, P & \lambda x. \, (M + N) &= \lambda x. M + \lambda x. N \\ 0 \, P &= 0 & \lambda x. 0 &= 0 \\ a. M \, P &= a. M \, P & \lambda x. \, (a. M) &= a. \lambda x. M \end{aligned}$$

up to module equations:

M + N = N + M 0.M = 0 a.M + b.M = (a + b).M ...

A common framework for non-determinism, probabilistic distributions, quantum stuff, \ldots

Reflexivity

 $M=M+0.N\rightarrow_{\beta}M+0.N'=M \rightsquigarrow$ no normal form

Reflexivity

 $M=M+0.N\rightarrow_{\beta}M+0.N'=M$ \leadsto no normal form

Solutions:

• Arrighi–Dowek, RTA'08: orient module equations (except for AC), e.g.,

 $0.M \to 0$ $a.M + b.M \to (a+b).M$...

- Automatically conservative: reductions from λ -terms are β -reductions.
- Confluence in this case?
- $\bullet\,$ Ehrhard–Regnier, TCS, 2003: a two-layered syntax with base terms vs linear combinations.
 - Confluence is easy.
 - Conservativity in this case?

Reflexivity

 $M=M+0.N\rightarrow_{\beta}M+0.N'=M$ \leadsto no normal form

Solutions:

- • •
- $\bullet\,$ Ehrhard–Regnier, TCS, 2003: a two-layered syntax with base terms vs linear combinations.
 - Confluence is easy.
 - Conservativity in this case?

 $\infty - \infty = \cdots$

Condider $\infty_M := \operatorname{Fix} \lambda x. (M + x)$ so that $\infty_M \simeq_\beta M + \infty_M$. Then $0 = \infty_M - \infty_M \simeq_\beta M + \infty_M - \infty_M = M$ for any term M!

Reflexivity

 $M=M+0.N\rightarrow_{\beta}M+0.N'=M$ \leadsto no normal form

Solutions:

- • •
- $\bullet\,$ Ehrhard–Regnier, TCS, 2003: a two-layered syntax with base terms vs linear combinations.
 - Confluence is easy.
 - Conservativity in this case?

 $\infty - \infty = \cdots$

Condider $\infty_M := \text{Fix } \lambda x. (M + x)$ so that $\infty_M \simeq_\beta M + \infty_M$. Then $0 = \infty_M - \infty_M \simeq_\beta M + \infty_M - \infty_M = M$ for any term M!

Solutions:

- Arrighi–Dowek, RTA'08: algebraic rewriting on closed normal forms.
- Typing (Church-style): we have models (Ehrhard, MSCS, 2005, etc.).
- V., RTA'07: consider positive coefficients only.

Reflexivity

 $M=M+0.N\rightarrow_{\beta}M+0.N'=M$ \leadsto no normal form

Solutions:

- • •
- $\bullet\,$ Ehrhard–Regnier, TCS, 2003: a two-layered syntax with base terms vs linear combinations.
 - Confluence is easy.
 - Conservativity in this case?

 $\infty - \infty = \cdots$

Condider $\infty_M := \text{Fix } \lambda x. (M + x)$ so that $\infty_M \simeq_\beta M + \infty_M$. Then $0 = \infty_M - \infty_M \simeq_\beta M + \infty_M - \infty_M = M$ for any term M!

Solutions:

- Arrighi–Dowek, RTA'08: algebraic rewriting on closed normal forms.
- Typing (Church-style): we have models (Ehrhard, MSCS, 2005, etc.).
- V., RTA'07: consider positive coefficients only.

Plenty of other nicely weird (or weirdly nice) stuff...

The algebraic λ -calculus (V., RTA'07)

simple terms:

$$\Lambda_{\mathbf{A}} \ni s, t, \dots ::= x \mid \lambda x.s \mid sT$$
terms:

$$\Lambda_{\mathbf{A}} \ni s, t, \dots ::= x \mid \lambda x.s \mid sT$$

$$A \mid [\Lambda_{\mathbf{A}}] \ni S, T, \dots ::= \sum_{i=1}^{n} a_i . s_i$$

$$\lambda x.S := \sum_{s \in \mathsf{support}(S)} S_s . \lambda x.s \qquad ST := \sum_{s \in \mathsf{support}(S)} S_s . sT$$

The algebraic λ -calculus (V., RTA'07)

$$\begin{split} \text{simple terms:} & \Lambda_{\mathbf{A}} \ni s, t, \dots ::= x \mid \lambda x.s \mid sT \\ \text{terms:} & \mathbf{A} \left[\Lambda_{\mathbf{A}} \right] \ni S, T, \dots ::= \sum_{i=1}^{n} a_i.s_i \\ \lambda x.S &:= \sum_{s \in \text{support}(S)} S_s.\lambda x.s \quad ST := \sum_{s \in \text{support}(S)} S_s.sT \\ \hline & \overline{(\lambda x.s)} T \to_{\beta_{\mathbf{A}}} s[T/x] \\ \hline & \overline{(\lambda x.s)} T \to_{\beta_{\mathbf{A}}} S'T \quad \overline{sT \to_{\beta_{\mathbf{A}}} ST'} \\ \hline & \frac{s \to_{\beta_{\mathbf{A}}} S'}{sT \to_{\beta_{\mathbf{A}}} S'T} \quad \frac{T \xrightarrow{\sim}_{\beta_{\mathbf{A}}} T'}{sT \to_{\beta_{\mathbf{A}}} sT'} \quad \frac{s \to_{\beta_{\mathbf{A}}} S'}{sT \to_{\beta_{\mathbf{A}}} S'T} \\ \hline & \frac{s \to_{\beta_{\mathbf{A}}} S'}{a.s + T \xrightarrow{\sim}_{\beta_{\mathbf{A}}} a.sT' + T} \end{split}$$

The algebraic λ -calculus (V., RTA'07) aka the differential λ -calculus without the differential

$$\begin{split} \text{simple terms:} & \Lambda_{\mathbf{A}} \ni s, t, \dots ::= x \mid \lambda x.s \mid s T \\ \text{terms:} & \mathbf{A} \left[\Lambda_{\mathbf{A}} \right] \ni S, T, \dots ::= \sum_{i=1}^{n} a_i.s_i \\ \lambda x.S := \sum_{s \in \text{support}(S)} S_s.\lambda x.s \quad S T := \sum_{s \in \text{support}(S)} S_s.s T \\ \hline & \overline{(\lambda x.s) \ T \to_{\beta_{\mathbf{A}}} s \left[T/x\right]} \\ \frac{S \to_{\beta_{\mathbf{A}}} S'}{\lambda x.s \to_{\beta_{\mathbf{A}}} \lambda x.S'} \quad \frac{S \to_{\beta_{\mathbf{A}}} S'}{s \ T \to_{\beta_{\mathbf{A}}} S' T} \quad \frac{T \xrightarrow{\sim}_{\beta_{\mathbf{A}}} T'}{s \ T \to_{\beta_{\mathbf{A}}} s T'} \quad \frac{S \to_{\beta_{\mathbf{A}}} S'}{s \ T \to_{\beta_{\mathbf{A}}} S' T} \\ \frac{S \to_{\beta_{\mathbf{A}}} S'}{a.s + T \xrightarrow{\sim}_{\beta_{\mathbf{A}}} a.S' + T} \end{split}$$

The algebraic λ -calculus (V., RTA'07) aka the differential λ -calculus without the differential

$$\begin{split} \text{simple terms:} & \Lambda_{\mathbf{A}} \ni s, t, \dots ::= x \mid \lambda x.s \mid sT \\ \text{terms:} & \mathbf{A} \left[\Lambda_{\mathbf{A}} \right] \ni S, T, \dots ::= \sum_{i=1}^{n} a_i.s_i \\ \lambda x.S := \sum_{s \in \text{support}(S)} S_s.\lambda x.s \quad ST := \sum_{s \in \text{support}(S)} S_s.sT \\ \hline & \overline{(\lambda x.s)} T \to_{\beta_{\mathbf{A}}} s \left[T/x \right] \\ \hline & \overline{\lambda x.s \to_{\beta_{\mathbf{A}}} S'} \quad \frac{s \to_{\beta_{\mathbf{A}}} S'}{sT \to_{\beta_{\mathbf{A}}} S'T} \quad \frac{T \xrightarrow{\sim}_{\beta_{\mathbf{A}}} T'}{sT \to_{\beta_{\mathbf{A}}} sT'} \quad \frac{s \to_{\beta_{\mathbf{A}}} S'}{sT \to_{\beta_{\mathbf{A}}} S'T} \\ \hline & \frac{s \to_{\beta_{\mathbf{A}}} S'}{a.s + T \xrightarrow{\sim}_{\beta_{\mathbf{A}}} a.S' + T} \end{split}$$

Theorem (Ehrhard–Regnier, TCS, 2003) $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ is confluent

Conservativity

Theorem

If **A** is positive, then the algebraic λ -calculus is a conservative extension of the ordinary λ -calculus:

if $M, N \in \Lambda$ and $M \simeq_{\beta_{\mathbf{A}}} N$ then $M \simeq_{\beta} N$.

Conservativity

We say **A** is *positive* if: a + b = 0 implies a = b = 0.

Theorem

If **A** is positive, then the algebraic λ -calculus is a conservative extension of the ordinary λ -calculus:

if $M, N \in \Lambda$ and $M \simeq_{\beta_{\mathbf{A}}} N$ then $M \simeq_{\beta} N$.

A first conservativity proof

Theorem (TeReSe, Exercise 1.3.21.(iii))

If an abstract rewrite system (A, \rightarrow) is an extension of (A', \rightarrow') and \rightarrow' is confluent then (A', \rightarrow') is conservative over (A, \rightarrow) .

Since $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ extends \rightarrow_{β} , and $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ is confluent, $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ must be conservative (Ehrhard–Regnier, TCS, 2003).

A first conservativity proof

Theorem (TeReSe, Exercise 1.3.21.(iii))

If an abstract rewrite system (A, \rightarrow) is an extension of (A', \rightarrow') and \rightarrow' is confluent then (A', \rightarrow') is conservative over (A, \rightarrow) .

Since $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ extends \rightarrow_{β} , and $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ is confluent, $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ must be conservative (Ehrhard–Regnier, TCS, 2003). But wait...

A first conservativity proof

Theorem (TeReSe, Exercise 1.3.21.(iii))

If an abstract rewrite system (A, \rightarrow) is an extension of (A', \rightarrow') and \rightarrow' is confluent then (A', \rightarrow') is conservative over (A, \rightarrow) .

Since $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ extends \rightarrow_{β} , and $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ is confluent, $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ must be conservative (Ehrhard–Regnier, TCS, 2003). But wait... that would work when $-1 \in \mathbf{A}$ too.

A first conservativity non-proof

Theorem (TeReSe, Exercise 1.3.21.(iii))

If an abstract rewrite system (A, \rightarrow) is an extension of (A', \rightarrow') and \rightarrow' is confluent then (A', \rightarrow') is conservative over (A, \rightarrow) .

Since $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ extends \rightarrow_{β} , and $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ is confluent, $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ must be conservative (Ehrhard–Regnier, TCS, 2003). But wait... that would work when $-1 \in \mathbf{A}$ too.

Definition

$$(A, \rightarrow)$$
 extends (A', \rightarrow') if:

•
$$A \subseteq A'$$
,

$$\bullet \ \to = \, \to' \cap (A \times A)$$

• A is closed under \rightarrow' , i.e. $a \in A$ and $a \rightarrow' a'$ implies $a' \in A$.

$\mathfrak{i}_{\beta_{\mathbf{A}}}$ does not extend \mathfrak{i}_{β} in this sense!

Another conservativity proof (V., RTA'07)

$$\frac{M \triangleleft s}{\lambda x.M \triangleleft \lambda x.s} \quad \frac{M \triangleleft s}{MN \triangleleft sT} \quad \frac{M \triangleleft s \in \mathsf{support}\left(S\right)}{M \land sT} \quad \frac{M \triangleleft s \in \mathsf{support}\left(S\right)}{M \triangleleft S}$$

Lemma

Assume **A** is positive. If $S \xrightarrow{\sim}_{\beta_{\mathbf{A}}} S'$ and $M' \triangleleft S'$ then there exists $M \triangleleft S$ with $M \rightarrow_{\beta} M'$.

Proof. Idea: since **A** is positive, M' necessarily comes from subterms of S', obtained by reducing subterms of S.

Another conservativity non-proof (V., RTA'07)

$$\frac{M \triangleleft s}{\lambda x \cdot M \triangleleft \lambda x \cdot s} \quad \frac{M \triangleleft s}{M N \triangleleft s \cdot T} \quad \frac{M \triangleleft s \in \text{support}(S)}{M \triangleleft s \cdot T}$$

Lemma

Assume **A** is positive. If $S \xrightarrow{\sim}_{\beta_{\mathbf{A}}} S'$ and $M' \triangleleft S'$ then there exists $M \triangleleft S$ with $M \rightarrow_{\beta} M'$.

Proof. Idea: since **A** is positive, M' necessarily comes from subterms of S', obtained by reducing subterms of S.

Wrong!

 $\Delta \ (M+N) \to_{\beta_{\mathbf{A}}} (M+N) \ (M+N) \triangleright M \ N.$

A partial conservativity proof (V., CSL'17)

Let $\mathsf{F}(S)$ denote the full parallel reduct of S (fire all redexes simultaneously).

Lemma

 $I\!\!f\:S\to^n_{\beta_{\mathbf{A}}}S'\:\:then\:\:S'\to^*_{\beta_{\mathbf{A}}}\mathsf{F}^n\:(S).$

Theorem

Assume **A** is positive. If $M \simeq_{\beta_{\mathbf{A}}} N$ and M is β -normalizable then $N \rightarrow^*_{\beta} \mathsf{NF}(M)$.

Proof. ● By confluence, N →^{*}_{β_A} NF (M).
● By the previous Lemma, NF (M) →^{*}_{β_A} F^{*} (N).
● By positivity, NF (M) = L^{*}(N).

• We always have $N \to^*_{\beta} L(N)$.

Yet another partial conservativity proof (V., CSL'17)

Let $\Theta(S)$ denote the Taylor expansion of S.

Lemma

If $M \in \Lambda$, $\Theta(M)$ is normalizable and $\mathsf{NF}(\Theta(M)) = \Theta(\mathsf{BT}(M))$.

Lemma

Assume **A** is positive. If $S \rightarrow_{\beta_{\mathbf{A}}} S'$ then $\Theta(S) \rightarrow \Theta(S')$.

Lemma

If τ is normalizable and $\tau \to \tau'$ then τ' is normalizable and NF $(\tau) = NF(\tau')$.

Corollary

Assume **A** is positive. If $M \simeq_{\beta_{\mathbf{A}}} N$ then $\mathsf{BT}(M) = \mathsf{BT}(N)$.

A simple and (hopefully) correct proof

J.w.w. Emma Kerinec (now at Paris 13).

Idea

Define a variant \prec of \triangleleft , such that $M \prec S \xrightarrow{\sim}_{\beta_{\mathbf{A}}} S'$ implies $M \prec S'$.

- Interestingly, the definition focusses on β -expansion rather than $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$.
- The technique rings some bells...

A relation between λ -terms and algebraic λ -terms

$$\frac{M \to_{\beta}^* x}{M \prec x}$$

$$\frac{M \to_{\beta}^{*} \lambda x. N \qquad N \prec s}{M \prec \lambda x. s}$$

$$\frac{M \to_{\beta}^{*} N P \quad N \prec s \quad P \widehat{\prec} T}{M \prec s T}$$

$$\frac{M \prec s \text{ for each } s \in \text{support}\left(S\right)}{M \stackrel{\frown}{\prec} S}$$

Admissible rules (=lemmas)

$$\frac{M \to_{\beta}^{*} \lambda x. N \qquad N \stackrel{\frown}{\prec} S}{M \stackrel{\frown}{\prec} \lambda x. S}$$

$$\frac{M \to_{\beta}^{*} N P \quad N \widehat{\prec} S \quad P \widehat{\prec} T}{M \widehat{\prec} S T}$$

Lemma

If $M \in \Lambda$ then $M \prec M$.

Proof. Easy induction on M.

Lemma

If $M \in \Lambda$ then $M \prec M$.

Lemma

If $M \prec N \in \Lambda$ then $M \rightarrow^*_{\beta} N$.

Proof. Easy induction on the derivation of $M \prec N$.

Lemma

If $M \in \Lambda$ then $M \prec M$.

Lemma

If $M \prec N \in \Lambda$ then $M \rightarrow^*_{\beta} N$.

Lemma

If $M \to_{\beta} M' \widehat{\prec} S$ then $M \widehat{\prec} S$.

Proof. Easy induction on the derivation of $M' \stackrel{\sim}{\prec} S$.

Lemma

If $M \in \Lambda$ then $M \prec M$.

Lemma

If $M \prec N \in \Lambda$ then $M \rightarrow^*_{\beta} N$.

Lemma

If $M \to_{\beta} M' \widehat{\prec} S$ then $M \widehat{\prec} S$.

Lemma

If $M \stackrel{\sim}{\prec} S$ and $N \stackrel{\sim}{\prec} T$ then $M[N/x] \stackrel{\sim}{\prec} S[T/x]$.

Proof. Easy induction on the derivation of $M \stackrel{\sim}{\prec} S$, using the previous Lemma in the variable case.

Lemma

If $M \in \Lambda$ then $M \prec M$.

Lemma

If $M \prec N \in \Lambda$ then $M \rightarrow^*_{\beta} N$.

Lemma

If $M \to_{\beta} M' \stackrel{\sim}{\prec} S$ then $M \stackrel{\sim}{\prec} S$.

Lemma

If
$$M \stackrel{\sim}{\prec} S$$
 and $N \stackrel{\sim}{\prec} T$ then $M[N/x] \stackrel{\sim}{\prec} S[T/x]$.

Lemma

If
$$M \stackrel{\sim}{\prec} S \xrightarrow{\longrightarrow_{\widetilde{\beta}}} S'$$
 then $M \stackrel{\sim}{\prec} S'$.

Proof. Easy induction on the derivation of $S \xrightarrow{\sim}_{\widetilde{\beta}} S'$, using the previous Lemma in the redex case.

Lemma

If $M \in \Lambda$ then $M \prec M$.

Lemma

If $M \prec N \in \Lambda$ then $M \rightarrow^*_{\beta} N$.

Lemma

If $M \to_{\beta} M' \widehat{\prec} S$ then $M \widehat{\prec} S$.

Lemma

If $M \stackrel{\sim}{\prec} S$ and $N \stackrel{\sim}{\prec} T$ then $M[N/x] \stackrel{\sim}{\prec} S[T/x]$.

Lemma

If
$$M \stackrel{\sim}{\prec} S \xrightarrow{\longrightarrow_{\widetilde{\beta}}} S'$$
 then $M \stackrel{\sim}{\prec} S'$.

Theorem

If
$$M \xrightarrow{\sim}_{\widetilde{\beta}}^* M'$$
 then $M \to_{\beta}^* M'$.

Conclusions

• Of course, this is the well known */please help us find the reference/* technique.

Conclusions

- Of course, this is the well known */please help us find the reference/* technique.
- Maybe this can be applied elsewhere (e.g., for the conservativity of reduction on Taylor expansion).