The algebraic λ-calculus, 12 years later: a conservativity proof at last

Lionel Vaux Auclair

Institut de Mathématiques de Marseille, Université d'Aix-Marseille, France

Journées Scalp 2019, Lyon, 2019-10-18

Non-determinism in the λ-calculus

$$
M, N, \ldots::=x|\lambda x . M| M N \mid M+N
$$

$$
\lambda x . M N \rightarrow_{\beta} M[N / x]
$$

and

$$
M+N \rightarrow_{+} M \quad(\text { or } N)
$$

Non-determinism in the λ-calculus, contextually

$$
M, N, \ldots::=x|\lambda x . M| M N \mid M+N
$$

$$
\lambda x . M N \rightarrow_{\beta} M[N / x]
$$

up to:

$$
M+N P=M P+N P \quad \quad \lambda x \cdot(M+N)=\lambda x \cdot M+\lambda x \cdot N
$$

Quantitative non-determinism in the λ-calculus

$$
\begin{aligned}
& M, N, \ldots::=x|\lambda x . M| M N|M+N| 0 \\
& \lambda x . M N \rightarrow_{\beta} M[N / x]
\end{aligned}
$$

up to:

$$
\begin{aligned}
M+N P & =M P+N P & \lambda x .(M+N) & =\lambda x \cdot M+\lambda x . N \\
0 P & =0 & \lambda x .0 & =0
\end{aligned}
$$

Quantitative non-determinism in the λ-calculus

$$
M, N, \ldots::=x|\lambda x \cdot M| M N|M+N| 0 \mid a \cdot M \quad(a \in \mathbf{A}, \text { some semiring })
$$

$$
\lambda x . M N \rightarrow_{\beta} M[N / x]
$$

up to:

$$
\begin{aligned}
M+N P & =M P+N P \\
0 P & =0 \\
a \cdot M P & =a . M P
\end{aligned}
$$

$$
\lambda x \cdot(M+N)=\lambda x \cdot M+\lambda x \cdot N
$$

$$
\lambda x .0=0
$$

$$
\lambda x \cdot(a \cdot M)=a \cdot \lambda x \cdot M
$$

somehow implicitly call-by-name

Quantitative non-determinism in the λ-calculus

$$
M, N, \ldots::=x|\lambda x . M| M N|M+N| 0 \mid a . M \quad(a \in \mathbf{A}, \text { some semiring })
$$

$$
\lambda x . M N \rightarrow_{\beta} M[N / x]
$$

up to:

$$
\begin{aligned}
M+N P & =M P+N P \\
0 P & =0 \\
a \cdot M P & =a . M P
\end{aligned}
$$

$$
\begin{aligned}
\lambda x \cdot(M+N) & =\lambda x \cdot M+\lambda x \cdot N \\
\lambda x \cdot 0 & =0 \\
\lambda x \cdot(a \cdot M) & =a \cdot \lambda x \cdot M
\end{aligned}
$$

up to module equations:

$$
M+N=N+M \quad 0 \cdot M=0 \quad a \cdot M+b \cdot M=(a+b) \cdot M \quad \ldots
$$

Quantitative non-determinism in the λ-calculus

$$
M, N, \ldots::=x|\lambda x . M| M N|M+N| 0 \mid a . M \quad(a \in \mathbf{A}, \text { some semiring })
$$

$$
\lambda x . M N \rightarrow_{\beta} M[N / x]
$$

up to:

$$
\begin{aligned}
M+N P & =M P+N P \\
0 P & =0 \\
a \cdot M P & =a . M P
\end{aligned}
$$

$$
\begin{aligned}
\lambda x \cdot(M+N) & =\lambda x \cdot M+\lambda x \cdot N \\
\lambda x \cdot 0 & =0 \\
\lambda x \cdot(a \cdot M) & =a \cdot \lambda x \cdot M
\end{aligned}
$$

up to module equations:

$$
M+N=N+M \quad 0 \cdot M=0 \quad a \cdot M+b \cdot M=(a+b) \cdot M \quad \ldots
$$

A common framework for non-determinism, probabilistic distributions, quantum stuff, ...

Some issues

Reflexivity

$M=M+0 . N \rightarrow_{\beta} M+0 . N^{\prime}=M \rightsquigarrow$ no normal form

Some issues

Reflexivity

$$
M=M+0 . N \rightarrow_{\beta} M+0 . N^{\prime}=M \rightsquigarrow \text { no normal form }
$$

Solutions:

- Arrighi-Dowek, RTA'08: orient module equations (except for AC), e.g.,

$$
0 . M \rightarrow 0 \quad a . M+b . M \rightarrow(a+b) . M \quad \ldots
$$

- Automatically conservative: reductions from λ-terms are β-reductions.
- Confluence in this case?
- Ehrhard-Regnier, TCS, 2003: a two-layered syntax with base terms vs linear combinations.
- Confluence is easy.
- Conservativity in this case?

Some issues

Reflexivity

$M=M+0 . N \rightarrow_{\beta} M+0 . N^{\prime}=M \rightsquigarrow$ no normal form
Solutions:

- Ehrhard-Regnier, TCS, 2003: a two-layered syntax with base terms vs linear combinations.
- Confluence is easy.
- Conservativity in this case?

```
\infty-\infty=\cdots
```

Condider $\infty_{M}:=$ Fix $\lambda x .(M+x)$ so that $\infty_{M} \simeq_{\beta} M+\infty_{M}$. Then $0=\infty_{M}-\infty_{M} \simeq_{\beta} M+\infty_{M}-\infty_{M}=M$ for any term M !

Some issues

Reflexivity

$M=M+0 . N \rightarrow_{\beta} M+0 . N^{\prime}=M \rightsquigarrow$ no normal form
Solutions:

- Ehrhard-Regnier, TCS, 2003: a two-layered syntax with base terms vs linear combinations.
- Confluence is easy.
- Conservativity in this case?

```
\infty-\infty=\cdots
```

Condider $\infty_{M}:=$ Fix $\lambda x .(M+x)$ so that $\infty_{M} \simeq_{\beta} M+\infty_{M}$. Then $0=\infty_{M}-\infty_{M} \simeq_{\beta} M+\infty_{M}-\infty_{M}=M$ for any term M !

Solutions:

- Arrighi-Dowek, RTA'08: algebraic rewriting on closed normal forms.
- Typing (Church-style): we have models (Ehrhard, MSCS, 2005, etc.).
- V., RTA'07: consider positive coefficients only.

Some issues

Reflexivity

$M=M+0 . N \rightarrow_{\beta} M+0 . N^{\prime}=M \rightsquigarrow$ no normal form
Solutions:

- Ehrhard-Regnier, TCS, 2003: a two-layered syntax with base terms vs linear combinations.
- Confluence is easy.
- Conservativity in this case?

```
\infty-\infty=\cdots
```

Condider $\infty_{M}:=$ Fix $\lambda x .(M+x)$ so that $\infty_{M} \simeq_{\beta} M+\infty_{M}$. Then $0=\infty_{M}-\infty_{M} \simeq_{\beta} M+\infty_{M}-\infty_{M}=M$ for any term M !

Solutions:

- Arrighi-Dowek, RTA'08: algebraic rewriting on closed normal forms.
- Typing (Church-style): we have models (Ehrhard, MSCS, 2005, etc.).
- V., RTA'07: consider positive coefficients only.

Plenty of other nicely weird (or weirdly nice) stuff. . .

The algebraic λ-calculus (V., RTA'07)

simple terms:

$$
\Lambda_{\mathbf{A}} \ni s, t, \ldots::=x|\lambda x . s| s T
$$

terms:
$\mathbf{A}\left[\Lambda_{\mathbf{A}}\right] \ni S, T, \ldots::=\sum_{i=1}^{n} a_{i} \cdot s_{i}$

$$
\lambda x . S:=\sum_{s \in \text { support }(S)} S_{s} \cdot \lambda x . s \quad S T:=\sum_{s \in \text { support }(S)} S_{s} \cdot s T
$$

The algebraic λ-calculus (V., RTA'07)

$$
\begin{aligned}
& \text { simple terms: } \\
& \Lambda_{\mathbf{A}} \ni s, t, \ldots::=x|\lambda x . s| s T \\
& \text { terms: } \\
& \mathbf{A}\left[\Lambda_{\mathbf{A}}\right] \ni S, T, \ldots::=\sum_{i=1}^{n} a_{i} \cdot s_{i} \\
& \lambda x . S:=\sum_{s \in \text { support }(S)} S_{s} \cdot \lambda x \cdot s \quad S T:=\sum_{s \in \text { support }(S)} S_{s} . s T \\
& \overline{(\lambda x . s) T \rightarrow_{\beta_{\mathbf{A}}} s[T / x]} \\
& \frac{s \rightarrow_{\beta_{\mathbf{A}}} S^{\prime}}{\lambda x . s \rightarrow_{\beta_{\mathbf{A}}} \lambda x . S^{\prime}} \quad \frac{s \rightarrow_{\beta_{\mathbf{A}}} S^{\prime}}{s T \rightarrow_{\beta_{\mathbf{A}}} S^{\prime} T} \quad \frac{T \widetilde{3}_{\beta_{\mathbf{A}}} T^{\prime}}{s T \rightarrow_{\beta_{\mathbf{A}}} s T^{\prime}} \quad \frac{s \rightarrow_{\beta_{\mathrm{A}}} S^{\prime}}{s T \rightarrow_{\beta_{\mathbf{A}}} S^{\prime} T} \\
& \frac{s \rightarrow_{\beta_{\mathbf{A}}} S^{\prime} \quad a \neq 0}{a . s+T \overbrace{\beta_{\mathbf{A}}} a \cdot S^{\prime}+T}
\end{aligned}
$$

The algebraic λ-calculus (V., RTA'07)

aka the differential λ-calculus without the differential

$$
\begin{aligned}
& \text { simple terms: } \\
& \Lambda_{\mathbf{A}} \ni s, t, \ldots::=x|\lambda x . s| s T \\
& \text { terms: } \\
& \mathbf{A}\left[\Lambda_{\mathbf{A}}\right] \ni S, T, \ldots::=\sum_{i=1}^{n} a_{i} \cdot s_{i} \\
& \lambda x . S:=\sum_{s \in \text { support }(S)} S_{s} \cdot \lambda x \cdot s \quad S T:=\sum_{s \in \text { support }(S)} S_{s} . s T \\
& \overline{(\lambda x . s) T \rightarrow_{\beta_{\mathbf{A}}} s[T / x]} \\
& \frac{s \rightarrow_{\beta_{\mathbf{A}}} S^{\prime}}{\lambda x . s \rightarrow_{\beta_{\mathbf{A}}} \lambda x . S^{\prime}} \quad \frac{s \rightarrow_{\beta_{\mathbf{A}}} S^{\prime}}{s T \rightarrow_{\beta_{\mathbf{A}}} S^{\prime} T} \quad \frac{T \widetilde{\beta}_{\beta_{\mathbf{A}}} T^{\prime}}{s T \rightarrow_{\beta_{\mathbf{A}}} s T^{\prime}} \quad \frac{s \rightarrow_{\beta_{\mathbf{A}}} S^{\prime}}{s T \rightarrow_{\beta_{\mathbf{A}}} S^{\prime} T} \\
& \frac{s \rightarrow_{\beta_{\mathbf{A}}} S^{\prime} \quad a \neq 0}{a . s+T \overbrace{\beta_{\mathbf{A}}} a \cdot S^{\prime}+T}
\end{aligned}
$$

The algebraic λ-calculus (V., RTA'07)

aka the differential λ-calculus without the differential

$$
\begin{aligned}
& \text { simple terms: } \\
& \text { terms: } \\
& \Lambda_{\mathbf{A}} \ni s, t, \ldots::=x|\lambda x . s| s T \\
& \mathbf{A}\left[\Lambda_{\mathbf{A}}\right] \ni S, T, \ldots::=\sum_{i=1}^{n} a_{i} \cdot s_{i} \\
& \lambda x . S:=\sum_{s \in \operatorname{support}(S)} S_{s} \cdot \lambda x . s \quad S T:=\sum_{s \in \text { support }(S)} S_{s} \cdot s T \\
& (\lambda x . s) T \rightarrow_{\beta_{\mathbf{A}}} s[T / x] \\
& \frac{s \rightarrow_{\beta_{\mathbf{A}}} S^{\prime}}{\lambda x . s \rightarrow_{\beta_{\mathbf{A}}} \lambda x . S^{\prime}} \quad \frac{s \rightarrow_{\beta_{\mathbf{A}}} S^{\prime}}{s T \rightarrow_{\beta_{\mathbf{A}}} S^{\prime} T} \quad \frac{T \widetilde{3}_{\beta_{\mathbf{A}}} T^{\prime}}{s T \rightarrow_{\beta_{\mathbf{A}}} s T^{\prime}} \quad \frac{s \rightarrow_{\beta_{\mathrm{A}}} S^{\prime}}{s T \rightarrow_{\beta_{\mathbf{A}}} S^{\prime} T} \\
& \frac{s \rightarrow_{\beta_{\mathbf{A}}} S^{\prime} \quad a \neq 0}{a . s+T \overbrace{\beta_{\mathbf{A}}} a . S^{\prime}+T}
\end{aligned}
$$

Theorem (Ehrhard-Regnier, TCS, 2003)

$\widetilde{\rightrightarrows}_{\beta_{\mathrm{A}}}$ is confluent

Conservativity

Theorem

If \mathbf{A} is positive, then the algebraic λ-calculus is a conservative extension of the ordinary λ-calculus:

$$
\text { if } M, N \in \Lambda \text { and } M \simeq_{\beta_{\mathbf{A}}} N \text { then } M \simeq_{\beta} N .
$$

Conservativity

We say \mathbf{A} is positive if: $a+b=0$ implies $a=b=0$.

Theorem

If \mathbf{A} is positive, then the algebraic λ-calculus is a conservative extension of the ordinary λ-calculus:

$$
\text { if } M, N \in \Lambda \text { and } M \simeq_{\beta_{\mathbf{A}}} N \text { then } M \simeq_{\beta} N .
$$

A first conservativity proof

Theorem (TeReSe, Exercise 1.3.21.(iii))
If an abstract rewrite system (A, \rightarrow) is an extension of $\left(A^{\prime}, \rightarrow^{\prime}\right)$ and \rightarrow^{\prime} is confluent then $\left(A^{\prime}, \rightarrow^{\prime}\right)$ is conservative over (A, \rightarrow).

Since $\widetilde{\rightarrow}_{\beta_{\mathrm{A}}}$ extends \rightarrow_{β}, and $\widetilde{\rightarrow}_{\beta_{\mathrm{A}}}$ is confluent, $\widetilde{\rightarrow}_{\beta_{\mathrm{A}}}$ must be conservative (Ehrhard-Regnier, TCS, 2003).

A first conservativity proof

Theorem (TeReSe, Exercise 1.3.21.(iii))
If an abstract rewrite system (A, \rightarrow) is an extension of $\left(A^{\prime}, \rightarrow^{\prime}\right)$ and \rightarrow^{\prime} is confluent then $\left(A^{\prime}, \rightarrow^{\prime}\right)$ is conservative over (A, \rightarrow).

Since $\widetilde{\rightarrow}_{\beta_{\mathrm{A}}}$ extends \rightarrow_{β}, and $\widetilde{\rightarrow}_{\beta_{\mathrm{A}}}$ is confluent, $\widetilde{\rightarrow}_{\beta_{\mathrm{A}}}$ must be conservative (Ehrhard-Regnier, TCS, 2003).
But wait...

A first conservativity proof

Theorem (TeReSe, Exercise 1.3.21.(iii))
If an abstract rewrite system (A, \rightarrow) is an extension of $\left(A^{\prime}, \rightarrow^{\prime}\right)$ and \rightarrow^{\prime} is confluent then $\left(A^{\prime}, \rightarrow^{\prime}\right)$ is conservative over (A, \rightarrow).

Since $\widetilde{\rightarrow}_{\beta_{\mathrm{A}}}$ extends \rightarrow_{β}, and $\widetilde{\rightarrow}_{\beta_{\mathrm{A}}}$ is confluent, $\widetilde{\rightarrow}_{\beta_{\mathrm{A}}}$ must be conservative (Ehrhard-Regnier, TCS, 2003).
But wait... that would work when $-1 \in \mathbf{A}$ too.

A first conservativity non-proof

Theorem (TeReSe, Exercise 1.3.21.(iii))

If an abstract rewrite system (A, \rightarrow) is an extension of $\left(A^{\prime}, \rightarrow^{\prime}\right)$ and \rightarrow^{\prime} is confluent then $\left(A^{\prime}, \rightarrow^{\prime}\right)$ is conservative over (A, \rightarrow).

Since $\widetilde{\rightrightarrows}_{\beta_{\mathbf{A}}}$ extends \rightarrow_{β}, and $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ is confluent, $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$ must be conservative (Ehrhard-Regnier, TCS, 2003).
But wait... that would work when $-1 \in \mathbf{A}$ too.

Definition

(A, \rightarrow) extends $\left(A^{\prime}, \rightarrow^{\prime}\right)$ if:

- $A \subseteq A^{\prime}$,
- $\rightarrow=\rightarrow^{\prime} \cap(A \times A)$
- A is closed under \rightarrow^{\prime}, i.e. $a \in A$ and $a \rightarrow^{\prime} a^{\prime}$ implies $a^{\prime} \in A$.
$\rightrightarrows_{\beta_{\mathbf{A}}}$ does not extend \rightarrow_{β} in this sense!

Another conservativity proof (V., RTA'07)

$$
\overline{x \triangleleft x} \frac{M \triangleleft s}{\lambda x . M \triangleleft \lambda x . s} \quad \frac{M \triangleleft s \quad N \triangleleft T}{M N \triangleleft s T} \quad \frac{M \triangleleft s \in \operatorname{support}(S)}{M \triangleleft S}
$$

Lemma

Assume \mathbf{A} is positive. If $S \widetilde{\rightarrow}_{\beta_{\mathbf{A}}} S^{\prime}$ and $M^{\prime} \triangleleft S^{\prime}$ then there exists $M \triangleleft S$ with $M \rightarrow_{\beta} M^{\prime}$.

Proof. Idea: since \mathbf{A} is positive, M^{\prime} necessarily comes from subterms of S^{\prime}, obtained by reducing subterms of S.

Another conservativity non-proof (V., RTA'07)

$$
\overline{x \triangleleft x} \frac{M \triangleleft s}{\lambda x . M \triangleleft \lambda x . s} \quad \frac{M \triangleleft s \quad N \triangleleft T}{M N \triangleleft s T} \quad \frac{M \triangleleft s \in \operatorname{support}(S)}{M \triangleleft S}
$$

Lemma

Assume \mathbf{A} is positive. If $S \widetilde{\rightarrow}_{\beta_{\mathbf{A}}} S^{\prime}$ and $M^{\prime} \triangleleft S^{\prime}$ then there exists $M \triangleleft S$ with $M \rightarrow_{\beta} M^{\prime}$.

Proof. Idea: since \mathbf{A} is positive, M^{\prime} necessarily comes from subterms of S^{\prime}, obtained by reducing subterms of S.

Wrong!

$$
\Delta(M+N) \rightarrow_{\beta_{\mathbf{A}}}(M+N)(M+N) \triangleright M N
$$

A partial conservativity proof (V., CSL'17)

Let $\mathrm{F}(S)$ denote the full parallel reduct of S (fire all redexes simultaneously).

Lemma

If $S \rightarrow_{\beta_{\mathrm{A}}}^{n} S^{\prime}$ then $S^{\prime} \rightarrow_{\beta_{\mathrm{A}}}^{*} \mathrm{~F}^{n}(S)$.

Theorem

Assume \mathbf{A} is positive. If $M \simeq_{\beta_{\mathbf{A}}} N$ and M is β-normalizable then $N \rightarrow{ }_{\beta}^{*} \mathrm{NF}(M)$.

Proof. - By confluence, $N \rightarrow{ }_{\beta_{\mathrm{A}}}^{*} \mathrm{NF}(M)$.

- By the previous Lemma, NF $(M) \rightarrow_{\beta_{\mathbf{A}}}^{*} \mathrm{~F}^{*}(N)$.
- By positivity, NF $(M)=L^{*}(N)$.
- We always have $N \rightarrow{ }_{\beta}^{*} L(N)$.

Yet another partial conservativity proof (V., CSL'17)

Let $\Theta(S)$ denote the Taylor expansion of S.
Lemma
If $M \in \Lambda, \Theta(M)$ is normalizable and $\mathrm{NF}(\Theta(M))=\Theta(\mathrm{BT}(M))$.
Lemma
Assume A is positive. If $S \rightarrow_{\beta_{\mathbf{A}}} S^{\prime}$ then $\Theta(S) \rightarrow \Theta\left(S^{\prime}\right)$.

Lemma

If τ is normalizable and $\tau \rightarrow \tau^{\prime}$ then τ^{\prime} is normalizable and $\operatorname{NF}(\tau)=\operatorname{NF}\left(\tau^{\prime}\right)$.

Corollary

Assume \mathbf{A} is positive. If $M \simeq_{\beta_{\mathbf{A}}} N$ then $\mathrm{BT}(M)=\mathrm{BT}(N)$.

A simple and (hopefully) correct proof

J.w.w. Emma Kerinec (now at Paris 13).

Idea

Define a variant \prec of \triangleleft, such that $M \prec S \widetilde{\rightarrow}_{\beta_{\mathrm{A}}} S^{\prime}$ implies $M \prec S^{\prime}$.

- Interestingly, the definition focusses on β-expansion rather than $\widetilde{\rightarrow}_{\beta_{\mathbf{A}}}$.
- The technique rings some bells...

A relation between λ-terms and algebraic λ-terms

$$
\frac{M \rightarrow{ }_{\beta}^{*} x}{M \prec x}
$$

$$
\frac{M \rightarrow{ }_{\beta}^{*} \lambda x . N \quad N \prec s}{M \prec \lambda x . s}
$$

$$
\begin{array}{ccc}
M \rightarrow{ }_{\beta}^{*} N P \quad N \prec s \quad P \prec T \\
\hline M \prec s T
\end{array}
$$

$\frac{M \prec s \text { for each } s \in \operatorname{support}(S)}{M \widehat{\prec} S}$

Admissible rules (=lemmas)

$$
\frac{M \rightarrow_{\beta}^{*} \lambda x . N \quad N \widehat{\prec} S}{M \widehat{\imath} \lambda x . S}
$$

$$
\frac{M \rightarrow{ }_{\beta}^{*} N P \quad N \widehat{\prec} S \quad P \widehat{\imath} T}{M \widehat{\imath} S T}
$$

Here it goes

Lemma

If $M \in \Lambda$ then $M \prec M$.
Proof. Easy induction on M.

Here it goes

Lemma

If $M \in \Lambda$ then $M \prec M$.
Lemma
If $M \prec N \in \Lambda$ then $M \rightarrow{ }_{\beta}^{*} N$.
Proof. Easy induction on the derivation of $M \prec N$.

Here it goes

Lemma

If $M \in \Lambda$ then $M \prec M$.
Lemma
If $M \prec N \in \Lambda$ then $M \rightarrow{ }_{\beta}^{*} N$.

Lemma

If $M \rightarrow_{\beta} M^{\prime} \widehat{\imath} S$ then $M \widehat{\prec} S$.
Proof. Easy induction on the derivation of $M^{\prime} \widehat{\imath} S$.

Here it goes

Lemma

If $M \in \Lambda$ then $M \prec M$.

Lemma

If $M \prec N \in \Lambda$ then $M \rightarrow{ }_{\beta}^{*} N$.

Lemma

If $M \rightarrow_{\beta} M^{\prime} 乞 S$ then $M \vee S$.
Lemma
If M २ S and $N \prec T$ then $M[N / x] \prec S[T / x]$.
Proof. Easy induction on the derivation of $M \widehat{\prec} S$, using the previous Lemma in the variable case.

Here it goes

Lemma

If $M \in \Lambda$ then $M \prec M$.

Lemma

If $M \prec N \in \Lambda$ then $M \rightarrow{ }_{\beta}^{*} N$.

Lemma

If $M \rightarrow_{\beta} M^{\prime} 乞 S$ then $M \vee S$.
Lemma
If $M \prec S$ and $N \prec T$ then $M[N / x] \prec S[T / x]$.

Lemma

If $M \prec S \rightrightarrows \widetilde{\widetilde{\beta}} S^{\prime}$ then $M \widehat{2} S^{\prime}$.
Proof. Easy induction on the derivation of $S \rightrightarrows_{\widetilde{\beta}} S^{\prime}$, using the previous Lemma in the redex case.

Here it goes

Lemma
If $M \in \Lambda$ then $M \prec M$.
Lemma
If $M \prec N \in \Lambda$ then $M \rightarrow{ }_{\beta}^{*} N$.
Lemma
If $M \rightarrow_{\beta} M^{\prime} \prec S$ then $M \prec S$.
Lemma
If M 々 S and $N \prec T$ then $M[N / x] \prec S[T / x]$.
Lemma
If $M \prec S \rightrightarrows \rightrightarrows_{\widetilde{\beta}} S^{\prime}$ then $M \widehat{S^{\prime}}$.
Theorem
If $M \overbrace{\widetilde{\beta}}^{*} M^{\prime}$ then $M \rightarrow{ }_{\beta}^{*} M^{\prime}$.

Conclusions

- Of course, this is the well known /please help us find the reference/ technique.

Conclusions

- Of course, this is the well known /please help us find the reference/ technique.
- Maybe this can be applied elsewhere (e.g., for the conservativity of reduction on Taylor expansion).

