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Non-determinism in the λ-calculus

M,N, . . . ::= x | λx.M |M N |M +N

| 0 | a.M (a ∈ A, some semiring)

λx.M N →β M [N/x]

and

M +N →+ M (or N)

somehow implicitly call-by-nameup to module equations:

M +N = N +M 0.M = 0 a.M + b.M = (a+ b).M . . .

A common framework for non-determinism, probabilistic distributions,
quantum stuff, . . .
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Non-determinism in the λ-calculus, contextually

M,N, . . . ::= x | λx.M |M N |M +N

| 0 | a.M (a ∈ A, some semiring)

λx.M N →β M [N/x]

up to:

M +N P = M P +N P λx. (M +N) = λx.M + λx.N

0P = 0 λx.0 = 0
a.M P = a.M P λx. (a.M) = a.λx.M

somehow implicitly call-by-name

up to module equations:

M +N = N +M 0.M = 0 a.M + b.M = (a+ b).M . . .

A common framework for non-determinism, probabilistic distributions,
quantum stuff, . . .
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Quantitative non-determinism in the λ-calculus

M,N, . . . ::= x | λx.M |M N |M +N | 0

| a.M (a ∈ A, some semiring)

λx.M N →β M [N/x]

up to:

M +N P = M P +N P λx. (M +N) = λx.M + λx.N

0P = 0 λx.0 = 0

a.M P = a.M P λx. (a.M) = a.λx.M

somehow implicitly call-by-name

up to module equations:

M +N = N +M 0.M = 0 a.M + b.M = (a+ b).M . . .

A common framework for non-determinism, probabilistic distributions,
quantum stuff, . . .

2



Quantitative non-determinism in the λ-calculus

M,N, . . . ::= x | λx.M |M N |M +N | 0 | a.M (a ∈ A, some semiring)

λx.M N →β M [N/x]

up to:

M +N P = M P +N P λx. (M +N) = λx.M + λx.N

0P = 0 λx.0 = 0
a.M P = a.M P λx. (a.M) = a.λx.M

somehow implicitly call-by-name

up to module equations:

M +N = N +M 0.M = 0 a.M + b.M = (a+ b).M . . .

A common framework for non-determinism, probabilistic distributions,
quantum stuff, . . .

2



Quantitative non-determinism in the λ-calculus

M,N, . . . ::= x | λx.M |M N |M +N | 0 | a.M (a ∈ A, some semiring)

λx.M N →β M [N/x]

up to:

M +N P = M P +N P λx. (M +N) = λx.M + λx.N

0P = 0 λx.0 = 0
a.M P = a.M P λx. (a.M) = a.λx.M

somehow implicitly call-by-name

up to module equations:

M +N = N +M 0.M = 0 a.M + b.M = (a+ b).M . . .

A common framework for non-determinism, probabilistic distributions,
quantum stuff, . . .

2



Quantitative non-determinism in the λ-calculus

M,N, . . . ::= x | λx.M |M N |M +N | 0 | a.M (a ∈ A, some semiring)

λx.M N →β M [N/x]

up to:

M +N P = M P +N P λx. (M +N) = λx.M + λx.N

0P = 0 λx.0 = 0
a.M P = a.M P λx. (a.M) = a.λx.M

somehow implicitly call-by-name

up to module equations:

M +N = N +M 0.M = 0 a.M + b.M = (a+ b).M . . .

A common framework for non-determinism, probabilistic distributions,
quantum stuff, . . .

2



Some issues
Reflexivity
M = M + 0.N →β M + 0.N ′ = M  no normal form

Solutions:
· · ·
Ehrhard–Regnier, TCS, 2003: a two-layered syntax with base terms vs
linear combinations.

Confluence is easy.
Conservativity in this case?

∞−∞ = · · ·
Condider ∞M := Fix λx. (M + x) so that ∞M 'β M +∞M .
Then 0 =∞M −∞M 'β M +∞M −∞M = M for any term M !

Solutions:
Arrighi–Dowek, RTA’08: algebraic rewriting on closed normal forms.
Typing (Church-style): we have models (Ehrhard, MSCS, 2005, etc.).
V., RTA’07: consider positive coefficients only.

Plenty of other nicely weird (or weirdly nice) stuff. . .
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Some issues
Reflexivity
M = M + 0.N →β M + 0.N ′ = M  no normal form

Solutions:
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The algebraic λ-calculus (V., RTA’07)

aka the differential λ-calculus without the differential

simple terms: ΛA 3 s, t, . . . ::= x | λx.s | s T

terms: A [ΛA] 3 S, T, . . . ::=
n∑
i=1

ai.si

λx.S :=
∑

s∈support(S)

Ss.λx.s S T :=
∑

s∈support(S)

Ss.s T

(λx.s) T →βA s [T/x]
s→βA S′

λx.s→βA λx.S′

s→βA S′

s T →βA S′ T

T →̃βA T ′

s T →βA s T ′

s→βA S′

s T →βA S′ T

s→βA S′ a 6= 0
a.s+ T →̃βA a.S′ + T

Theorem (Ehrhard–Regnier, TCS, 2003)
→̃βA is confluent
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Conservativity

We say A is positive if: a+ b = 0 implies a = b = 0.

Theorem
If A is positive, then the algebraic λ-calculus is a conservative extension of the
ordinary λ-calculus:

if M,N ∈ Λ and M 'βA N then M 'β N .
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A first conservativity proof

Theorem (TeReSe, Exercise 1.3.21.(iii))
If an abstract rewrite system (A,→) is an extension of (A′,→′) and →′ is
confluent then (A′,→′) is conservative over (A,→).

Since →̃βA extends →β , and →̃βA is confluent, →̃βA must be conservative
(Ehrhard–Regnier, TCS, 2003).

But wait. . . that would work when −1 ∈ A too.

Definition
(A,→) extends (A′,→′) if:

A ⊆ A′,
→ =→′ ∩ (A×A)
A is closed under →′, i.e. a ∈ A and a→′ a′ implies a′ ∈ A.

→̃βA does not extend →β in this sense!
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A first conservativity non-proof

Theorem (TeReSe, Exercise 1.3.21.(iii))
If an abstract rewrite system (A,→) is an extension of (A′,→′) and →′ is
confluent then (A′,→′) is conservative over (A,→).

Since →̃βA extends →β , and →̃βA is confluent, →̃βA must be conservative
(Ehrhard–Regnier, TCS, 2003).
But wait. . . that would work when −1 ∈ A too.

Definition
(A,→) extends (A′,→′) if:

A ⊆ A′,
→ =→′ ∩ (A×A)
A is closed under →′, i.e. a ∈ A and a→′ a′ implies a′ ∈ A.

→̃βA does not extend →β in this sense!
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Another conservativity proof (V., RTA’07)

x / x

M / s

λx.M / λx.s

M / s N / T

M N / sT

M / s ∈ support (S)
M / S

Lemma
Assume A is positive. If S →̃βA S′ and M ′ / S′ then there exists M / S with
M →β M

′.

Proof. Idea: since A is positive, M ′ necessarily comes from subterms of S′,
obtained by reducing subterms of S.

Wrong!

∆ (M +N)→βA (M +N) (M +N) . M N .
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A partial conservativity proof (V., CSL’17)

Let F (S) denote the full parallel reduct of S (fire all redexes simultaneously).

Lemma
If S →n

βA
S′ then S′ →∗βA

Fn (S).

Theorem
Assume A is positive. If M 'βA N and M is β-normalizable then
N →∗β NF (M).

Proof. By confluence, N →∗βA
NF (M).

By the previous Lemma, NF (M)→∗βA
F∗ (N).

By positivity, NF (M) = L∗(N).
We always have N →∗β L(N).
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Yet another partial conservativity proof (V., CSL’17)

Let Θ (S) denote the Taylor expansion of S.

Lemma
If M ∈ Λ, Θ (M) is normalizable and NF (Θ (M)) = Θ (BT (M)).

Lemma
Assume A is positive. If S →βA S′ then Θ (S)→ Θ (S′).

Lemma
If τ is normalizable and τ → τ ′ then τ ′ is normalizable and NF (τ) = NF (τ ′).

Corollary
Assume A is positive. If M 'βA N then BT (M) = BT (N).
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A simple and (hopefully) correct proof

J.w.w. Emma Kerinec (now at Paris 13).

Idea
Define a variant ≺ of /, such that M ≺ S →̃βA S′ implies M ≺ S′.

Interestingly, the definition focusses on β-expansion rather than →̃βA .
The technique rings some bells. . .
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A relation between λ-terms and algebraic λ-terms

M →∗β x

M ≺ x

M →∗β λx.N N ≺ s

M ≺ λx.s

M →∗β N P N ≺ s P ≺̂ T

M ≺ s T

M ≺ s for each s ∈ support (S)

M ≺̂ S
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Admissible rules (=lemmas)

M →∗β λx.N N ≺̂ S

M ≺̂ λx.S

M →∗β N P N ≺̂ S P ≺̂ T

M ≺̂ S T
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Here it goes
Lemma
If M ∈ Λ then M ≺M .

Proof. Easy induction on M .

Lemma
If M ≺ N ∈ Λ then M →∗β N .

Lemma
If M →β M

′ ≺̂ S then M ≺̂ S.

Lemma
If M ≺̂ S and N ≺̂ T then M [N/x] ≺̂ S [T/x].

Lemma
If M ≺̂ S →̃

β̃
S′ then M ≺̂ S′.

Theorem
If M →̃

β̃

∗
M ′ then M →∗β M ′.
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Proof. Easy induction on the derivation of M ≺̂ S, using the previous Lemma
in the variable case.
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Conclusions

Of course, this is the well known /please help us find the reference/
technique.

Maybe this can be applied elsewhere (e.g., for the conservativity of
reduction on Taylor expansion).
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