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Non-determinism in the A-calculus

M,N,...:=xz | Xe.M | MN|M+N
Ax.M N —g M [N/x]

and

M+ N—, M (or N)



Non-determinism in the A-calculus, contextually

M,N,...:=xz | Xe.M | MN|M+N
Ax.M N —g M [N/z]

up to:

M+NP=MP+NP Az. (M + N) = Az.M + \z.N

somehow tmplicitly call-by-name



Quantitative non-determinism in the A-calculus
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Ax.M N —g M [N/z]
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M+NP=MP+NP Az. (M + N) = Az.M + \z.N
0P=0 Az.0 =0

somehow tmplicitly call-by-name



Quantitative non-determinism in the A-calculus
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aMP=aMP Az. (a.M) = a x.M

somehow implicitly call-by-name
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Quantitative non-determinism in the A-calculus

M,N,...:=x | M| MN|M+N|0|aM (a€ A, some semiring)

Ax.M N —g M [N/x]

up to:
M+NP=MP+NP Ax. (M + N) =X e.M + A\z.N
0P=0 Az.0 =10
aMP=aMP Az. (a.M) = a x.M

up to module equations:

M+N=N+M OM=0 aM+bM=(a+b.M

A common framework for non-determinism, probabilistic distributions,
quantum stuff, ...
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Some issues
Reflexivity
M=M+0.N -3 M+0.N"=M ~» no normal form

Solutions:

o Arrighi-Dowek, RTA’08: orient module equations (except for AC), e.g.,
0.M — 0 a.M+bM — (a+b).M

o Automatically conservative: reductions from A-terms are S-reductions.
o Confluence in this case?
e Ehrhard-Regnier, TCS, 2003: a two-layered syntax with base terms ws
linear combinations.
o Confluence is easy.
o Conservativity in this case?
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Some issues

Reflexivity
M=M+0.N —3 M+0.N"=M ~» no normal form

Solutions:
° .« .

e Ehrhard—Regnier, TCS, 2003: a two-layered syntax with base terms ws
linear combinations.

o Confluence is easy.
o Conservativity in this case?

Condider ooy := Fix Az. (M + z) so that conr ~g M + oon.
Then 0 = copr — ooy g M + ocopr — copr = M for any term M
Solutions:

e Arrighi-Dowek, RTA’08: algebraic rewriting on closed normal forms.

o Typing (Church-style): we have models (Ehrhard, MSCS, 2005, etc.).
e V., RTA’07: consider positive coefficients only.



Some issues

Reflexivity
M=M+0.N —3 M+0.N"=M ~» no normal form

Solutions:
° .« .

e Ehrhard—Regnier, TCS, 2003: a two-layered syntax with base terms ws
linear combinations.

o Confluence is easy.
o Conservativity in this case?

Condider ooy := Fix Az. (M + z) so that conr ~g M + oon.
Then 0 = copr — ooy g M + ocopr — copr = M for any term M

Solutions:
e Arrighi-Dowek, RTA’08: algebraic rewriting on closed normal forms.
o Typing (Church-style): we have models (Ehrhard, MSCS, 2005, etc.).
e V., RTA’07: consider positive coefficients only.

Plenty of other nicely weird (or weirdly nice) stuff. ..



The algebraic A-calculus (V., RTA07)

simple terms: Aads,t,...o=x | x.s|sT
terms: A[AA] 2S5 T,... = Zai.si
i=1
Ar.S = Z S A\x.s ST := Z Ss.sT

sEsupport(S) sEsupport(S)



The algebraic A-calculus (V., RTA'07)

simple terms: Aads,t,...o=x | x.s|sT
terms: A[AA] 2S5 T,... = Zai.si
i=1
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The algebraic A-calculus (V., RTA'07)
aka the differential A-calculus without the differential

simple terms: Aads,t,...o=x | x.s|sT
terms: A[AA] 2S5 T,... = Zai.si
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The algebraic A-calculus (V., RTA'07)
aka the differential \-calculus without the differential

simple terms: Aads,t,...o=x | x.s|sT
terms: A[AA] 2S5 T,... = Zai.si
i=1
Ar.S = Z Ss.\x.s ST := Z Ss.sT
sEsupport(S) sEsupport(S)

(Az.s) T —p, s[T/x]

s —ga S s —ga S T—=p, T’ s =g, S
Az.s =g, Ax.S’ sT —p, S'T sT —p, sT' sT —p, S'T
s, S a#0
as+T =g, a.8"+T

Theorem (Ehrhard-Regnier, TCS, 2003)

34 s confluent



Conservativity

Theorem

If A is positive, then the algebraic \-calculus is a conservative extension of the
ordinary \-calculus:

if M,N € A and M ~g, N then M ~g N.



Conservativity

We say A is positive if: a +b =0 implies a = b = 0.

Theorem

If A is positive, then the algebraic \-calculus is a conservative extension of the
ordinary \-calculus:

if M,N € A and M ~g, N then M ~g N.



A first conservativity proof

Theorem (TeReSe, Exercise 1.3.21.(iii))

If an abstract rewrite system (A, —) is an extension of (A’,—') and —' is
confluent then (A’,—') is conservative over (A, —).

Since =g, extends —g, and =g, is confluent, =3, must be conservative
(Ehrhard-Regnier, TCS, 2003).
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A first conservativity non-proof

Theorem (TeReSe, Exercise 1.3.21.(iii))

If an abstract rewrite system (A, —) is an extension of (A’,—') and —' is
confluent then (A’,—') is conservative over (A, —).

Since =g, extends —g, and =g, is confluent, =3, must be conservative
(Ehrhard-Regnier, TCS, 2003).
But wait... that would work when —1 € A too.
Definition
(A, —) extends (A’,—') if:
e ACA,
o - =—="N(AxA)

o A is closed under —', i.e. a € A and a —' a' implies o' € A.

— 3, does not extend —3 in this sense!



Another conservativity proof (V., RTA07)

M«s Mas NaT M<s e support(S)
rz<ax Ax.M < )dx.s MN«sT M«aS

Lemma
Assume A is positive. If S =p, S" and M’ < S’ then there exists M <.S with
M —B M.

Proof. Idea: since A is positive, M’ necessarily comes from subterms of S’,
obtained by reducing subterms of S.



Another conservativity non-proof (V., RTA07)

M«s Mas NaT M<s e support(S)
rz<ax Ax.M < )dx.s MN«sT M«aS

Lemma

Assume A is positive. If S =p, S" and M’ < S’ then there exists M <.S with
M —B M.

Proof. Idea: since A is positive, M’ necessarily comes from subterms of S’,
obtained by reducing subterms of S. [

Wrong!

AM+N)—p, (M+N)(M+N)>MN.



A partial conservativity proof (V., CSL'17)

Let F (S) denote the full parallel reduct of S (fire all redexes simultaneously).

Lemma
If S =7, S then S’ —%, F™(S).

Theorem

Assume A is positive. If M ~g, N and M is $-normalizable then
N —% NF (M).

Proof. e By confluence, N =% NF (M).
o By the previous Lemma, NF (M) —%, F* (N).
e By positivity, NF (M) = L*(N).
o We always have N —7% L(N).



Yet another partial conservativity proof (V., CSL'17)

Let © (S) denote the Taylor expansion of S.
Lemma

If M € A, © (M) is normalizable and NF (© (M)) = © (BT (M)).

Lemma
Assume A is positive. If S —p, S’ then © (S) — © ().

Lemma

If T is normalizable and T — 7' then 7' is normalizable and NF (7) = NF (7).

Corollary
Assume A is positive. If M ~g, N then BT (M) =BT (N).



A simple and (hopefully) correct proof

J.w.w. Emma Kerinec (now at Paris 13).

Idea
Define a variant < of <, such that M < S =g, S’ implies M < 5.

o Interestingly, the definition focusses on S-expansion rather than =g, .
@ The technique rings some bells. . .

10



A relation between A-terms and algebraic A-terms

M—)Em
M <x

M —>}§ A.N N <s
M < A\x.s

M—=5NP N<s PXT
M < sT

M < s for each s € support (S)
M=S

11



Admissible rules (=lemmas)

M —% \e.N NZXS

M 2 M\x.S

M—3NP N=XS PXIT
MZXST

12



Here it goes
Lemma
If M € A then M < M.

Proof. Easy induction on M.

13



Here it goes

Lemma
If M € A then M < M.

Lemma
If M < N €A then M —% N.

Proof. Easy induction on the derivation of M < N.
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Here it goes

Lemma
If M € A then M < M.

Lemma
If M < N €A then M —% N.

Lemma
If M =5 M' < S then M < S.

Proof. Easy induction on the derivation of M’ < S.
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Here it goes

Lemma,
If M € A then M < M.

Lemma
If M < N €A then M —% N.

Lemma

If M —5 M' < S then M = S.

Lemma

IfM =S and N X T then M [N/x] 2 S[T/x].

Proof. Easy induction on the derivation of M = S, using the previous Lemma
in the variable case. 0

13



Here it goes

Lemma,
If M € A then M < M.

Lemma
If M < N €A then M —% N.

Lemma

If M —5 M' < S then M = S.

Lemma

IfM =S and N X T then M [N/x] 2 S[T/x].
Lemma

If M =3 S=55 then M < S'.

Proof. Easy induction on the derivation of S :B; S’, using the previous
Lemma in the redex case.

13



Here it goes

Lemma
If M € A then M < M.

Lemma
If M < N €A then M —5 N.

Lemma
If M —5 M' < S then M = S.

Lemma

IfM XS and N X T then M [N/x] 2 S[T/x].

Lemma
If M =3 8 =5 8" then M 2.

Theorem
If M —>bv* M’ then M —75 M'.
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Conclusions

o Of course, this is the well known /please help us find the reference/
technique.
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Conclusions

o Of course, this is the well known /please help us find the reference/
technique.

e Maybe this can be applied elsewhere (e.g., for the conservativity of
reduction on Taylor expansion).

14



