
Extensional and Intensional
Semantic Universes: A Denotational

Model of Dependent Types

Valentin Blot Jim Laird
INRIA, LMF

Université Paris-Saclay University of Bath



Denotational semantics

▶ Fully abstract semantics for PCF
▶ Scott domains

no full abstraction (parallel or)
▶ stable functions

no full abstraction (Gustave)
▶ sequential algorithms

full abstraction for SPCF
▶ game semantics

full abstraction through an extensional collapse

▶ Semantics for dependent types
▶ Scott domains (Palmgren - Stoltenberg-Hansen)
▶ game semantics (Vákár, Abramsky, Jagadeesan)
▶ stable functions + sequential algorithms (this talk)

1/17



Two semantic universes
Intensional

Types
concrete data structures

cells (opponent moves)
values (player moves)

Terms
sequential algorithms

computation strategies

Extensional
Types
dI-domains

particular Scott domains

Terms
stable functions

particular cont. functions
99

extensional quotient

+ a dI-domain I of all concrete data structures
extensional terms in I are intensional types

2/17



The intensional universe

3/17



Intensional dependent types in game semantics

Example: Π (n : nat) .vec (n)
opponent player

Π (n : nat) vec (n)
?i

?
i − 1

what!?

▶ Opponent move ?i should restrict plays on the left
▶ Game semantics is too intensional

4/17



Intensional dependent types in game semantics

Example: Π (n : nat) .vec (n)
opponent player

Π (n : nat) vec (n)
?i

?

i − 1
what!?

▶ Opponent move ?i should restrict plays on the left
▶ Game semantics is too intensional

4/17



Intensional dependent types in game semantics

Example: Π (n : nat) .vec (n)
opponent player

Π (n : nat) vec (n)
?i

?
i − 1

what!?

▶ Opponent move ?i should restrict plays on the left
▶ Game semantics is too intensional

4/17



Intensional dependent types in game semantics

Example: Π (n : nat) .vec (n)
opponent player

Π (n : nat) vec (n)
?i

?
i − 1

what!?

▶ Opponent move ?i should restrict plays on the left
▶ Game semantics is too intensional

4/17



Intensional dependent types in game semantics

Example: Π (n : nat) .vec (n)
opponent player

Π (n : nat) vec (n)
?i

?
i − 1

what!?

▶ Opponent move ?i should restrict plays on the left
▶ Game semantics is too intensional

4/17



Game semantics vs. sequential algorithms

Game semantics
(nat → nat) → nat

?

?
?
n

m
n

m′

p

Sequential algorithms

arg (nat → nat) → nat
⊥ ?

?
{} ?

n
{n 7→ m} m

�n
p

▶ Sequential algorithms are constrained by nature
▶ The argument grows monotonically, step by step

5/17



Game semantics vs. sequential algorithms

Game semantics
(nat → nat) → nat

?
?

?
n

m

n
m′

p

Sequential algorithms

arg (nat → nat) → nat
⊥ ?

?
{} ?

n
{n 7→ m} m

�n
p

▶ Sequential algorithms are constrained by nature
▶ The argument grows monotonically, step by step

5/17



Game semantics vs. sequential algorithms

Game semantics
(nat → nat) → nat

?
?

?
n

m
n

m′

p

Sequential algorithms

arg (nat → nat) → nat
⊥ ?

?
{} ?

n
{n 7→ m} m

�n
p

▶ Sequential algorithms are constrained by nature
▶ The argument grows monotonically, step by step

5/17



Game semantics vs. sequential algorithms

Game semantics
(nat → nat) → nat

?
?

?
n

m
n

m′

p

Sequential algorithms

arg (nat → nat) → nat
⊥ ?

?
{} ?

n
{n 7→ m} m

�n
p

▶ Sequential algorithms are constrained by nature
▶ The argument grows monotonically, step by step

5/17



Game semantics vs. sequential algorithms

Game semantics
(nat → nat) → nat

?
?

?
n

m
n

m′

p

Sequential algorithms

arg (nat → nat) → nat
⊥ ?

?
{} ?

n
{n 7→ m} m

�n
p

▶ Sequential algorithms are constrained by nature
▶ The argument grows monotonically, step by step

5/17



Game semantics vs. sequential algorithms

Game semantics
(nat → nat) → nat

?
?

?
n

m
n

m′

p

Sequential algorithms

arg (nat → nat) → nat
⊥ ?

?
{} ?

n
{n 7→ m} m

�n
p

▶ Sequential algorithms are constrained by nature
▶ The argument grows monotonically, step by step

5/17



Game semantics vs. sequential algorithms

Game semantics
(nat → nat) → nat

?
?

?
n

m
n

m′

p

Sequential algorithms

arg (nat → nat) → nat
⊥ ?

?
{} ?

n
{n 7→ m} m

�n
p

▶ Sequential algorithms are constrained by nature
▶ The argument grows monotonically, step by step

5/17



Game semantics vs. sequential algorithms

Game semantics
(nat → nat) → nat

?
?

?
n

m
n

m′

p

Sequential algorithms

arg (nat → nat) → nat
⊥ ?

?
{} ?

n
{n 7→ m} m

�n

p

▶ Sequential algorithms are constrained by nature
▶ The argument grows monotonically, step by step

5/17



Game semantics vs. sequential algorithms

Game semantics
(nat → nat) → nat

?
?

?
n

m
n

m′

p

Sequential algorithms

arg (nat → nat) → nat
⊥ ?

?
{} ?

n
{n 7→ m} m

�n
p

▶ Sequential algorithms are constrained by nature
▶ The argument grows monotonically, step by step

5/17



Game semantics vs. sequential algorithms

Game semantics
(nat → nat) → nat

?
?

?
n

m
n

m′

p

Sequential algorithms

arg (nat → nat) → nat
⊥ ?

?
{} ?

n
{n 7→ m} m

�n
p

▶ Sequential algorithms are constrained by nature
▶ The argument grows monotonically, step by step

5/17



Intensional dependent types in sequential algorithms
> 0?

= 0
��

> 0
��

> 1?
��

= 1
��

> 1
��

> 2?
��

= 2
��

> 2
��

> 3?
��

= 3
��

> 3
��

...

arg Π (n : nat) vec (n)

> 1 ?1
> 0?

> 1 > 0
> 1?

> 1 ��= 1
> 1 > 1

> 2?
> 2 > 2

> 3?
= 3 = 3

()

▶ Opponent move ?1 restricts the argument to be > 1

6/17



Intensional dependent types in sequential algorithms
> 0?

= 0
��

> 0
��

> 1?
��

= 1
��

> 1
��

> 2?
��

= 2
��

> 2
��

> 3?
��

= 3
��

> 3
��

...

arg Π (n : nat) vec (n)
> 1 ?1

> 0?
> 1 > 0

> 1?
> 1 ��= 1
> 1 > 1

> 2?
> 2 > 2

> 3?
= 3 = 3

()

▶ Opponent move ?1 restricts the argument to be > 1

6/17



Intensional dependent types in sequential algorithms
> 0?

= 0
��

> 0
��

> 1?
��

= 1
��

> 1
��

> 2?
��

= 2
��

> 2
��

> 3?
��

= 3
��

> 3
��

...

arg Π (n : nat) vec (n)
> 1 ?1

> 0?
> 1 > 0

> 1?
> 1 ��= 1
> 1 > 1

> 2?
> 2 > 2

> 3?
= 3 = 3

()

▶ Opponent move ?1 restricts the argument to be > 1

6/17



Intensional dependent types in sequential algorithms
> 0?

= 0
��

> 0
��

> 1?
��

= 1
��

> 1
��

> 2?
��

= 2
��

> 2
��

> 3?
��

= 3
��

> 3
��

...

arg Π (n : nat) vec (n)
> 1 ?1

> 0?
> 1 > 0

> 1?
> 1 ��= 1

> 1 > 1
> 2?

> 2 > 2
> 3?

= 3 = 3
()

▶ Opponent move ?1 restricts the argument to be > 1

6/17



Intensional dependent types in sequential algorithms
> 0?

= 0
��

> 0
��

> 1?
��

= 1
��

> 1
��

> 2?
��

= 2
��

> 2
��

> 3?
��

= 3
��

> 3
��

...

arg Π (n : nat) vec (n)
> 1 ?1

> 0?
> 1 > 0

> 1?
> 1 ��= 1
> 1 > 1

> 2?
> 2 > 2

> 3?
= 3 = 3

()

▶ Opponent move ?1 restricts the argument to be > 1

6/17



Intensional dependent types in sequential algorithms
> 0?

= 0
��

> 0
��

> 1?
��

= 1
��

> 1
��

> 2?
��

= 2
��

> 2
��

> 3?
��

= 3
��

> 3
��

...

arg Π (n : nat) vec (n)
> 1 ?1

> 0?
> 1 > 0

> 1?
> 1 ��= 1
> 1 > 1

> 2?
> 2 > 2

> 3?
= 3 = 3

()

▶ Opponent move ?1 restricts the argument to be > 1

6/17



Intensional dependent types in sequential algorithms
> 0?

= 0
��

> 0
��

> 1?
��

= 1
��

> 1
��

> 2?
��

= 2
��

> 2
��

> 3?
��

= 3
��

> 3
��

...

arg Π (n : nat) vec (n)
> 1 ?1

> 0?
> 1 > 0

> 1?
> 1 ��= 1
> 1 > 1

> 2?
> 2 > 2

> 3?
= 3 = 3

()

▶ Opponent move ?1 restricts the argument to be > 1

6/17



Intensional dependent types in sequential algorithms
> 0?

= 0
��

> 0
��

> 1?
��

= 1
��

> 1
��

> 2?
��

= 2
��

> 2
��

> 3?
��

= 3
��

> 3
��

...

arg Π (n : nat) vec (n)
> 1 ?1

> 0?
> 1 > 0

> 1?
> 1 ��= 1
> 1 > 1

> 2?
> 2 > 2

> 3?
= 3 = 3

()

▶ Opponent move ?1 restricts the argument to be > 1

6/17



Intensional dependent types in sequential algorithms
> 0?

= 0
��

> 0
��

> 1?
��

= 1
��

> 1
��

> 2?
��

= 2
��

> 2
��

> 3?
��

= 3
��

> 3
��

...

arg Π (n : nat) vec (n)
> 1 ?1

> 0?
> 1 > 0

> 1?
> 1 ��= 1
> 1 > 1

> 2?
> 2 > 2

> 3?
= 3 = 3

()

▶ Opponent move ?1 restricts the argument to be > 1

6/17



The extensional universe

7/17



A model of the extensional universe
Refinement of Palmgren - Stoltenberg-Hansen’s
▶ The class DOM of dI-domains is a dI-domain.
▶ DOM-parametrization:

F : D → DOM stable

(where D is a dI-domain)

▶ Dependent stable function on F :

f : D →
⋃

x∈D
F (x) stable with f (x) ∈ F (x)

these form a dI-domain Π(D, F )

▶ Dependent pair on F :

p ∈ D ×
⋃

x∈D
F (x) with π2 (f ) ∈ F (π1 (f ))

these form a dI-domain Σ(D, F )
8/17



Relating the two universe

9/17



Categories with families

A category with families is:
▶ a functor :

F : Cop → Fam
Γ 7→ (Term(Γ, T ))T∈Type(Γ)

where Fam is the category of set-indexed families of sets

▶ a terminal object (empty context) in C

▶ a context extension operation:
if Γ ∈ C and T ∈ Type(Γ) then Γ.T ∈ C such that for all...

A category with families is a model of type theory

10/17



Intensional and extensional categories with families

Cop
I →Fam

M 7→(TermI(M, A))A∈TypeI(M)

▶ CI :
▶ objects:

concrete data structures
▶ morphisms:

sequential algorithms
▶ TypeI(M):

A : D(M) → CDS stable
▶ TermI(M, A):

dependent seq. algorithms

Cop
E →Fam

D 7→(TermE(D, F ))F∈TypeE (D)
▶ CE :

▶ objects:
dI-domains

▶ morphisms:
stable functions

▶ TypeE(D):
F : D → DOM cont.

▶ TermI(D, F ):
dependent stable functions

Universe hierarchy: extensional terms are intensional types

11/17



Intensional and extensional categories with families

Cop
I →Fam

M 7→(TermI(M, A))A∈TypeI(M)

▶ CI :
▶ objects:

concrete data structures
▶ morphisms:

sequential algorithms
▶ TypeI(M):

A : D(M) → CDS stable
▶ TermI(M, A):

dependent seq. algorithms

Cop
E →Fam

D 7→(TermE(D, F ))F∈TypeE (D)
▶ CE :

▶ objects:
dI-domains

▶ morphisms:
stable functions

▶ TypeE(D):
F : D → DOM cont.

▶ TermI(D, F ):
dependent stable functions

Universe hierarchy: extensional terms are intensional types

11/17



Extensional quotient

FI : Cop
I → Fam

M 7→ (TermI(M, A))A∈TypeI(M)

FE : Cop
E → Fam

D 7→ (TermE(D, F ))F∈TypeE (D)

G : CI → CE sends:
▶ a CDS M to the dI-domain D(M) of its states
▶ a sequential algorithm a : M → N to the function it computes

fun(a) : D(M) → D(N)
ϕ : FI → FE ◦ Gop natural transformation s.t. ϕM sends:
▶ A : D(M) → CDS to G ◦ A : D(M) → DOM
▶ dependent seq. alg. a to dependent stable function fun(a)

Universe cumulativity: any term/type in I can be lifted to E

12/17



A type theory with two universes
▶ Intensional and extensional universes

Γ ⊢I t : T Γ ⊢E t : T Γ ⊢E T : I
Γ ⊢I T type

▶ Cumulativity
Γ ⊢I t : T
Γ ⊢E t : T

▶ Dependent products and sums

ΠU (x : S) .T type ΣU (x : S) .T type for U ∈ {I, E}

▶ Booleans

⊢U tt, ff : bool
Γ, x : bool ⊢U T type Γ ⊢U t1 : T [tt/x ] . . .

Γ ⊢U If s then t1 else t2 : T [s/x ]
▶ General recursion

Γ, x : T ⊢U t : T
Γ ⊢U µx .t : T

(and therefore recursive types)
13/17



Expressivity
▶ Function types:

T → U ::= Π (x : T ) .U if x /∈ FV (U)
▶ Product types:

T × U ::= Σ (x : T ) .U if x /∈ FV (U)
▶ Unit:

1 ::= µx : I.x
▶ Disjoint sum:

T ⊕ U ::= Σ (x : bool) .If x then T else U
▶ Natural numbers:

nat ::= µx : I.1 ⊕ x
▶ Vectors of booleans:

vec ::= µf : nat → I.
λx : nat.If π1 (x) then 1 else B × f (π2 (x))

14/17



A programming language for the intensional universe
We define a straightforward operational semantics and we get:

Theorem (Computational adequacy)
If ⊢I t : bool then t ⇓ tt ⇐⇒ [t]I = [tt]I

For full completeness of the finite fragment and for full abstraction
we need to extend our language:

Γ, k : bool ⊢I t : bool
Γ ⊢I catch (k) .t : bool

catch (k) .E [k] → tt catch (k) .v → ff

t = If catch (k) .t then (If k then t [tt/k] else t [ff/k])
else t [tt/k]

t = If s then t else t, provided t : If s then T else T
15/17



Full completeness and full abstraction

Finite total fragment: no recursion except 1 ::= µx : I.x
We have full completeness:

Theorem (Full completeness)
For finite Γ ⊢I T type and total x ∈ [T ]ΓI there exists a finite term
Γ ⊢I tx : T with [tx ]ΓI = x.

We obtain finite definability in the full theory and therefore full
abstraction:

Theorem (Full abstraction)
If Γ ⊢I t1, t2 : T then t1 ≲Γ

T t2 ⇐⇒ [t1]ΓI ⊆ [t2]ΓI

16/17



Towards identity types

For M a concrete data structure:

Eq : D(M) × D(M) → CDS
(x , y) 7→ ”x ∩ y”

▶ x ∈ Eq (x , x).

▶ If x ∪ y ∈ D(M) then Eq (x , y) is the down-closure of
x ∩ y ∈ D(M). In particular we can have
Eq (x , y) ̸= {⊥} = [µx .x ].

▶ If x and y are total then Eq (x , y) contains a total element if
and only if x = y .

17/17


