Extensional and Intensional

Semantic Universes: A Denotational Model of Dependent Types

Valentin Blot
Jim Laird

INRIA, LMF
Université Paris-Saclay
University of Bath

Denotational semantics

- Fully abstract semantics for PCF
- Scott domains
no full abstraction (parallel or)
- stable functions no full abstraction (Gustave)
- sequential algorithms full abstraction for SPCF
- game semantics full abstraction through an extensional collapse
- Semantics for dependent types
- Scott domains (Palmgren - Stoltenberg-Hansen)
- game semantics (Vákár, Abramsky, Jagadeesan)
- stable functions + sequential algorithms (this talk)

Two semantic universes

Intensional

Extensional

Types

concrete data structures
cells (opponent moves)
values (player moves)

Terms

sequential algorithms
computation strategies

Types

dl-domains
particular Scott domains

Terms

stable functions
particular cont. functions

extensional quotient

+ a dl-domain \mathcal{I} of all concrete data structures extensional terms in \mathcal{I} are intensional types

The intensional universe

Intensional dependent types in game semantics

Example: Π (n : nat) .vec (n)

$$
\Pi(n: \text { nat }) \quad \begin{gathered}
\text { vec }(n) \\
?_{i}
\end{gathered}
$$

Intensional dependent types in game semantics

Example: Π (n : nat) .vec (n)

$$
\Pi(n: \text { nat }) \quad \begin{gathered}
\operatorname{vec}(n) \\
?_{i}
\end{gathered}
$$

?

Intensional dependent types in game semantics

Example: Π (n : nat) .vec (n)

$$
\Pi(n: \text { nat }) \quad \operatorname{vec}(n)
$$

$$
?
$$

$$
i-1
$$

Intensional dependent types in game semantics

Example: $\Pi(n$: nat $) . \operatorname{vec}(n)$

$$
\begin{array}{cc}
\Pi(n: \text { nat }) & \operatorname{vec}(n) \\
? & ?_{i} \\
i-1 & \\
& \text { what!? }
\end{array}
$$

Intensional dependent types in game semantics

Example: Π (n : nat) .vec (n)

- Opponent move ? ${ }_{i}$ should restrict plays on the left
- Game semantics is too intensional

Game semantics vs. sequential algorithms

Game semantics

(nat \rightarrow nat) \rightarrow nat

?

Game semantics vs. sequential algorithms

Game semantics
(nat \rightarrow nat) \rightarrow nat
?
?
n
m

Game semantics vs. sequential algorithms

Game semantics

```
(nat }->\mathrm{ nat) }->\mathrm{ nat
    ?
?
n
    m
    n
        m
```


Game semantics vs. sequential algorithms

Game semantics

(nat \rightarrow nat $) \rightarrow$ nat
?
?
n
m
n
m^{\prime}
p

Game semantics vs. sequential algorithms

Game semantics

(nat \rightarrow nat) \rightarrow nat ?
?

$$
?
$$

$$
n
$$

n

$$
m^{\prime}
$$

 \(m\)
 \(n\)

Sequential algorithms

$$
\underset{\perp}{\arg } \quad(\text { nat } \rightarrow \text { nat }) \rightarrow \underset{\text { nat }}{?}
$$

Game semantics vs. sequential algorithms

Game semantics

Game semantics vs. sequential algorithms

Game semantics
(nat \rightarrow nat) \rightarrow nat
?

Sequential algorithms

?
?
n
\{\} ?
n

$$
\{n \mapsto m\} \quad m
$$

$$
m^{\prime}
$$

p

Game semantics vs. sequential algorithms

Game semantics
(nat \rightarrow nat) \rightarrow nat
?
$\underset{\perp}{\arg } \quad($ nat \rightarrow nat $) \rightarrow$ nat
?
?
n
m

$\{n \mapsto m\}$
m
n
m^{\prime}
p

Game semantics vs. sequential algorithms

Game semantics
(nat \rightarrow nat) \rightarrow nat
?
?
n

Sequential algorithms

n
$\arg \quad($ nat \rightarrow nat $) \rightarrow$ nat
\perp
?
?
\{\} ?
n

$$
\{n \mapsto m\} \quad m
$$

m^{\prime}
m
カ
p
p

Game semantics vs. sequential algorithms

Game semantics

?
?
n

Sequential algorithms

$$
\underset{\perp}{\arg } \quad(\text { nat } \rightarrow \text { nat }) \rightarrow \text { nat }
$$

\{\} ?
n

$$
\{n \mapsto m\} \quad m
$$

n
m^{\prime}
p

- Sequential algorithms are constrained by nature
- The argument grows monotonically, step by step

Intensional dependent types in sequential algorithms

$$
\arg \quad \Pi(n: \text { nat }) \quad \operatorname{vec}(n)
$$

Intensional dependent types in sequential algorithms

\arg	$\Pi(n:$ nat $)$	$\mathbf{v e c}(n)$
>1		

Intensional dependent types in sequential algorithms

\arg $\Pi(n:$ nat $)$	$\mathbf{v e c}(n)$	
>1		$?_{1}$
>1	$>0 ?$	
	>0	

Intensional dependent types in sequential algorithms

\arg $\Pi(n:$ nat $)$	$\mathbf{v e c}(n)$	
>1		$?_{1}$
	$>0 ?$	
>1	>0	
>1	$>1 ?$	
	>1	

Intensional dependent types in sequential algorithms

$$
\begin{array}{ccc}
\arg & \Pi(n: \text { nat }) & \boldsymbol{\operatorname { v e c } (n)} \\
>1 & & ?_{1} \\
& >0 ? & \\
>1 & >0 & \\
& >1 ? & \\
>1 & >1 & \\
>1 & >1
\end{array}
$$

Intensional dependent types in sequential algorithms

$$
\begin{array}{ccc}
\text { arg } & \Pi(n: \text { nat }) & \mathbf{v e c}(n) \\
>1 & ?_{1} \\
& >0 ? & \\
>1 & >0 & \\
& >1 ? & \\
>1 & >1 & \\
>1 & >1 & \\
& >2 ? & \\
>2 & >2
\end{array}
$$

Intensional dependent types in sequential algorithms

$$
\begin{array}{ccc}
\arg & \Pi(n: \text { nat }) & \mathbf{v e c}(n) \\
>1 & & ?_{1} \\
& >0 ? & \\
>1 & >0 & \\
& >1 ? & \\
>1 & \neq 1 & \\
>1 & >1 \\
& >2 ? & \\
>2 & >2 & \\
& >3 ? & \\
=3 & =3
\end{array}
$$

Intensional dependent types in sequential algorithms

\arg	$\Pi(n:$ nat $)$
>1	$\mathbf{v e c}(n)$
>1	$>0 ?$
	>0
>1	$>1 ?$
>1	>1
	>1
>2	$>2 ?$
	>2
$=3$	$>3 ?$
	$=3$

()

Intensional dependent types in sequential algorithms

$$
\begin{array}{ccc}
\begin{array}{cc}
\arg & \Pi(n: \text { nat })
\end{array} & \mathbf{v e c}(n) \\
>1 & & ?_{1} \\
& >0 ? \\
>1 & >0 \\
& >1 ? \\
>1 & >1 \\
>1 & >1 \\
& >2 ? \\
>2 & >2 \\
& >3 ? \\
=3 & =3
\end{array}
$$

- Opponent move ? ${ }_{1}$ restricts the argument to be >1

The extensional universe

A model of the extensional universe

Refinement of Palmgren - Stoltenberg-Hansen's

- The class $\mathcal{D O M}$ of dl-domains is a dl-domain.
- $\mathcal{D O}$ - -parametrization:

$$
\begin{aligned}
F: D & \rightarrow \mathcal{D} \mathcal{O} \mathcal{M} \text { stable } \\
& \text { (where } D \text { is a dl-domain) }
\end{aligned}
$$

- Dependent stable function on F :

$$
\begin{aligned}
& f: D \rightarrow \bigcup_{x \in D} F(x) \text { stable with } f(x) \in F(x) \\
& \text { these form a dl-domain } \Pi(D, F)
\end{aligned}
$$

- Dependent pair on F :

$$
p \in D \times \bigcup_{x \in D} F(x) \text { with } \pi_{2}(f) \in F\left(\pi_{1}(f)\right)
$$

these form a dl-domain $\Sigma(D, F)$

Relating the two universe

Categories with families

A category with families is:

- a functor:

$$
\begin{aligned}
\mathcal{F}: & \mathcal{C}^{o p} \\
\Gamma & \rightarrow \text { Fam } \\
& \mapsto(\operatorname{Term}(\Gamma, T))_{T \in \operatorname{Type}(\Gamma)}
\end{aligned}
$$

where Fam is the category of set-indexed families of sets

- a terminal object (empty context) in \mathcal{C}
- a context extension operation:
if $\Gamma \in \mathcal{C}$ and $T \in \operatorname{Type}(\Gamma)$ then $\Gamma . T \in \mathcal{C}$ such that for all...
A category with families is a model of type theory

Intensional and extensional categories with families

$\mathcal{C}_{\mathcal{I}}^{\text {op }} \rightarrow$ Fam
$M \mapsto\left(\operatorname{Term}_{\mathcal{I}}(M, A)\right)_{A \in \operatorname{Type}_{\mathcal{I}}(M)}$

- $\mathcal{C}_{\mathcal{I}}$:
- objects:
concrete data structures
- morphisms:
sequential algorithms
- $\operatorname{Type}_{\mathcal{I}}(M)$:
$A: D(M) \rightarrow \mathcal{C D S}$ stable
- $\operatorname{Term}_{\mathcal{I}}(M, A)$:
dependent seq. algorithms
$\mathcal{C}_{\mathcal{E}}^{o p} \rightarrow$ Fam
$D \mapsto\left(\operatorname{Term}_{\mathcal{E}}(D, F)\right)_{F \in \operatorname{Type}_{\mathcal{E}}(D)}$
- $\mathcal{C}_{\mathcal{E}}$:
- objects:
dl-domains
- morphisms:
stable functions
- $\operatorname{Type}_{\mathcal{E}}(D)$:
$F: D \rightarrow \mathcal{D} \mathcal{O} \mathcal{M}$ cont.
- $\operatorname{Term}_{\mathcal{I}}(D, F)$:
dependent stable functions

Intensional and extensional categories with families

$\mathcal{C}_{\mathcal{I}}^{\text {op }} \rightarrow$ Fam
$M \mapsto\left(\operatorname{Term}_{\mathcal{I}}(M, A)\right)_{A \in \operatorname{Type}_{\mathcal{I}}(M)}$

- $\mathcal{C}_{\mathcal{I}}$:
- objects:
concrete data structures
- morphisms:
sequential algorithms
- $\operatorname{Type}_{\mathcal{I}}(M)$:
$A: D(M) \rightarrow \mathcal{C D S}$ stable
- $\operatorname{Term}_{\mathcal{I}}(M, A)$:
dependent seq. algorithms

$$
\begin{aligned}
& \mathcal{C}_{\mathcal{E}}^{o p} \rightarrow \operatorname{Fam}^{D} \mapsto\left(\operatorname{Term}_{\mathcal{E}}(D, F)\right)_{F \in \operatorname{Type}_{\mathcal{E}}(D)} \\
& \mathcal{C}_{\mathcal{E}}: \\
& \text { objects: } \\
& \text { dl-domains } \\
& \text { morphisms: } \\
& \text { stable functions } \\
& \text { Type }_{\mathcal{E}}(D): \\
& F: D \rightarrow \mathcal{D O} \mathcal{M} \text { cont. } \\
& \quad \operatorname{Term}_{\mathcal{I}}(D, F): \\
& \quad \text { dependent stable functions }
\end{aligned}
$$

Universe hierarchy: extensional terms are intensional types

Extensional quotient

$$
\begin{aligned}
\mathcal{F}_{\mathcal{I}}: \mathcal{C}_{\mathcal{I}}^{o p} & \rightarrow \operatorname{Fam}^{M} \mapsto\left(\operatorname{Term}_{\mathcal{I}}(M, A)\right)_{A \in \operatorname{Type}_{\mathcal{I}}(M)} \\
\mathcal{F}_{\mathcal{E}}: & \mathcal{C}_{\mathcal{E}}^{o p} \\
D & \rightarrow \operatorname{Fam}^{D}\left(\operatorname{Term}_{\mathcal{E}}(D, F)\right)_{F \in \operatorname{Type}_{\mathcal{E}}(D)}
\end{aligned}
$$

$G: \mathcal{C}_{\mathcal{I}} \rightarrow \mathcal{C}_{\mathcal{E}}$ sends:

- a CDS M to the dl-domain $D(M)$ of its states
- a sequential algorithm $a: M \rightarrow N$ to the function it computes fun(a): $D(M) \rightarrow D(N)$
$\phi: \mathcal{F}_{\mathcal{I}} \rightarrow \mathcal{F}_{\mathcal{E}} \circ G^{o p}$ natural transformation s.t. ϕ_{M} sends:
- $A: D(M) \rightarrow \mathcal{C D S}$ to $G \circ A: D(M) \rightarrow \mathcal{D O M}$
- dependent seq. alg. a to dependent stable function fun(a)

Universe cumulativity: any term/type in \mathcal{I} can be lifted to \mathcal{E}

A type theory with two universes

- Intensional and extensional universes

$$
\Gamma \vdash_{\mathcal{I}} t: T \quad \Gamma \vdash_{\mathcal{E}} t: T \quad \frac{\Gamma \vdash_{\mathcal{E}} T: \mathcal{I}}{\Gamma \vdash_{\mathcal{I}} T \text { type }}
$$

- Cumulativity

$$
\frac{\Gamma \vdash_{\mathcal{I}} t: T}{\Gamma \vdash_{\mathcal{E}} t: T}
$$

- Dependent products and sums

$$
\Pi_{\mathcal{U}}(x: S) . T \text { type } \quad \Sigma_{\mathcal{U}}(x: S) . T \text { type } \quad \text { for } \underline{\mathcal{U}} \in\{\mathcal{I}, \mathcal{E}\}
$$

- Booleans
$\overline{\vdash_{\mathcal{U}} t t, \text { ff: bool }} \quad \frac{\Gamma, x: \text { bool } \vdash_{\mathcal{U}} T \text { type } \quad \Gamma \vdash_{\mathcal{U}} t_{1}: T[\mathrm{tt} / x] \ldots}{\Gamma \vdash_{\mathcal{U}} \text { If } s \text { then } t_{1} \text { else } t_{2}: T[s / x]}$
- General recursion

$$
\frac{\Gamma, x: T \vdash \mathcal{U} t: T}{\Gamma \vdash_{\mathcal{U}} \mu x . t: T}
$$

(and therefore recursive types)

Expressivity

- Function types:

$$
T \rightarrow U::=\Pi(x: T) . U \text { if } x \notin F V(U)
$$

- Product types:

$$
T \times U::=\Sigma(x: T) . U \text { if } x \notin F V(U)
$$

- Unit:

$$
1::=\mu x: \mathcal{I} \cdot x
$$

- Disjoint sum:

$$
T \oplus U::=\Sigma(x: \text { bool }) . \text { If } x \text { then } T \text { else } U
$$

- Natural numbers:

$$
\text { nat }::=\mu x: \mathcal{I} . \mathbf{1} \oplus x
$$

- Vectors of booleans:

$$
\begin{aligned}
\text { vec }::= & \mu f: \text { nat } \rightarrow \mathcal{I} . \\
& \lambda x: \text { nat.If } \pi_{1}(x) \text { then } \mathbf{1} \text { else } \mathbf{B} \times f\left(\pi_{2}(x)\right)
\end{aligned}
$$

A programming language for the intensional universe We define a straightforward operational semantics and we get:

Theorem (Computational adequacy)
If $\vdash_{\mathcal{I}} t$: bool then $t \Downarrow \mathrm{tt} \Longleftrightarrow[t]_{\mathcal{I}}=[\mathrm{tt}]_{\mathcal{I}}$
For full completeness of the finite fragment and for full abstraction we need to extend our language:

$$
\begin{gathered}
\frac{\Gamma, k: \text { bool } \vdash_{\mathcal{I}} t: \text { bool }}{\Gamma \vdash_{\mathcal{I}} \operatorname{catch}(k) \cdot t: \text { bool }} \\
\operatorname{catch}(k) . E[k] \rightarrow \mathrm{tt} \quad \operatorname{catch}(k) \cdot v \rightarrow \mathrm{ff} \\
t=\operatorname{If} \operatorname{catch}(k) . t \text { then }(\operatorname{If} k \text { then } t[\mathrm{tt} / k] \text { else } t[\mathrm{ff} / k]) \\
\quad \text { else } t[\mathrm{tt} / k]
\end{gathered} \quad \begin{aligned}
& t=\text { If } s \text { then } t \text { else } t, \text { provided } t: \text { If } s \text { then } T \text { else } T
\end{aligned}
$$

Full completeness and full abstraction

Finite total fragment: no recursion except $1::=\mu x: \mathcal{I} . x$ We have full completeness:

Theorem (Full completeness)
For finite $\Gamma \vdash_{\mathcal{I}} T$ type and total $x \in[T]_{\mathcal{I}}^{\Gamma}$ there exists a finite term $\Gamma \vdash_{\mathcal{I}} t_{x}: T$ with $\left[t_{x}\right]_{\mathcal{I}}^{\Gamma}=x$.

We obtain finite definability in the full theory and therefore full abstraction:

Theorem (Full abstraction)
If $\Gamma \vdash_{\mathcal{I}} t_{1}, t_{2}: T$ then $t_{1} \lesssim \Gamma t_{2} \Longleftrightarrow\left[t_{1}\right]_{\mathcal{I}}^{\Gamma} \subseteq\left[t_{2}\right]_{\mathcal{I}}^{\Gamma}$

Towards identity types

For M a concrete data structure:

$$
\begin{array}{rlll}
E q: & D(M) & \times \quad D(M) & \rightarrow \mathcal{C D S} \\
(x & , & y) & \mapsto
\end{array}
$$

- $x \in \operatorname{Eq}(x, x)$.
- If $x \cup y \in D(M)$ then $\operatorname{Eq}(x, y)$ is the down-closure of $x \cap y \in D(M)$. In particular we can have $\mathrm{Eq}(x, y) \neq\{\perp\}=[\mu x . x]$.
- If x and y are total then $\mathrm{Eq}(x, y)$ contains a total element if and only if $x=y$.

