
Sequential algorithms

“from the source”

Pierre-Louis Curien

(CNRS – Université Paris Cité – INRIA)

9/6/2022, Sequential algorithms and friends, Marseille

1

Prologue : denotational and operational semantics

Given a a (piece of) typed program M written in some programming lan-
guage, we want to understand its meaning.
• The denotational approach associates some mathematical structure to
the type of M , and a suitable morphism [[M]] to M . [Typically, continuous
functions between complete partial orders (cpo’s) (Scott).]
• The operational approach specifies formal rules of execution (a machine,
a rewriting system,. . .) leading to observable results, which one can see as
experiments.
• The two approaches induce each a notion of equivalence :

M =den N iff [[M]] = [[N]]

M =op N iff there is no observation context C[] s.t.


C[M] −→∗ v
C[N] −→∗ w
and v 6= w

When these two equalities are the same, the (denotational) model is called
fully abstract (FA).

2

A few dates

• Triggered by the full abstraction problem for PCF (a typed λ-calculus with
arithmetical functions, conditionals and recursion), and building on Kahn-
Plotkin’s notion of sequential functions between (domains generated by)
concrete data structures (called information matrices in their original work),
Berry and Curien proposed a cartesian closed category of

sequential algorithms (1979) (SA in the sequel)

(first category in denotational semantics with morphisms that were not
(presented as) functions, but programs of some sort).
• This led to the design of the programming language CDS (early 1980’s :
Berry, Curien, Devin, Ressouche, Montagnac). The development of this
language did not survive the 1980’s...
• The model SA was shown not to be amenable to a FA model of PCF.
Counter-examples to definability were exhibited in my Thèse d’Etat (1983).

3

From por to Gustave ... and Condorcet

The path to sequentiality went through "narrowing down" steps :

• Scott continuous functions f (any single piece of the output f(x) may be
computed using a finite part of the input x, which one can take be minimal).
But Scott pointed out the problematic parallel disjunction satisfying

por(⊥, T) = T por(T,⊥) = T
which is not definable in PCF. But adding it to the syntax, Plotkin showed
that Scott model “becomes" fullly abstract.

• Gérard Berry “killed” por by introducing stable functions (for a fixed x and
a fixed piece of f(x), such a minimal input is unique, and thus minimum).
But he noticed the problematic character of the function Gustave satisfying

Gustave(T, F,⊥) = T Gustave(F,⊥, T) = T Gustave(⊥, T, F) = T

(Coquand suggested that Gustave function had to do with the Condor-
cet voting paradox, and indeed, Huet exhibited the connection in an hila-
rious talk of 2011 to be found at http://gallium.inria.fr/~huet/
PUBLIC/GGJJ.pdf, where he also explains the name Gustave...)

4

Another path : strong stability
• The problem with Gustave is that it is not sequential. For B⊥ = {⊥, T, F},
a function f : Bn⊥ → B⊥ is called sequential (at (⊥, . . . ,⊥)) if

f(⊥, . . . ,⊥) = ⊥ and
∃(x1, . . . , xn) f(x1, . . . , xn) 6= ⊥ and
∃i ∈ {1, . . . n} ∀(x1, . . . , xn) (f(x1, . . . , xn) 6= ⊥ ⇒ xi 6= ⊥)

The i in the definition is called a sequentiality index.

• The problem with going to a sequential model is that this original (style of)
definition by Vuillemin does not carry to higher types. Berry’s idea to over-
come this was to move from functions to algorithms = pairs of a function
and (successive) choices of sequentiality indices.

• In the turn of year 1990, Bucciarelli and Ehrhard came up with a reformu-
lation of Vuillemin’s definition, as strongly stable function, which does carry
over to higher types. Their model remains a model of functions and turned
out to be an extensional collapse of the Berry-Curien model. [While stability
= preservation of compatible binary meets, strongly stability = preservation
of a judicious collection of finite meets.]

5

A few dates : revisitations of sequential algorithms

• The model SA was shown to be FA for PCF plus a form of control opera-
tor (catch) (Curien, Cartwright, Felleisen 1992). As part of this work, SA’s
were recovered as observably sequential functions.
• The last revisitation was the link with Laird’s bistability (Curien 2009) (not
covered here).
• In the mean time, the function spaces of SA (for its full subcategory of
sequential data structures) was shown to be decomposable as S → S′ =
(!S) (S′ (Lamarche 1992, Curien 1994). [This so-called Lamarche-
Curien exponential is to the one of McCusker (1996) for HO games what
the set-based exponential of coherence spaces is to its multiset version.]
• Related works : strong stability, Kleene’s unimonotone functions, Lon-
gley’s sequentially realisable functionals,. . .
• Nice application : sequential algorithms provide the right framework to
give a proof of the utlimate obstinacy theorem (Colson 1989), following
the lines of David’s proof, who had constructed an ad hoc quite “SA”-like
setting for this purpose.

6

Concrete data structures

A concrete data structure (or cds) M = (C, V,E,`) is given by three sets
C, V , andE ⊆ C×V of cells, values, and events, and a relation ` between
finite parts of E and elements of C, called the enabling relation. We write
simply e1, . . . , en ` c for {e1, . . . , en} ` c. A cell c such that ` c is called
initial.

We ask that “every cell can be filled” : ∀c ∈ C∃v ∈ V (c, v) ∈ E.

Proofs of cells c are sets of events defined recursively as follows : If c
is initial, then it has an empty proof. If (c1, v1), . . . , (cn, vn) ` c, and
if p1, . . . , pn are proofs of c1, . . . , cn, then p1 ∪ {(c1, v1)} ∪ · · · ∪ pn ∪
{(cn, vn)} is a proof of c.

7

States (or strategies, in the game semantics terminology)

A state is a subset x of E such that :

(1) (c, v1), (c, v2) ∈ x⇒ v1 = v2.

(2) If (c, v) ∈ x, then x contains a proof of c.

The conditions (1) and (2) are called consistency and safety, respectively.

The set of states of a cds M, ordered by set inclusion, is a partial order
denoted by (D(M),≤) (or (D(M),⊆)). If D is a partial order isomorphic
to D(M), we say that M generates D.

[D(M) is a Scott domain with additional properties→ Kahn-Plotkin’s representation

theorem.]
8

Some terminology

Let x be a set of events of a cds. A cell c is called :

• filled (with v) in x iff (c, v) ∈ x,

• accessible from x if it is not filled in x, but x contains an enabling of c,

• enabled in x if it is either filled or accessible.

We denote by F (x), E(x), and A(x) the sets of cells which are filled,
enabled, and accessible in or from x, respectively. We write :

x ≺c y if c ∈ A(x) and x ∪ {(c, v)} = y

9

Some conditions on cds’s

Let M = (C, V,E,`) be a cds. We define three properties defining sub-
classes of cds’s

(A) M is well-founded : no infinite proofs.

Well-foundedness allows us to reformulate the safety condition as a local condition :
(2′) If (c, v) ∈ x, then x contains an enabling {e1, . . . , en} of c.

(B) M is stable, i.e., for any state x and any cell c, c has at most one
enabling in x.

(C) M is filiform. Every enabling contains at most one event.

We shall always assume that M is well-founded (for convenience) and
stable (essential to make sure that our morphisms induce well-defined
domain-theoretic functions). We shall see that the filiform assumption, while
not necessary, allows us to simplify matters greatly.

10

Some examples of cds’s

(1) Flat cpo’s : for any set X we have a cds X⊥ = ({?},X, {?} ×X, {`
?}), with D(X⊥) = {∅} ∪ {(?, x) | x ∈ X} (the usual flat cpo). We have
in particular N⊥ (Scott natural numbers) and Bool = {T, F}⊥.

(2) λ-calculus (cells as occurrences) :

C = {0,1,2}∗ V = {·} ∪ {x, λx | x ∈ Var} E = C × V
` ε (u, λx) ` u0 (u, ·) ` u1, u2

(3) Pairs of booleans : we have two cells ?.1 and ?.2 (both initial) and
two values T, F , and all possible events. Then

(T, F) = {(?.1, T), (?.2, F)} (F,⊥) = {(?.1, F)} (⊥,⊥) = ∅

(4) A non-stable cds : NS = ({c1, c2, c3}, {1,2}, E,`), with E = {c1, c2, c3} × {1,2},
` c′1, ` c′2, (c′1,1) ` c′3, and (c′2,1) ` c′3.

11

Another example : lazy natural numbers

This (filiform) cds has cells c0, . . . , cn, . . . and values 0 or S, with events
(ci,0) and (ci, S), and enablings given by

` c0
(ci, S) ` ci+1

We have

D(NL) = {Sn(⊥) | n ∈ ω} ∪ {Sn(0) | n ∈ ω} ∪ {Sω(⊥)}

which as a partial order is organised as the following tree :

c0


0

S c1


0

S c2

{
0
. . .

or


0

S(⊥)


S(0)

S(S(⊥))
{
S(S(0))
. . .

12

Product of two cds’s

Let M and M′ be two cds’s. We define the product M×M′ = (C, V,E,`)
of M and M′ by :

• C = {c.1 | c ∈ CM} ∪ {c′.2 | c′ ∈ CM′},

• V = VM ∪ VM′,

• E = {(c.1, v) | (c, v) ∈ EM} ∪ {(c′.2, v′) | (c′, v′) ∈ EM′},

• (c1.1, v1), . . . , (cn.1, vn) ` c.1 ⇔ (c1, v1), . . . (cn, vn) ` c (and simi-
larly for M′).

Fact : M×M′ generates D(M)×D(M′).
13

Exponent of two cds’s

If M, M′ are two cds’s, the cds M→M′ is defined as follows :

• If x is a finite state of M and c′ ∈ CM′, then xc′ is a cell of M→M′.

• The values and the events are of two types :

− If c is a cell of M, then valof c is a value of M→M′, and (xc′, valof c)
is an event of M→M′ iff c is accessible from x ;

− if v′ is a value of M′, then output v′ is a value of M → M′, and
(xc′, output v′) is an event of M→M′ iff (c′, v′) is an event of M′.

• The enablings are also of two types :

(yc′, valof c) ` xc′ iff y ≺c x
. . . , (xic

′
i, output v

′
i), . . . ` xc

′ iff x =
⋃
xi and . . . , (c′i, v

′
i), . . . ` c

′

14

The function induced by a sequential algorithm

A state a of M →M′ should define a function from D(M) to D(M′), i.e.
from states to states :

x 7→ a•x = {(c′, v′) | ∃ y ≤ x (yc′, output v′) ∈ a}

Indeed, a•x is always a state, provided x is a state and M′ is stable.

[Moreover, x 7→ a•x is a sequential function (coming later), and any se-
quential function can be computed by at least one such a.]

Counter-example : consider the following state a in X⊥ → NS (with X = {?}) :

a = {(⊥c′1, output 1), (⊥c′2, valof ?), ({(?, ?)}c′2, output 1),
(⊥c′3, output 1), ({(?, ?)}c′3, output 2)}

Then a•{(?, ?)} is not a state of NS, as it contains (c′3,1) and (c′3,2).

15

Example : left addition

addL = {((⊥,⊥)?′, valof ?.1)} ∪
{((m,⊥)?′, valof ?.2) | m ∈ N} ∪
{((m,n)?′, output m+ n) | m,n ∈ N}

But we would like to say that addL, at (⊥, n) = {(?.2, n)}, still wants to
call ?.1.
Similarly, for

constant0 = request ?′ output 0 = {(⊥?′, output 0}) (from N⊥ to N⊥)

we woud like to say that constant0, at {(?,m)}, still wants to output 0.

This leads to a more abstract view of sequential algorithms that is sui-
table for a crisp “mathematical” definition of composition of sequential al-
gorithms.

16

Equivalent definitions of sequential algorithms

From the pioneering days, we have 3 equivalent definitions of sequential
algorithms :

1. as states of M→M′

2. (coming next) as abstract algorithms (or as pairs of a function and a
computation strategy for it)

3. (cf. preview) as programs (cf. language CDS)

[Other equivalent definitions (the first two already mentioned) :

4. as observably sequential functions

5. as bistable and extensionally monotonic functions

6. (in the affine case) as a symmetric pair (f, g), where f is function from input
strategies to output strategies and g is a function from output counter-strategies
to input counter-strategies (Curien 1994)]

17

Abstract algorithms

Let M and M′ be cds’s. An abstract algorithm from M to M′ is a partial
function f : D(M)× CM′ ⇀ VM→M′ satisfying the following axioms :

(A1) If f(xc′) = u, then
{

if u = valof c then c ∈ A(x)
if u = output v′ then (c′, v′) ∈ EM′

(A2) If f(xc′) = u, x ≤ y and (yc′, u) ∈ EM→M′, then f(yc′) = u.

(A3) Let f•y = {(c′, v′) | f(yc′) = output v′}. Then :

f(yc′) ↓ ⇒ (c′ ∈ E(f•y) and (z ≤ y and c′ ∈ E(f•z)⇒ f(zc′) ↓)).

Abstract algorithms are ordered by the usual order of extension on partial
functions.

18

Sequential algorithms as states↔ Abstract algorithms

Easy : by extension / shrinking of the domain of definition.

Let M and M′ be cds’s. The following define inverse order-isomorphisms :

Let a be a state of M→M′. Let a+ : CM→M′ ⇀ VM→M′ be given by :

a+(xc′) = u iff ∃ y ≤ x (yc′, u) ∈ a and (xc′, u) ∈ EM→M′.

Let f be an abstract algorithm from M to M′. We set :

f− = {(xc′, u) | f(xc′) = u and (y < x⇒ f(yc′) 6= u)}.

19

Sequential algorithms as programs

A sequential algorithm as program is a forest F whose trees T are declared
by the following syntax

T ::= request c′ (from x) U
U ::= valof c is [. . . v 7→ Uv . . .] | output v′

typed as follows :

c ∈ A(x) . . . (x ∪ {(c, v)}, c′) ` Uv . . .

(x, c′) ` valof c is [. . . v 7→ Uv . . .]

(c′, v′) ∈ EM′

(x, c′) ` output v′

We require that each tree request c′ (from x)U ∈ F is such that (x, c′) ` U , that there is
at most one tree beginning with request c′ (from x) in F and that

— if ` c′ then x = ∅ ;
— otherwise there exists an enabling (c′1, v

′
1), . . . , (c

′
n, v
′
n) of c′ and programs

request c′i (from yi) Ui ∈ F
with for each one a leaf (xi, c′i) ` output v′i and x =

⋃
xi.

20

An example of a sequential algorithm as forest

From pairs of booleans to EX, which has cells c0, c1, c2, values 0,1, and enablings ` c0,
` c1, (c0,1) ` c2 and (c0,0), (c1,0) ` c2 :

request c0 (from {})valof ?.1 is

{
T 7→output 1
F 7→valof ?.2 is

{
F 7→output 0

request c1 (from {}) valof ?.2 is

{
T 7→ output 0
F 7→ output 0

request c2 : (from {(?.1, T)}) valof ?.2 is

{
T 7→ output 0
F 7→ output 0

request c2 : (from {(?.1, F), (?.2, F)}) output 0

21

Sequential algorithms as programs : the filiform case

When the output cds is filiform, we can directly graft a tree starting with
request d′, where (c′, v′) ` d′ at the appropriate leaf output v′ of the appro-
priate tree starting with request c′, and doing this systematically results in a
single tree.

Here is for example the left-addition in tree form :

addL = request ?′ valof ?.1 is



...

m 7→ valof ?.2 is


...
n 7→ m+ n
...

...

22

Algorithms as states↔ Algorithms as programs

• State to program : consequence of (1) in the following

Lemma. The following properties hold (a ∈ D(M→M′), M′ stable) :

(1) If (xc′, u), (zc′, w) ∈ a and x ↑ z, then x ≤ z or z ≤ x ; if x < z,
there exists a chain x = y0 ≺c0 y1 · · · yn−1 ≺cn−1 yn = z such that
∀ i < n (yic

′, valof ci) ∈ a. If u and w are of type ‘output’, then x = z.

(2) The set a•x is a state of M′, for all x ∈ D(M).

(3) For all xc′ ∈ F (a), xc′ has only one enabling in a ; hence M→M′ is
stable.

• Program to state : easy (forgetful). Formally, we can describe the conversion by
following the typing rules. If U appears as a subtree in the forest, with type (x, c′) ` U ,
then (xc′, u) is an event of the state associated to the forest, where U = u

23

Composing sequential algorithms

The format of states is not appropriate for defining composition.

• In my PhD work (1979), I described a (function-like) composition using
the presentation as abstract algorithms (next slide).

• I’ll present also the composition of sequential algorithms as programs in
the form of an abstract machine (inspired by the operational semantics for
CDS which I had designed in 1981).

24

Composing abstract algorithms

Let M, M′ and M′′ be cds’s, and let f and f ′ be two abstract algorithms
from M to M′ and from M′ to M′′, respectively. The function g, defined as
follows, is an abstract algorithm from M to M′′ :

g(xc′′) =


output v′′ if f ′((f•x)c′′) = output v′′

valof c if
{
f ′((f•x)c′′) = valof c′ and
f(xc′) = valof c .

25

Composing sequential algorithms as programs : preparations

For simplicity, we restrict ourselves to filiform cds’s.

Let F and F ′ be sequential algorithms as programs (and hence in tree form
by the filiform assumption) from M to M′ and from M′ to M′′.

The abstract machine builds any branch of the composition F ′ ◦ F , by
• exploring a branch of F ′

• and interactively interrogating F upon need, through its abstract algo-
rithm version (for which a small abstract machine on the side can be used).

Machine states are triples

(q′′, q′, y) where


q′′ is the branch of F ′ ◦ F being constructed
q′ is the branch induced in F ′

y is a state that is the knowledge about the input in M
acquired as computation proceeds

Initial states are (request c′′, request c′′, ∅).
26

Abstract machine for composition (filiform case)

q′ valof c′ ∈ F ′ F+(y, c′) = valof c (c, v) ∈ EM

(q′′, q′, y)
valof c is v−→ (q′′ valof c is v, q′, y ∪ {(c, v)})

q′ valof c′ ∈ F ′ F+(y, c′) = output v′

(q′′, q′, y) −→ (q′′, q′ valof c′ is v′, y)

q′ output v′′ ∈ F ′ [d′′ ∈ A(q′′ output v′′)]

(q′′, q′, y)
output v′′ [d′′]−→ (q′′ output v′′ [d′′], q′ output v′′ [d′′], y)

In the last rule, [d′′] is a shorthand for request d′′ and is optional : the
machine could stop right after outputting v” if there is no more accessible
cell d” for which to issue a further request.

27

Sequential algorithms are not functions, you said?

• We assume that there exists a reserved value T , not belonging to V for
any cds M = (C, V,E,`).
Given a cds M = (C, V,E,`), we call an observable state of M a set x of
pairs (c, w), where either (c, w) ∈ E or w = >, satisfying the conditions
that define a state of a cds. The set of observable states of M is denoted
by D>(M).
Notice that enablings are not allowed to contain error values, because the
enabling relation is part of the structure of a cds, which we did not change.
Thus, in the tree representation of an observable state, error values can
occur only at the leaves.

• Every sequential algorithm a gives rise to a functionD>(M)→ D>(M′)
extending the one defined before.

a•x = {(c′, output v′) | ∃ y ≤ x (yc′, output v′) ∈ a} ∪
{(c′,>) | ∃ y ≤ x (yc′, valof c) ∈ a and (c,>) ∈ x} .

28

Sequential algorithms↔ Observably sequential functions

The above map a 7→ (x 7→ a•x) is actually a one-to-one correspondence
with observably sequential functions :

• A monotone function f : D>(M)→ D>(M′) is called sequential at x, c′

if for any c′ ∈ A(f(x)) either ∀ y ≥ x c′ 6∈ F (f(y)) or

∃ c ∈ A(x) ∀ y > x c′ ∈ F (f(y)) ⇒ c ∈ F (y)

• If moreover

(c′,>) ∈ f(x ∪ {(c,>)}

then we say that f is observably sequential at x, c′ (note that there can
then be no other sequentiality index).

• For example, we have addL(⊥,>) = ⊥ and addR(⊥,>) = >.
29

Primitive recursive schemes as sequential algorithms

• Primitive recursive schemes (p.r.s.) are defined as formal terms genera-
ted as follows :

(i) λ~x.0 is a p.r.s. of arity n (where n is the length of ~x)
(ii) S is a p.r.s. of arity 1
(iii) πni is a p.r.s. of arity n (for all i, n s.t. 1 ≤ i ≤ n)
(iv) if f is a p.r.s. of arity n and if g1, . . . , gn are p.r.s.’s of arity m

then h = f ◦ 〈~g〉 is a p.r.s. of arity m
(v) if g, h are p.r.s.’s of arities n, n+2, respectively, then

rec(g, h) is a p.r.s. of arity n+1.

• Every p.r.s. f of arity m gives rise to a sequential algorithm [[f]] from
(NL)

m to NL (the lazy natural numbers).

30

Colson’s ultimate obstinacy theorem

We consider [[f]] in program form.

Theorem. Let f be a r.p.s.. of arity n. Than all infinite branches q in [[f]]

are such that, for i ∈ {1, . . . n} fixed, {n | valof cn.i occurs in q} is finite,
except for a unique i0 (the obstinate sequentiality index !).

In other words, from a certain point on, any infinite branch q is an interlea-
ving of an infinite sequence

valof cp.i0 is vp valof cp+1.i0 . . . valof cp+q.i0 is vp+q . . .

and a finite or infinite sequence

request c′r output v
′
r . . . request c

′
r+s . . .

31

Affine sequential algorithms

• Lamarche (1992, unpublished) showed that the function space of se-
quential algorithms (in the filiform case) has an affine decomposition

S→ S′ = (!S) (S′

• An affine sequential algorithm is a sequential algorithm which (in program
form) is such that along any branch, paying attention only to the successive
queries

valof c1 is v1 . . . valof ci is vi . . . valof ci=1 is vi+1 . . .

we have (ci, vi] ` ci+1.

• A typical non-affine algorithm is left (or right) addition.

• One can reformulate Colson’s ultimate obstinacy by saying that "all infi-
nite behaviours of primitive recursive schemes are eventually affine”.

32

On the symmetry of sequentiality

In an invited talk at MFPS (1993, New Orleans), I gave a formulation of
affine algorithms from S to S′ as pairs of two functions (f, g), where (using
a game semantics vocabulary : states as strategies) :

f maps strategies of S to strategies of S′,
g maps counter-strategies of S′ to counter-strategies of S,

in such a way that

• playing strategies x against counter strategies g(α′) provides a choice
of sequentiality indexes for f ,

• and the same for f(x), α′, g.

33

The Lamarche-Curien exponential

• Girard’s original exponential for coherence spaces consists in implemen-
ting multiple use of tokens by a single use of “coherent multitokens" in the
form of a finite clique.

• The transposition of this in the setting of sequential algorithms consists
in implementing the use of several threads of computation by a use of a
single thread providing and enumeration of a finite state.

In order to make this precise, we need to move from stable filiform cds to
the equivalent formalism of sequential data structures.

34

Sequential data structures

• A sequential data structure S = (C, V, P) is given by two sets C and V
of cells and values and by a collection P of words p of the form :

c1v1 · · · cnvn or c1v1 · · · cn−1vn−1cn (n ≥ 1)

where ci ∈ C and vi ∈ V for all i. Thus any p ∈ P is alternating and
starts with a cell. Moreover, it is assumed that P is closed under non-empty
prefixes. We call the elements of P positions of S. A position ending with a
value (resp. cell) is called a response (resp. query). We denote by Q and
R the sets of queries and responses, respectively.

• Let S = (C, V, P) be an sds. We set

!S = (Q,R, P!)

where Q and R are the sets of queries and of responses of S, respectively,
and where P! consists of all prefix respecting enumerations of finite strate-
gies of S, i.e.Q = q1r1 . . . qnrn is a response of !S if and only {r1, . . . , rn}
is a strategy of S and, for all i, all prefixes of ri appear in Q before ri.

35

Strategies and counter-strategies

A strategy of S is a subset x of R that is closed under response prefixes
and binary non-empty glb’s :

r1, r2 ∈ x , r1 ∧ r2 6= ε ⇒ r1 ∧ r2 ∈ x

where ε denotes the empty word. A counter-strategy is a non-empty sub-
set of Q that is closed under query prefixes and under binary glb’s. We
use x, y, . . . and α, β, . . . to range over strategies and counter-strategies,
respectively.

36

Sequential data structures↔ Stable filiform concrete data structures

• Let S = (C, V, P) be an sds, and let Q and R be the associated sets of queries and
responses. We define cds(S) = (Q,R,E,`), with

E = {(q, qv) | qv ∈ P} ` c if c ∈ C ∩ P (q, qv) ` qvc if qvc ∈ P.
• Let M = (C, V,E,`) be a well-founded, stable, and filiform cds. We define sds(M) =
(C, V, P), where

P = {c1v1 · · · cnvnc | (c1, v1), . . . , (cn, vn) is a proof of c} ∪
{rcv | rc ∈ P and (c, v) ∈ E}

Under the correspondence, states of M become strategies of sds(M) (defined in the next

slide).

37

