Sequential algorithms

“from the source”

Pierre-Louis Curien

(CNRS — Université Paris Cité — INRIA)

9/6/2022, Sequential algorithms and friends, Marseille

Prologue : denotational and operational semantics

Given a a (piece of) typed program M written in some programming lan-
guage, we want to understand its meaning.

e The denotational approach associates some mathematical structure to
the type of M, and a suitable morphism [[AM] to M. [Typically, continuous
functions between complete partial orders (cpo’s) (Scoit).]

e The operational approach specifies formal rules of execution (a machine,
a rewriting system,. . .) leading to observable results, which one can see as
experiments.

e The two approaches induce each a notion of equivalence :

M =,, N iff [M] =[NI]
CI[M] —* v
M =, N iff there is no observation context C'[] s.t. ¢ C[N] —* w
and v = w

When these two equalities are the same, the (denotational) model is called
fully abstract (FA).

A few dates

e Triggered by the full abstraction problem for PCF (a typed A-calculus with
arithmetical functions, conditionals and recursion), and building on Kahn-
Plotkin’s notion of sequential functions between (domains generated by)
concrete data structures (called information matrices in their original work),
Berry and Curien proposed a cartesian closed category of

sequential algorithms (1979) (SA in the sequel)

(first category in denotational semantics with morphisms that were not
(presented as) functions, but programs of some sort).

e This led to the design of the programming language CDS (early 1980’s :
Berry, Curien, Devin, Ressouche, Montagnac). The development of this
language did not survive the 1980’s...

e The model SA was shown not to be amenable to a FA model of PCF.
Counter-examples to definability were exhibited in my These d’Etat (1983).

3

From porto Gustave ... and Condorcet
The path to sequentiality went through "narrowing down" steps :

e Scott continuous functions f (any single piece of the output f(x) may be

computed using a finite part of the input =, which one can take be minimal).

But Scott pointed out the problematic parallel disjunction satisfying
por(L,T)="T por(T,1) =T

which is not definable in PCF. But adding it to the syntax, Plotkin showed

that Scott model “becomes” fullly abstract.

e Gérard Berry “killed” por by introducing stable functions (for a fixed x and
a fixed piece of f(x), such a minimal input is unique, and thus minimum).
But he noticed the problematic character of the function Gustave satisfying

Gustave(T,F,1) =T Gustave(F,1L,T) =T Gustave(L,T,F) =T

(Coquand suggested that Gustave function had to do with the Condor-
cet voting paradox, and indeed, Huet exhibited the connection in an hila-
rious talk of 2011 to be found at http://gallium.inria.fr/~huet/
PUBLIC/GGJJ.pdf, where he also explains the name Gustave...)

Another path : strong stability
e The problem with Gustave is that it is not sequential. ForB| = { L, T, F'},
a function f : B — B is called sequential (at (L, ..., L)) if
f(L,...,1L)=1 and
I(x1,...,2n) f(x1,...,2n) = L and
= {1,...n}V(:131,...,:1:n) (f(x1,...,2n) EF L=>x;, 7%= 1)

The 7 in the definition is called a sequentiality index.

e The problem with going to a sequential model is that this original (style of)
definition by Vuillemin does not carry to higher types. Berry’s idea to over-
come this was to move from functions to algorithms = pairs of a function
and (successive) choices of sequentiality indices.

e In the turn of year 1990, Bucciarelli and Ehrhard came up with a reformu-
lation of Vuillemin’s definition, as strongly stable function, which does carry
over to higher types. Their model remains a model of functions and turned
out to be an extensional collapse of the Berry-Curien model. [While stability
= preservation of compatible binary meets, strongly stability = preservation
of a judicious collection of finite meets.]

A few dates : revisitations of sequential algorithms

e The model SA was shown to be FA for PCF plus a form of control opera-
tor (catch) (Curien, Cartwright, Felleisen 1992). As part of this work, SA’s
were recovered as observably sequential functions.

e The last revisitation was the link with Laird’s bistability (Curien 2009) (not
covered here).

¢ In the mean time, the function spaces of SA (for its full subcategory of
sequential data structures) was shown to be decomposable as S — S’ =
(1S) — S’ (Lamarche 1992, Curien 1994). [This so-called Lamarche-
Curien exponential is to the one of McCusker (1996) for HO games what
the set-based exponential of coherence spaces is to its multiset version.]
e Related works : strong stability, Kleene’s unimonotone functions, Lon-
gley’s sequentially realisable functionals,. ..

e Nice application : sequential algorithms provide the right framework to
give a proof of the utlimate obstinacy theorem (Colson 1989), following
the lines of David’s proof, who had constructed an ad hoc quite “SA”-like
setting for this purpose.

Concrete data structures

A concrete data structure (or cds) M = (C, V, E, 1) is given by three sets
C,V,and E C C'xV of cells, values, and events, and a relation - between
finite parts of £ and elements of C, called the enabling relation. We write
simply e1,...,en - cfor{eq,...,en}t - c. A cell ¢ such that - c is called
initial.

We ask that “every cell can be filled” : Ve € C3v € V (¢,v) € E.

Proofs of cells ¢ are sets of events defined recursively as follows : If ¢
is initial, then it has an empty proof. If (¢1,v1),...,(cn,vn) F ¢, and
if p1,...,pn are proofs of cq,...,cn, then p; U {(c1,v1)} U --- U pp U
{(cn,vn)} is a proof of c.

States (or strategies, in the game semantics terminology)
A state is a subset x of E such that :
(1) (¢,v1),(c,v0) € x = v1 = vo.
(2) If (¢,v) € x, then z contains a proof of c.
The conditions (1) and (2) are called consistency and safety, respectively.
The set of states of a cds M, ordered by set inclusion, is a partial order
denoted by (D(M), <) (or (D(M), ©)). If D is a partial order isomorphic

to D(M), we say that M generates D.

[D(M) is a Scott domain with additional properties — Kahn-Plotkin’s representation
theorem.]

Some terminology
Let x be a set of events of a cds. A cell cis called :
e filled (with v) in z iff (¢,v) € =,
e accessible from z if it is not filled in x, but x contains an enabling of c,

e cnabled in x if it is either filled or accessible.

We denote by F'(x), E(x), and A(x) the sets of cells which are filled,
enabled, and accessible in or from x, respectively. We write :

r<cy if ceA(z)andzU{(c,v)} =y

Some conditions on cds’s

Let M = (C,V, E,-) be a cds. We define three properties defining sub-
classes of cds’s

(A) M is well-founded : no infinite proofs.

Well-foundedness allows us to reformulate the safety condition as a local condition :
(2") If (¢,v) € z, then x contains an enabling {e1, ..., e,} of c.

(B) M is stable, i.e., for any state x and any cell ¢, ¢ has at most one
enabling in .

(C) M is filiform. Every enabling contains at most one event.

We shall always assume that M is well-founded (for convenience) and
stable (essential to make sure that our morphisms induce well-defined
domain-theoretic functions). We shall see that the filiform assumption, while
not necessary, allows us to simplify matters greatly.

10

Some examples of cds’s

(1) Flat cpo’s : for any set X we have acds X | = ({7}, X, {7} x X, {F
?1), with D(X) = {0} U {(?,2) | = € X} (the usual flat cpo). We have
in particular N ; (Scott natural numbers) and Bool = {T, F'} | .

(2) A-calculus (cells as occurrences) :

C={0,1,2} V={}u{z,x|xzeVar} E=CxV
- € (u, Ax) F 10 (u,-) Ful,u2

(3) Pairs of booleans : we have two cells 7.1 and 7.2 (both initial) and
two values T', F', and all possible events. Then

(T, F) ={(1,7),72,F)} (FL)={CF1LFMN} (L, 1)=0
(4) Anon-stable cds : NS = ({c1,¢2,c3}, {1,2}, E,F), with B = {c1, co,c3} x {1,2},

-, F e, (), 1) Fds,and (), 1) F <.
11

Another example : lazy natural numbers

This (filiform) cds has cells cg, ..., cn,... and values O or S, with events
(¢;,0) and (¢;, S), and enablings given by

= co

(ci,S) F cig1

We have

D(Np) ={5"(L) [n € w}U{5"(0) | n € w} U{S¥(L)}

which as a partial order is organised as the following tree :

0 or
Co ¢ S cq SCQ{O
\

\

i

0

S {

S(0)

S(S(L)) { S(S(0))

12

Product of two cds’s

Let M and M’ be two cds’s. We define the product M x M’ = (C,V, E,)
of M and M’ by :

o C={cl|ce(Cp}U {C/.Q | c e CM/},
o V="V U Vi,
o F={(c1l,v)]| (c,v) € Epjt U{(.2,v") | (,v") € Eppl,

e (c1.1,v1),...,(cn.1,vn) F el & (cq1,v1),...(cn,vn) F ¢ (and simi-
larly for M).

Fact : M x M’ generates D(M) x D(M/).

13

Exponent of two cds’s

If M, M’ are two cds’s, the cds M — M’ is defined as follows :
e If z is a finite state of M and ¢’ € Cyy, then zc’ is a cell of M — M.
e The values and the events are of two types :

— If cis a cell of M, then valof cis a value of M — M/, and (zc’, valof ¢)
is an event of M — M’ iff c is accessible from z;

— if v' is a value of M/, then output v’ is a value of M — M/, and
(xc, output v") is an event of M — M iff (¢/, ") is an event of M.

e The enablings are also of two types :

(yc, valof ¢) - zc iff y<cx
oy (zic, output v)), ... ad iff x=Uzyand ..., (c,v;),... F

14

The function induced by a sequential algorithm

A state a of M — M’ should define a function from D(M) to D(M’), i.e.
from states to states:

z— acx = {(,V) | Ty <z (yc, output v) € a}
Indeed, aex is always a state, provided x is a state and M’ is stable.

[Moreover, x — aex is a sequential function (coming later), and any se-
quential function can be computed by at least one such a.]

Counter-example : consider the following state a in X; — NS (with X = {x}):

a = {(Lcy,output 1), (L, valof 7), ({(7, %)}, output 1),
(L, output 1), ({(7, %) }c5, output 2)}

Then ae{(7?,x)} is not a state of NS, as it contains (¢, 1) and (c5, 2).

15

Example : left addition

add;, = {((L,L)? valof ?2.1)} U
{((m, L)?" valof ?.2) | m € N} U
{((m,n)?, output m +n) | m,n € N}

But we would like to say that add;, at (L,n) = {(7.2,n)}, still wants to
call 7.1.

Similarly, for

constantg = request 7' output 0 = {(L7?', output 0}) (from N, to N |)

we woud like to say that constantq, at {(7, m)}, still wants to output O.

This leads to a more abstract view of sequential algorithms that is sui-
table for a crisp “mathematical” definition of composition of sequential al-
gorithms.

16

Equivalent definitions of sequential algorithms

From the pioneering days, we have 3 equivalent definitions of sequential
algorithms :

1. as statesof M — M’

2. (coming next) as abstract algorithms (or as pairs of a function and a
computation strategy for it)

3. (cf. preview) as programs (cf. language CDS)

[Other equivalent definitions (the first two already mentioned) :
4. as observably sequential functions
5. as bistable and extensionally monotonic functions

6. (in the affine case) as a symmetric pair (f, g), where f is function from input
strategies to output strategies and g is a function from output counter-strategies
to input counter-strategies (Curien 1994)]

17

Abstract algorithms

Let M and M’ be cds’s. An abstract algorithm from M to M’ is a partial
function f : D(M) x Cppr — Vm_wr Satisfying the following axioms :

N if u = valof cthen c € A(x)
(A1) If f(2c’) = u, then { if u = output v’ then (¢',v") € Emp

(A2) If f(zc) = u, z < yand (yc,u) € Emwmr, then f(yd) = w.

(Asz) Let foy = {(,v") | f(ycd) = output v'}. Then :
flyd) 1= (¢ € E(fey) and (z <yandc € E(f*z) = f(2c) 1))

Abstract algorithms are ordered by the usual order of extension on partial
functions.

18

Sequential algorithms as states <+ Abstract algorithms
Easy : by extension / shrinking of the domain of definition.
Let M and M’ be cds’s. The following define inverse order-isomorphisms :

Let a be a state of M — M. Let ™ : Cpyoap — Vi b€ given by

at(zd) =w iff 3y <z (yd,u) € aand (zc,u) € ISV IRV

Let f be an abstract algorithm from M to M’. We set :
fm=A{(duw) | f(zd) =uand (y <z = f(yc) # w)}.

19

Sequential algorithms as programs

A sequential algorithm as program is a forest ' whose trees T are declared
by the following syntax

T .

request ¢’ (from x) U
U ::

valof cis [...v+— Uy...] | output v’

typed as follows :

ce A(x) ...(xU{(c,v)},) U,...

(Clavl) € Ewr
(z,d) Fwalof cis[...v—U,...]

(z,d) F output v’

We require that each tree request ¢’ (from x) U € F'is such that (z,) - U, that there is
at most one tree beginning with request ¢ (from x) in F' and that
— if-cthenz = 0;

— otherwise there exists an enabling (¢}, v}), ..., (c,,v}) of ¢ and programs

request c; (from y;) U; € F
with for each one a leaf (z;, ¢}) - output v, and x = (J =.

20

An example of a sequential algorithm as forest

From pairs of booleans to EX, which has cells cg, c1, ¢, values 0, 1, and enablings F co,
- Cc1, (Co, 1) - co and (Co, 0), (Cl, O) Feco:

, T — output 1
7
request co (from {})valof 7.1 is { F s valof 7.2 is { F > output 0

, T — output O
?
request c1 (from {}) valof 7.2 is { F — output O

, T — output O
. ? ?
request cz @ (from {(?.1,T)}) valof 7.2 4s F — output O

request cp : (from {(?.1, F), (7.2, F)}) output O

21

Sequential algorithms as programs : the filiform case

When the output cds is filiform, we can directly graft a tree starting with
request d’, where (c’,v") + d’ at the appropriate leaf output v’ of the appro-
priate tree starting with request ¢/, and doing this systematically results in a
single tree.

Here is for example the left-addition in tree form :

p

add; = request ?' valof 7.1 145 { m > valof 2.2 { n—m+n

22

Algorithms as states <> Algorithms as programs

e State to program : consequence of (1) in the following

Lemma. The following properties hold (a € D(M — M), M’ stable) :

(1) If (zc,u),(zd,w) €aandz 1 z,thenx < zorz < z;if x < z,
there exists a chain © = yg <c¢y Y1 Yn—1 <¢, 1 Yn = 2z such that
Vi <n (yc,valof ¢;) € a. If uwand w are of type ‘output’, then x = z.

(2) The set aez is a state of M/, for all z € D(M).

(3) Forall z¢’ € F(a), xc’ has only one enabling in a; hence M — M’ is
stable.

e Program to state : easy (forgetful). Formally, we can describe the conversion by
following the typing rules. If U appears as a subtree in the forest, with type (x,¢) + U,
then (xc, u) is an event of the state associated to the forest, where U =«

23

Composing sequential algorithms
The format of states is not appropriate for defining composition.

e In my PhD work (1979), | described a (function-like) composition using
the presentation as abstract algorithms (next slide).

e |'ll present also the composition of sequential algorithms as programs in
the form of an abstract machine (inspired by the operational semantics for
CDS which | had designed in 1981).

24

Composing abstract algorithms

Let M, M’ and M” be cds’s, and let f and f’ be two abstract algorithms
from M to M’ and from M’ to M, respectively. The function g, defined as
follows, is an abstract algorithm from M to M" :

p

output "' if f/((fex)") = output v

o) = valof c { f'((fex)d") = walof ¢’ and
f(zc") = wvalof c.

25

Composing sequential algorithms as programs : preparations
For simplicity, we restrict ourselves to filiform cds’s.

Let I and F/ be sequential algorithms as programs (and hence in tree form
by the filiform assumption) from M to M’ and from M’ to M".

The abstract machine builds any branch of the composition F’ o F', by

e exploring a branch of F’

e and interactively interrogating F' upon need, through its abstract algo-
rithm version (for which a small abstract machine on the side can be used).

Machine states are triples

p

q" is the branch of F’ o F' being constructed

¢’ is the branch induced in F’

y is a state that is the knowledge about the input in M
acquired as computation proceeds

(¢",d',y) where [

\

Initial states are (request ¢, request ", 0).
26

Abstract machine for composition (filiform case)

¢ valof ¢ € F!' F1(y,d) = wvalof ¢ (c,v) € Eg

valof c is v
K

(¢",d,vy) (¢" valof cisv, ¢,y U{(c,v)})

¢ valof ¢ € ! F1(y,d) = output v’
(d",d'sy) — (", ¢ valof " isv',y)

q output "' € F' [d" € A(q" output v'")]

t t !/ d//
",) " G output o (07, ¢ output o [d7],y)

In the last rule, [d"] is a shorthand for request d” and is optional : the
machine could stop right after outputting v” if there is no more accessible
cell d” for which to issue a further request.

27

Sequential algorithms are not functions, you said ?

e We assume that there exists a reserved value T', not belonging to V' for
anycds M = (C,V, E,).

Givenacds M = (C,V, E,+), we call an observable state of M a set x of
pairs (¢, w), where either (c,w) € E or w = T, satisfying the conditions
that define a state of a cds. The set of observable states of M is denoted
by D' (M).

Notice that enablings are not allowed to contain error values, because the
enabling relation is part of the structure of a cds, which we did not change.
Thus, in the tree representation of an observable state, error values can
occur only at the leaves.

e Every sequential algorithm a gives rise to a function D' (M) — D" (M)
extending the one defined before.

acx = {(c,output v') | Jy <z (yd, output v') € a} U
{(,T) |3y <z (yc,valof ¢c) €aand (c, T) € z} .

28

Sequential algorithms < Observably sequential functions

The above map a — (x — aex) is actually a one-to-one correspondence
with observably sequential functions :

e A monotone function f : D' (M) — D" (M) is called sequential at z, ¢’
if forany ¢ € A(f(x)) eitherVy >z ¢ & F(f(y)) or

dce A(z) Vy>z d € F(f(y)) = ce F(y)

e |If moreover

(¢, T) € flau{(e, T)}

then we say that f is observably sequential at =, ¢’ (note that there can
then be no other sequentiality index).

e For example, we have add; (L, T) = L and addr(L, T) =T.
29

Primitive recursive schemes as sequential algorithms

e Primitive recursive schemes (p.r.s.) are defined as formal terms genera-
ted as follows :

(i Az.0 is a p.r.s. of arity n (where n is the length of)

(i) Sisap.rs.ofarity 1

(i) misap.rs.of arity n (foralli,n s.t. 1 <i < n)

(iv) if fisap.rs.ofaritynandifgq,...,gn are p.r.s.’s of arity m
then h = f o (g) is a p.r.s. of arity m

(v) if g, h are p.r.s.s of arities n, n + 2, respectively, then
rec(g, h) is a p.r.s. of arity n + 1.

e Every p.r.s. f of arity m gives rise to a sequential algorithm [[f] from
(N7)™ to N/ (the lazy natural numbers).

30

Colson’s ultimate obstinacy theorem
We consider [[f] in program form.

Theorem. Let f be a r.p.s.. of arity n. Than all infinite branches ¢ in [f]]
are such that, for i € {1,...n} fixed, {n | valof cn.i occursin g} is finite,
except for a unique ig (the obstinate sequentiality index!).

In other words, from a certain point on, any infinite branch q is an interlea-
ving of an infinite sequence

valof cp.ig 18 vp valof cpy1.50 ... valof cpyq.50 18 Vpyq - - -

and a finite or infinite sequence

request c;a output fu,f, ... request c,’r+8 -

31

Affine sequential algorithms

e Lamarche (1992, unpublished) showed that the function space of se-
quential algorithms (in the filiform case) has an affine decomposition

S -8 =(S) -9
¢ An affine sequential algorithm is a sequential algorithm which (in program
form) is such that along any branch, paying attention only to the successive
queries
valof ¢ 1s vy ... valof c;isv; ... valof c;=1 15 Vi41 ...

we have (c;, v;] F ¢;41.
e A typical non-affine algorithm is left (or right) addition.

e One can reformulate Colson’s ultimate obstinacy by saying that "all infi-
nite behaviours of primitive recursive schemes are eventually affine”.

32

On the symmetry of sequentiality

In an invited talk at MFPS (1993, New Orleans), | gave a formulation of
affine algorithms from S to S’ as pairs of two functions (f, g), where (using
a game semantics vocabulary : states as strategies) :

f maps strategies of S to strategies of S/,
g maps counter-strategies of S’ to counter-strategies of S,

in such a way that

e playing strategies x against counter strategies g(a’) provides a choice
of sequentiality indexes for f,

e and the same for f(z), o/, g.

33

The Lamarche-Curien exponential

e Girard’s original exponential for coherence spaces consists in implemen-
ting multiple use of tokens by a single use of “coherent multitokens" in the
form of a finite clique.

e The transposition of this in the setting of sequential algorithms consists
in implementing the use of several threads of computation by a use of a

single thread providing and enumeration of a finite state.

In order to make this precise, we need to move from stable filiform cds to
the equivalent formalism of sequential data structures.

34

Sequential data structures

e A sequential data structure S = (C, V, P) is given by two sets C and V/
of cells and values and by a collection P of words p of the form :

C1V] - CpUp OF C1V] ** - Cp—1Vp—1¢n (n>1)

where ¢; € C and v; € V for all <. Thus any p € P is alternating and
starts with a cell. Moreover, it is assumed that P is closed under non-empty
prefixes. We call the elements of P positions of S. A position ending with a
value (resp. cell) is called a response (resp. query). We denote by ¢ and
R the sets of queries and responses, respectively.

eletS = (C,V, P) be an sds. We set

'S — (Q, R, P!)
where Q and R are the sets of queries and of responses of S, respectively,
and where P, consists of all prefix respecting enumerations of finite strate-
giesof S,i.e.@Q = qqr1...qnrnisaresponseof !Sifandonly {rq,...,rn}
is a strategy of S and, for all 7, all prefixes of r; appear in Q before r;.
35

Strategies and counter-strategies

A strategy of S is a subset x of R that is closed under response prefixes
and binary non-empty glb’s :

r1, T €Ex , TTANToF€ = r1Aro €Ex

where e denotes the empty word. A counter-strategy is a non-empty sub-
set of Q that is closed under query prefixes and under binary glb’s. We

use x,vy,... and «, 3, ... to range over strategies and counter-strategies,
respectively.

36

Sequential data structures <+ Stable filiform concrete data structures

eletS = (C,V, P) be an sds, and let Q and R be the associated sets of queries and
responses. We define cds(S) = (Q, R, E,F), with

E = {(q,qv) | qv € P} FecifceCNP (g, qv) F quc if quc € P.

eletM = (C,V, E,F) be a well-founded, stable, and filiform cds. We define sds(M) =
(C,V,P), where

P = {civi---cpope| (c1,v1),..., (cn,vy) is a proof of c} U
{rcv|rce Pand (c,v) € E}

Under the correspondence, states of M become strategies of sds(M) (defined in the next
slide).

37

