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Introduction

▶ The O’Hearn-Riecke construction (OHR): full completeness for PCF.
[O’Hearn & Riecke ’95]

▪ Fully complete model: every morphism is definable.

The O’Hearn-Riecke construction is an application of concrete sheaves.

▶ Concrete sheaves:
▪ General framework for adding higher-order types (and recursion).
▪ E.g. quasi-Borel spaces, diffeological spaces, …

See [Matache, Moss, Staton: FSCD ’21, LICS ’22].
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Introduction

The concrete sheaf model of sequentiality:

▶ Not more explicit (cf. [Loader ’01]).
▶ Similar character:

▪ extensional, not a quotient, syntax-free, logical relations.
▶ Originally a CCC; now a bi-CCC with strong monad.

▪ We use CBV and have sum types modelled by categorical sums.
▶ Following [Riecke & Sandholm ’97], [Marz ’00], [Streicher ’06]:

Formulate the OHR logical relations in terms of ‘SSP’: a category of
simple ‘sequential data types’.
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(Finitary) PCFv: A call-by-value language

Types: τ F 0 ∣ 1 ∣ nat ∣ τ + τ ∣ τ × τ ∣ τ → τ

Values: v, wF . . . ∣ λx. t ∣ rec f x. t ∣ diverge
Computations: tF . . . ∣ v w ∣ letx = t in t

′

Typing judgements: Γ ⊢v
v ∶ τ and Γ ⊢c

t ∶ τ .

Semantics in a bi-CCC with strong monad L with a point ⊥ ∶ 1 ⇒ L.J0K = 0 J1K = 1 Jσ + τK = JσK + JτK Jσ × τK = JσK × JτK
Jσ → τK = JσK ⇒ LJτK

JΓ ⊢
v
v ∶ τK ∶ JΓK → JτK JΓ ⊢

c
t ∶ τK ∶ JΓK → LJτK
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The ‘domains’ model of PCFv

The category of posets Pos, with lifting monad P ↦ P⊥. Not fully complete:

por ∶ J(1 → 2) × (1 → 2)K ≅ 2⊥ × 2⊥ → 2⊥ ≅ J2K⊥
▶ Definability problem: characterize the definable morphisms?
▶ Full completeness: give a model where all morphisms are definable?

These problems are linked to the full abstraction problem [Milner ’77].
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Acceptability criteria

Definability: characterize the definable elements in a given model.
Full completeness: give a model where all elements are definable.

For both problems:

▶ Without reference to syntax contrast with [Milner ’77].

! Effective? impossible by [Loader ’01].

For full completeness:

▶ In a well-pointed category — every JσK has an underlying set ∣JσK∣,
▪ Additionally, ∣LX∣ ≅ ∣X∣ + 1.

▶ Types denote the corresponding categorical object.
▪ E.g. sum types really denote categorical sums,…
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Sketch of the logical relations approach to definability
…,[Plotkin ’80], [Sieber ’92], [Jung & Tiuryn ’93],…

Write Def(Γ;σ) ≔ {∣JMK∣ ∣ Γ ⊢c
M ∶ σ} ⊆ Set(∣JΓK∣, ∣JσK∣ + 1).

1) For f ∶ ∣JσK∣ → ∣JτK∣ + 1, postcomposition with f

Set(∣JΓK∣, ∣JσK∣ + 1) g↦f◦g
−−−−→ Set(∣JΓK∣, ∣JτK∣ + 1)

maps Def(Γ;σ) into Def(Γ; τ) for all Γ ⟺ f is PCFv-definable.

2) Generalize from (Γ ↦ ∣JΓK∣) ∶ Ctxt → Set to more general functors
F ∶ C → Set and consider (ob C × Typ)-indexed families of predicates

A(c;σ) ⊆ Set(F (c), ∣JσK∣ + 1)
preserved by f ◦ (−) when f is PCFv-definable.

We ‘lose’ Def in a larger class, characterized without the syntax.
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The O’Hearn-Riecke construction: ‘predictive’ logical relations

▶ Collect suitable ‘guesses’/‘predictions’ for
▪ the sets ∣JΓK∣,
▪ the subsets Def(Γ; 1 + . . . + 1) ⊆ Set(∣JΓK∣, ∣J1 + . . . + 1K∣ + 1).

▶ Force preservation by every morphism in the category.
▶ Folklore: logical relations ≈ presheaves.
▶ Refinement: reflexive logical relations ≈ concrete presheaves.

▪ …that respect sum types ≈ concrete sheaves
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Well-pointed categories and concrete sites

A category C is well-pointed if
▪ it has a terminal object ⋆
▪ C(⋆,−) ∶ C → Set is faithful

i.e. maps h ∶ d→ c are distinguished functions ∣h∣ ∶ ∣d∣ → ∣c∣
where ∣c∣ = C(⋆, c). So C is a category of sets and certain functions.

Concrete site (C, J)
▪ A small well-pointed category C.
▪ For every c ∈ C a set J(c) of covering families {fi ∶ ci → c}i∈I of c s.t.

(C) pullback stability
(⋆) If {fi ∶ ci → c}i∈I covers c, then ⋃i∈I Im(∣fi∣) = ∣c∣
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Concrete sheaf on a concrete site (C, J) [Concrete quasitopoi, Dubuc ’77]
[Convenient categories of smooth spaces, Baez & Hoffnung ’11]

Well-pointed category C
▪ has a terminal ⋆
▪ a map h ∶ d → c is a function

between sets ∣d∣ = C(⋆, d) etc.
Concrete site (C, J)
▪ small well-pointed C
▪ For every c ∈ C a set J(c) of covering families{fi ∶ ci → c}i∈I of c, with axioms (C) and ⋆.

A concrete presheaf X ∶ Cop → Set is:
▶ a set X(⋆)
▶ X(c) ⊆ [∣c∣ → X(⋆)]

with ∀ϕ ∈ X(c). ϕ ◦ ∣h∣ ∈ X(d).
Sheaf condition: for g ∶ ∣c∣ → X(⋆) and{fi ∶ ci → c}i∈I ∈ J(c), if each
g ◦ ∣fi∣ ∈ X(ci), then g ∈ X(c).

∣ci∣ ∣c∣ X(⋆)fi
g

A morphism α ∶ X → Y is a
function α ∶ X(⋆) → Y (⋆) with
∀ϕ ∈ X(c). α ◦ ϕ ∈ Y (c).

Representables: for c ∈ C, y(c)(⋆) = ∣c∣ and
C(d, c) ⊆ y(c)(d), but might need to close under the
sheaf condition! 13/32



Bi-CCC structure

Interpretation in concrete (pre)sheaves = reflexive logical relation.
Products: (X × Y )(⋆) = X(⋆) × Y (⋆)

ϕ ∈ (X × Y )(c) ⟺ π1 ◦ ϕ ∈ X(c) ∧ π2 ◦ ϕ ∈ Y (c).
Exponentials (X ⇒ Y )(⋆) = ConcSh(C, J)(X,Y )

ϕ ∈ (X ⇒ Y )(c) ⟺

∀(h ∶ d→ c) ∈ C, ψ ∈ X(d). (λx ∈ ∣d∣. ϕ(∣h∣(x))(ψ(x)) ∈ Y (d).
Sums : (X + Y )(⋆) = X(⋆) + Y (⋆)
ϕ ∈ X(c) ⟹ inl ◦ ϕ ∈ (X + Y )(c), ψ ∈ Y (c) ⟹ inr ◦ ψ ∈ (X + Y )(c)
Close under the sheaf condition.
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Partiality

Let (C, J) be a concrete site. Let M be a class of monomorphisms in C
satisfying conditions given in [MMS, ’22].

Conditions: pullback-stability, closure under composition, ‘concreteness’, ‘sheaf condition’,…

Theorem
There is a strong monad LM = L on ConcSh(C, J) given by(LX)(⋆) = X(⋆) + {⊥}

ϕ ∈ (LX)(c) ⟺ ∃(m ∶ d→ c) ∈ M. domϕ = ∣d∣ ∧ ϕ∣∣d∣ ∈ X(d).
Equivalently, (LX)(c) = ∑(m∶d→c)∈MX(d).
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First attempt with a sequential presheaf model

Semidecidable subset of a type τ = program x ∶ τ ⊢c
s ∶ 1.

Category Syn (modulo a suitable equivalence relation to make it well-pointed):

▪ Objects: (τ, s) type + semidecidable subset
▪ Morphisms: f ∶ (τ, s) → (τ ′, s′) is a program x ∶ τ ⊢c

f ∶ τ ′ with
domain s and image in s′.

Monos: (x ∶ τ ⊢c
x ∶ τ) ∶ (τ, s′) → (τ, s) where s′ ↓ ⟹ s ↓. In Conc(Syn),(LX)((τ, s)) = ∑

s′↓ ⟹ s↓

X((τ, s′)).
Check: y(σ → τ, return⋆) ≅ y(σ, return⋆) ⇒ Ly(τ, return⋆).
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Second attempt with a sequential sheaf model

Yoneda lemma ⟹ Syn → Conc(Syn) ⊆ [Synop, Set] full and faithful, so ≈
fully complete interpretation of PCFvwith σ ↦ y(σ, return⋆).
Problems:

1. y(σ, return⋆) + y(τ, return⋆) → y(σ + τ, return⋆) not an isomorphism.
2. We’d like a non-syntactic model.

For 1: add covering families J((τ, s)) where, for each
x ∶ τ ⊢c

t ∶ 11 + . . . + 1n, with s ↓ ⟺ t ↓,{(x ∶ τ ⊢
c
x ∶ τ) ∶ (τ, let y = t in νi) → (τ, s)}i=1 ...,n

where y ∶ 11 + . . . + 1n ⊢c
νi ∶ 1 terminates on the ith summand only.
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SSP: A category of sequential data types [Marz ’00], [Streicher ’06]

Objects: X = (∣X∣,AX) where ∣X∣ is a finite set and AX is a set of partial
functions ∣X∣ ⇀ N such that:

▶ AX contains all constant functions: λx.n, λx.⊥ ∈ AX ;
▶ AX is closed under postcomposition:

f ∈ AX
, ϕ ∶ N ⇀ N ⟹ ϕ ◦ f ∈ AX ;

▶ AX is closed under ‘sequencing’: f, gn ∈ AX ⟹ λx.gf(x)(x) ∈ AX .

Morphisms X → Y are functions f ∶ ∣X∣ → ∣Y ∣ such that

g ∈ AY
⟹ g ◦ f ∈ AX

.
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SSP objects as ‘Structural Systems of Partitions’

For X ∈ SSP, let SX = {{f−1({n}) ∣ n ∈ N}\{∅} ∣ f ∈ AX}.
partial equivalence relations on X , or ‘partial partitions’ of X .

We can equivalently axiomatize SSP in terms of SX , e.g. sequencing:

▶ If {u} ∈ S
X , then u ⊆ ∣X∣ is a ‘semidecidable subset’.

▶ {u1, . . . , un} ∈ S
X is a ‘coherent’ collection of semidecidable subsets.
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Categorical structure in SSP

▶ Sums: X + Y = (∣X∣ + ∣Y ∣,AX+Y ):
▪ f ∈ AX+Y ⟺ f∣∣X∣ ∈ AX ∧ f∣∣Y ∣ ∈ AY .

▶ Products: X × Y = (∣X∣ × ∣Y ∣,AX×Y ):
▪ Have f ◦ πX , g ◦ πY ∈ AX×Y for f ∈ AX , g ∈ AY .
▪ Then close under sequencing!

▶ Lifting monad: LX = (∣X∣ + {⊥}, SLX):
▪ S

LX = S
X ∪ {{∣X∣ + {⊥}}}.
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Full completeness of SSP at first order + thunking

Consider a simple CBV language with types τ F 0 ∣ 1 ∣ τ + τ ∣ τ × τ ∣ Tτ
Values:

vF . . . ∣ thunk t Computations:
tF . . . ∣ diverge ∣ force v

Γ ⊢
v
v ∶ Tτ

Γ ⊢
c
force v ∶ τ

Γ ⊢
c
T ∶ τ

Γ ⊢
v
thunk t ∶ Tτ

(Equivalently, restrict PCFv function types to 1 → (−)).
Theorem
The interpretation in SSP is fully complete, i.e. every Kleisli morphismJΓK → LJτK is the interpretation of some term Γ ⊢c

t ∶ τ .
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SSP in the OHR construction

In logical relations, F ∶ C → Set generalizes Γ ↦ ∣JΓK∣ ∶ Ctxt → Set.

▶ In [Marz ’00] & [Streicher ’06], the construction ranges over (a
sufficiently large set of) faithful functors F ∶ C → SSP.

▶ For CBV, we will instead range over faithful functors F ∶ C → SSPL.
▪ Construct a category like Syn using (C, F ) instead of the syntax.

Objects of Syn are (τ, s) where x ∶ τ ⊢c
s ∶ 1.

23/32



Outline

1 Background on the OHR construction

2 Concrete sheaves

3 SSP - a category of sequential data types

4 Building a sequential sheaf model

5 Conclusion

24/32



Defining sites via systems of partitions

X = (∣X∣, SX) ∈ SSP: ∣X∣ = finite set, SX ⊆ {partial partitions of ∣X∣} +axioms
SSPL has Kleisli maps X → LY

For each faithful functor F ∶ C → SSPL define a category IC,F

(approximating Syn):

▶ Objects: a terminal object ⋆ and also (c, U), for each c ∈ C and{U} ∈ S
F (c).

▶ Morphisms: f ∶ (c, U) → (d,W ) is a function f ∶ U → W

▪ either constant
▪ or s.t. there is (ϕ ∶ c→ d) ∈ C with U ⊆ domF (ϕ) and f = F (ϕ)∣U .
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Defining sites via systems of partitions

Fix F ∶ C → SSPL. IC,F has objects (c, U) for c ∈ ob C, {U} ∈ S
F (c).

Define a coverage JC,F on IC,F and class of monos MC,F :

▶ For c ∈ ob C, {U1, . . . , Un} ∈ S
F (c), the object (c,⋃i Ui) is covered by

the set of inclusions (c, Uk) ↪ (c,⋃i Ui).
▶ MC,F is generated by inclusions(c, U) ↪ (c, V )

for {U}, {V } ∈ S
F (c) with U ⊆ V .
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A sequential sheaf model of PCFv

Partiality monad on G = ConcSh(∑F ∶C→SSPL
IC,F ,∑F ∶C→SSPL

JC,F ):(LGX)(⋆) = X(⋆) + {⊥}(LGX)(c, U) = ∑
W⊆U,{W }∈SF (c)X(c,W )

Theorem
G is bicartesian closed with a strong pointed monad LG . The canonical
interpretation of PCFv is adequate and fully complete.
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Notes on proof of full completeness

▶ Pick C0 to be the category whose objects are PCFv types with
C0(σ, τ) ⊆ Set(∣JσK∣, ∣JτK∣) given by the definable functions.

▶ Let F0 ∶ C0 → SSPL send σ to the SSP-structure induced by the
definable functions ∣JσK∣ → ∣LG(1 + . . . + 1)∣.

▶ Write y0 ∶ IC0,F0
→ G for ‘sheafified Yoneda’.

▶ There is an evident bijection ∣y0(σ, ∣JσK∣)∣ → ∣JσK∣, but it doesn’t
obviously lift to a natural transformation y0(σ, ∣JσK∣) → JσK.

▶ By induction on σ, show it becomes a natural isomorphism after
applying res0 ∶ G → ConcSh(IC0,F0

, JC0,F0
) (faithful and preserves points).
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Remarks on adding recursion and infinite types

Could take ωCPO-valued (pre)sheaves. Instead, use logical
relations/sheaves:

▶ Let V = {0 < 1 < . . . < ∞} ∈ ωCPO, let V0 = {∅, 1,V} ⊆ ωCPO.
▶ Take MV = {Scott open inclusions}.
▶ Sum V0 with ∑F ∶C→SSP⊥

IC,F .
▶ Interpret JnatK as ∑∞

0 1.
⟹ ‘synthetic domain theory’ gives relevant fixed point operators

▶ Full completeness fails (e.g. for cardinality reasons).
▶ Following [Milner ’77]: full abstraction follows from ‘full completeness’

for the truncated types for n ∈ N:

JnatKn =
n

∑
0

1 Jσ → τKn = JσKn ⇒ LGJτKn . . . 29/32
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Summary

▶ The OHR technique fits into the general framework of concrete
sheaves.
▪ Therefore connected to useful techniques for differentiable

programming, measurable programming, …
▶ We give a fully complete model of finitary PCFv, and fully abstract

model of PCFv + nat, rec.
▪ As the ‘canonical’ interpretation of types in a model of

intuitionistic set theory.
▶ Principled interpretation of sums, as well as function spaces.
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Outlook

▶ [Kammar, Katsumata, Saville, ’22] Full completeness for effects with
well-pointed monadic models (without recursion).

▶ Other effects? With recursion and not necessarily well-pointed
models?

▶ [Colson, Ehrhard ’94]: Hypercoherences + strongly stable functions
embed in presheaves on Nω

⊥.
▶ [van Oosten ’99], [Longley ’02]: A realizability topos of strongly stable

functionals.
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