
Convolution λ̄µ-calculus

Lionel Vaux

Institut de Mathématiques de Luminy, Marseille, France

vaux@iml.univ-mrs.fr

http://iml.univ-mrs.fr/~vaux

May 30, 2007

We define an extension of Herbelin’s λ̄µ-calculus, introducing a product
operation on contexts (in the sense of lists of arguments, or stacks in envi-
ronment machines), similar to the convolution product of distributions. This
is the computational couterpart of some new semantical constructions, ex-
tending models of Ehrhard-Regnier’s differential interaction nets, along the
lines of Laurent’s polarization of linear logic. We demonstrate this corre-
spondence by providing this calculus with a denotational semantics inside a
lambda-model in the category of sets and relations.

1 Introduction

Herbelin’s λ̄µ-calculus [Her95] transposes the Curry-Howard correspondence between
classical natural deduction and λµ-calculus to the setting of classical sequent calculus
LK (in fact one of its deterministic versions: LKT [DJS95]). In particular, the notion of
application, corresponding to the modus ponens of natural deduction, is replaced with
the notion of cut between a term and a context. More precisely, λ̄µ-calculus involves
three syntactic categories — terms, contexts and commands — given by the following
grammar:

s, t ::= x | λx s | µα c (terms)
e, f ::= α | s · e (contexts)

c ::= 〈s , e〉 (commands) .

Reduction is defined by the following two basic rules:

〈λx s , t · e〉 → 〈s [t/x] , e〉 and 〈µα c , e〉 → c [e/α] .

In the present paper, we introduce an extension of λ̄µ-calculus, featuring a binary
operation ∗ on contexts (and the corresponding context unit 1), which bears similarities
with the convolution product of distributions. For that purpose, we further endow the

1

set of terms with a structure of commutative monoid, with addition + and neutral 0,
and give the following three reduction rules:

〈λx s , (t · e) ∗ f〉 → 〈λxµα 〈s [t + x/x] , e ∗α〉 , f〉

〈λx s ,1〉 → 〈s [0/x] , 1〉

〈µα c , e〉 → c [e/α] .

The reader may check that the reduction rules of usual λ̄µ-calculus can be simulated in
this new setting.

Outline of the Paper. In the remaining of this introduction, we briefly review notions
and ideas that led to the definition of convolution λ̄µ-calculus: it is the pure calculus
associated with an extension of Ehrhard-Regnier’s differential nets [ER05], along the lines
of Laurent’s polarization of linear logic proof nets [Lau02]. In section 2 we introduce
the objects of convolution λ̄µ-calculus, and the associated notion of reduction, for which
we prove the Church-Rosser property. In section 3 we define a reflexive object D in
the category of sets and relations, following [BE04]. Then we introduce a type-system,
in which types are elements of D, along the lines of Carvalho’s system R [dC06]. We
conclude by proving that terms identified by reduction have exactly the same types.

1.1 Classical Logic and Co-structural Rules

Denotational semantics of linear logic gives rise to models of simply typed λ-calculus,
through the Curry-Howard isomorphism and well known translations from intuitionistic
logic into linear logic. This relationship may be explicited in the syntax by encodings
of typed λ-calculus into linear logic proof nets, in which β-reduction of λ-terms is accu-
rately simulated by cut-elimination in proof nets. In fact, one may also establish such
a correspondence in an untyped setting: pure λ-terms are succesfully encoded into the
weakly typed nets of [Reg92].

An analoguous relationship may be observed in a setting related with classical logic
rather than intuitionistic logic. In [Lau02], Olivier Laurent introduced polarized linear
logic and polarized proof nets. Polarized linear logic is linear logic where all formulas are
polarized, and weakening and contraction are allowed on every negative formula; also,
promotion is allowed on any sequent formed only of negative formulas. In [Lau03], Lau-
rent showed how to encode Parigot’s λµ-calculus [Par92] into polarized proof nets. Since
λµ-calculus lifts the Curry-Howard correspondence from intuitionistic logic to classical
logic, this encoding is the counterpart of a translation from classical natural deduction
into polarized linear logic. A thorough semantical investigation on the nature of this
translation may be found in [LR03].

It also happens that original models of linear logic lead to novel extensions of λ-
calculus, using the Curry-Howard correspondence as a tool to draw semantical properties
back into the syntax. In [Ehr01] and [Ehr05], Ehrhard introduced models of linear logic
in which formulas are interpreted by particular vector spaces, and proofs by linear maps
between these spaces. Moreover, morphisms with type !A −◦ B correspond to analytic

2

functions between A and B. This not only provided a semantics of typed λ-calculus
in which λ-terms are interpreted by smooth functions between vector spaces in a very
natural way, but also led to the introduction of differential λ-calculus by Ehrhard and
Regnier in [ER03].

Differential Nets. Here we briefly outline some features of the differential interaction
nets from [ER05], which may be considered as a syntactic presentation of the models
from [Ehr01] and [Ehr05]. For the sake of simplicity, we use a weak typing scheme: using
usual linear logic connectors and modalities, introduce type o such that o = !o −◦ o; we
will use types o, i = o⊥, !o and ?i = (!o)⊥, to type the wires of interaction nets. We do
not consider criteria for well-formedness of nets; we only focus on local, weakly typed
reduction rules.

Differential interaction nets extend the interaction nets for multiplicative exponential
linear logic from [Laf95] as follows: besides multiplicative cells

par: O
o

o

?i
and tensor: ⊗

i

!o

i

and structural cells

dereliction: d
?i i

, contraction: c?

?i

?i

?i

and weakening: w?

?i
,

come costructural cells

derivative: ∂
!oo , cocontraction: m!

!o
!o

!o
and coweakening: u!

!o
.

Cells m! and u! have the same geometry as tensor and tensor unit respectively: m!

connects two nets together, and u! is a net by itself.
Recall that in the formalism of interaction nets, typing depends on the orientation of

wires: if a wire has type A in one orientation, it has type A⊥ in the reverse orientation.
Also, recall that each cell has exactly one principal port (this we put on the point of our
triangular cells) together with any number of auxiliary ports. A redex consists of two
cells connected by their respective principal ports, in accordance with typing. Among
new reduction rules introduced in differential nets, interaction between cells c? and w?

on the one hand, and m! and u! on the other hand, endow exponential types with a
structure of bialgebra, mainly characterized by the following interaction rule:

m!

!o
!o

!o
c?

?i

?i

→
c?

?i

c?

?i
m!

!o

m!

!o
!o

!o !o

!o

.

Also, dereliction d interacts with m! as follows:

m!

!o

!o

d
?i i

→
d

?i i

w?

?i
d

?i i

w?

?i+ .

3

The idea is that d requires one copy of an argument from its principal port, which it feeds
to its auxiliary port; this argument is taken nondeterministically from either auxiliary
port of m!, hence the sum. The redex between d and w! reduces to the 0 net (which is
the neutral element of sum of nets) following the same intuition. There are of course
symmetric rules for interaction between derivative ∂, and c? and w?, that we do not
explicit here.

An extensive discussion of the intuitions behind differential reduction rules may be
found in [ER05] and the relationship between sum and nondeterminism is developped in
the introduction of [ER03]. Although this is not done in [ER05], one may also introduce
promotion boxes in differential interaction nets, along the lines of [Laf95], and provide
appropriate reduction rules: this allows to encode differential λ-calculus.

Polarized Nets. Polarized nets are another extension of linear logic nets. Again,
we only outline a weakly typed version of the polarized proof nets of [Lau03], which we
present in an interaction net flavor. The main feature of polarized nets is that contraction
and weakening are generalized to type o:

co o
o

o
and wo o .

This accounts for structural rules on output types, which is a characteristic of clas-
sical logic. Generalized structural rules give rise to a new redex between tensor and
contraction co (or weakening wo) cells:

co

o

o
⊗

i

!o

i

→

⊗
i

⊗
i

c?

?i

co o
o

!o o

!o

and wo ⊗
i

!o

i

→
w?

?i

wo o

.

Polarized proofs nets are well suited to encode classical extensions of λ-calculus: see
[Lau03] for an encoding of λµ-calculus and [Lau02, Section 12.2] for an encoding of both
deterministic variants of λ̄µµ̃-calculus.

Differential Structures and Classical Logic. In [Vau07a], the author introduced
the differential λµ-calculus, as an attempt to uncover possible interactions between dif-
ferential structures and classical logic, in a purely computational setting. The result is
a pure calculus which consistently extends both differential λ-calculus and λµ-calculus.

Another possible path for studying how differential and classical constructs interact
with each other lies at the level of interaction nets. One may come up with a notion
of differential polarized nets, with cells those of differential nets and polarized nets
altogether. Then it is easily checked that the union of the reduction rules for differential
nets and for polarized nets address all possible redexes.

We do not detail further this construction, but one may verify that differential λµ-
calculus enjoys a natural encoding into these differential polarized nets. Hence, although
differential λµ-calculus introduces a new reduction rule, which was not present in λµ-
calculus nor in differential λ-calculus (namely that associated with the derivative of

4

a µ-abstraction), one may claim that it is only a side-effect of the sequentiality of λ-
calculus. Indeed, in the more parallel syntax of interaction nets, differential cells on the
one hand, and generalized structural rules on the other hand, do not interact with each
other.

A Convolution Product on Contexts. The convolution λ̄µ-calculus defined in this
paper, is the pure calculus associated with the following other variant of polarized nets:
together with the cells of polarized nets, introduce the abovementioned costructural cells
m! and u!, and also generalized versions of these,

mi

i
i

i

and ui

i

i.e. cocontraction and coweakening on input type i. New redexes arise and we give the
following reduction rules: mi and ui interact with co and wo the same way as m! and u!

interact with c? and w?,

in particular co o
o

o
mi

i

i

→

mi

i

mi

i co o

co o
o

o o

o

;

also, mi duplicates O and ui erases O, the same way as co and wo act on ⊗:

→O
o

?i
mi

i
i

i

O
o

O
o

mi

i

m!

!o
!o

o!o

o

and O
o

?i
ui

i →
ui

i

u!

!o

.

Again, we do not detail this system further: this is still the subject of ongoing work in
[Vau07b]. Rather, we explicit how convolution λ̄µ-calculus stems from it. In the trans-
lation of λµ-calculus into polarized nets, the type of dangling wires (oriented outwards)
is only o or ?i. Type i only occurs in the cuts involved in the translation of application.
This suggests that the computational counterpart of costructural cells on type i may
be more fruitfully studied in the setting of Herbelin’s λ̄µ-calculus, where cuts appear
explicitly.

One may derive a translation of λ̄µ-calculus into polarized nets from that of λ̄µµ̃T -
calculus given in [Lau02], in which i types the active wire of the translation of contexts.
The counterpart of mi and ui is then an associative and commutative operation on
contexts that we denote by ∗, and its unit 1. It is argued in [Ehr01, Section 5.4], that
m! acts as a convolution product on !o, with properties similar to those of convolution
of distributions; in that analogy, u! corresponds to the Dirac mass at 0 (see also [Ehr05,
Section 3], in paragraph Algebraic structure). Since the behaviour of mi and ui on type
i mimics that of m! and u! on type !o, we may call ∗ convolution product on contexts.
We will show later that, although they live in different formalisms, ∗ actually shares a
distinctive feature with the convolution product of distributions, which further enforces
this designation.

5

From the reduction rules of nets we have outlined, one derives that β-reduction may
be generalized so that:

〈

λx s , (t · e) ∗ (t′ · e′)
〉

→
〈

s
[

t + t′/x
]

, e ∗ e′
〉

.

Recall that nondeterministic choice provides a possible computational interpretation of
sum, as described in the introduction of [ER03]. Convolution product of contexts may
then be interpreted as a nondeterministic intertwining of lists of arguments.

The reduction step given above, however, only amounts to usual reduction in λ̄µ-
calculus, together with the identity (t · e) ∗(t′ · e′) = (t + t′) ·(e ∗ e′) which is semantically
valid (see Remark 15). Moreover, it involves synchronisation between contexts: both
must have a term at top-level, for a reduction to occur. In this paper, we use a finer
grained notion of reduction, the basic rules of which were given in the beginning of this
introduction: this matches cut elimination between O and costructural cells more closely.
Also, that notion will enable us to demonstrate the link with convolution of distributions
in Remark 5.

Relational Semantics. In order to underline the correspondence between convolution
λ̄µ-calculus and generalized costructural rules on i, we provide it with a denotational
semantics in the category of sets and relations. In the standard relational model of linear
logic, formulas are interpreted as sets and proofs as relations between these sets: see,
e.g., [Ehr05, Appendix A] for precise definitions. In particular, structural rules on type
A correspond to relations dA ⊆ !A −◦ A = Mfin (A) × A, cA ⊆ !A −◦ (!A ⊗ !A) =
Mfin (A) × (Mfin (A) ×Mfin (A)) and wA ⊆ !A −◦ 1 = Mfin (A) × 1, where Mfin (A)
denotes the set of all finite multisets of elements of A and 1 is a singleton set. One
interesting feature of the relational model is that it identifies dual connectors in linear
logic. In particular, if ϕ ⊆ A −◦ B in the relational model, then ϕ⊥ ⊆ B −◦ A where
ϕ⊥ = {(b, a); (a, b) ∈ ϕ}. By setting ∂A = d⊥A, mA = c⊥A, and uA = w⊥

A , it turns out
that we obtain a model of differential interaction nets. This suggests that we may derive
a denotational semantics of convolution λ̄µ-calculus from a model of λµ-calculus in the
category of sets and relations.

The model we use was introduced by Bucciarelli and Ehrhard in [BE04], as an ex-
tensional lambda-model in the category of sets and relations. It is naturally endowed
with a monoid structure, which is suitable to provide a denotational semantics of λµ-
calculus along the lines of [LR03]: monoid operation and unit model structural rules on
o. We also use those monoid laws to handle the denotational semantics of convolution
product: the same as for costructural rules, this amounts to reverse the direction of the
corresponding relation.

1.2 Related Work

A system of intersection and union types for the λ̄µ-calculus is presented [DGL05].
This system bears some similarity with the type system we present in section 3: this is
underlined by the fact that all weakly normalizing terms are typable. It comes as no

6

surprise, since our system is derived from Carvalho’s system R, which is related to a
system of intersection types for λ-calculus.

One important outcome of [dC06] and our paper is that they provide the aforemen-
tioned type systems with a strong grounding into well known denotational semantics of
linear logic and its variants.

2 Syntax

In this section, we introduce the syntax of convolution λ̄µ-calculus. Like ordinary λ̄µ-
calculus, it involves three distinct syntactic categories: terms, contexts and commands.
We introduce convolution product ∗ as a commutative and associative binary operation
on contexts, with unit 1.

Similarly to what is done in [ER03] and [Vau07a], each category of objects is endowed
with a structure of commutative monoid, and we denote by + and 0 the corresponding
operation and neutral element. Moreover, all but one syntactic construct are linear, i.e.

they commute to sums: in particular, ∗ distributes over +. In order to implement these
high-level, metatheoretical requirements, we first define a basic syntax with a simple
equality, then provide extended notations.

Remark 1. Since we only form sums (without coefficients) it is quite clear that our
constructions are well defined, and that nothing tricky is hiding behind equality of
terms. Recall from [Vau06, Section 4] that the introduction of linear combinations of
terms (rather than just sums) may break normalization properties, or even trivialize
β-equality [Vau06, Section 2.6], depending on the structure of the set of coefficients.

2.1 Morphology

Basic Syntax. Fix two denumerably infinite sets V (set of variables, denoted by
x, y, z) and N (set of names, denoted by α, β, γ).

Definition 2. Define sets T of simple terms and T + of terms, set S of stacks, sets
E of simple contexts and E+ of contexts, and sets C of simple commands and C+ of
commands, by the following grammar:

s ::= x | λx s | µα c (simple terms)
σ ::= α | S · e (stacks)
e ::= 1 | σ ∗ e (simple contexts)
c ::= 〈s , e〉 (simple commands)
S ::= 0 | s + S (terms)
E ::= 0 | e + E (contexts)
C ::= 0 | c + C (commands) .

We consider terms, commands and contexts up to permutativity of sum in the sense
that, e.g., s + (s′ + S) = s′ + (s + S). Also, we consider simple contexts up to per-
mutativity of convolution product: e.g., α ∗((S · e) ∗ e′) = (S · e) ∗(α ∗ e′). Notice that

7

these identities preserve free and bound variables and names: hence they are compati-
ble with α-conversion. Equality of terms (resp. commands, contexts) is then given by
permutativity of sum and product, together with α-equivalence.

Notations. We call simple object any simple term, simple context or simple command,
and object any term, context or command. We may use greek letter θ to denote a simple
object and capital Θ to denote an object. In general, if simple object θ and object Θ
appear in the same sentence, it should be clear they are of the same kind: Θ is a term,
context or command, if θ is a simple term, a simple context or a simple command
respectively.

If θ1, . . . , θn are simple objects and Θ an object, all of the same kind, we write θ1 +
· · ·+ θn + Θ for θ1 + (· · ·+ (θn + Θ) · · ·). If θ is a simple object, we may also denote by
θ the corresponding object θ + 0. Hence, all object Θ may be written Θ = θ1 + · · ·+ θn

or even Θ =
∑n

i=1 θi. Assume Θ = θ1 + · · ·+ θn and Θ′ = θ′1 + · · ·+ θ′p: we write Θ + Θ′

for θ1 + · · ·+ θn + θ′1 + · · ·+ θ′p. Up to these conventions, sum + becomes an associative
and commutative binary operation on terms, contexts and commands respectively, and
object 0 is neutral.

Similarly, we identify any stack σ with the simple context σ ∗1 ∈ E : then we may
write any simple context e as e = σ1 ∗ · · · ∗σn where the stacks σi are names or of shape
S · e′. With notations similar to those we used for sum, we consider ∗ as an associative
and commutative binary operation on simple contexts, with unit 1.

Now we extend our syntactic constructs by linearity in order to be able to write λxS,
µα C, S ·E, E ∗F and 〈S ,E〉 for all S ∈ T +, E,F ∈ E+ and C ∈ C+.

Definition 3. Assume s1, . . . , sn ∈ T , e1, . . . , ep, f1, . . . , fq ∈ E , c1, . . . , cr ∈ C and
S ∈ T +. Then we write:

λx (
∑n

i=1si) =
∑n

i=1λx si (
∑p

j=1ej) ∗
(
∑q

k=1fk

)

=
∑p

j=1

∑q
k=1ej ∗ fk

µα (
∑r

l=1cl) =
∑r

l=1µα cl

〈

∑n
i=1si ,

∑p
j=1ej

〉

=
∑n

i=1

∑p
j=1 〈si , ej〉

S · (
∑p

j=1ej) =
∑p

j=1S · ej .

Notice that the cons of a term and a context is not linear in the term: this is the
analogue of application not being linear in the argument, in usual λ-calculus. This
definition introduces some overlap of notations: e.g., λx s denotes both a simple term
in our basic syntax, and the value of λx (s + 0) in the above definition. This is however
harmless since both writings denote the same term.

Up to the notations we have just introduced, the set of terms (resp. contexts, com-
mands) is endowed with a structure of commutative monoid. The set of contexts is more-
over endowed with a structure of commutative rig (i.e. a commutative ring, without the
condition that every element admits an opposite), with addition + and multiplication ∗.
Also, λ- and µ-abstractions are linear, cons is linear in the context, and cut is bilinear.
Then substitution of a term for a variable (resp. of a context for a name) in an object

8

is defined as usual, by induction on objects:

y [T/x] =

{

T if x = y
y otherwise

y [E/α] = y

(λy s) [T/x] = λy (s [T/x]) (λy s) [E/α] = λy (s [E/α])
(µβ c) [T/x] = µβ (c [T/x]) (µβ c) [E/α] = µβ (c [E/α])

β [T/x] = β β [E/α] =

{

E if α = β
β otherwise

(S · e) [T/x] = (S [T/x]) ·(e [T/x]) (S · e) [E/α] = (S [E/α]) ·(e [E/α])
1 [T/x] = 1 1 [E/α] = 1

(σ ∗ e) [T/x] = (σ [T/x]) ∗(e [T/x]) (σ ∗ e) [E/α] = (σ [E/α]) ∗(e [E/α])
〈s , e〉 [T/x] = 〈s [T/x] , e [T/x]〉 〈s , e〉 [E/α] = 〈s [E/α] , e [E/α]〉

0 [T/x] = 0 0 [E/α] = 0

(θ + Θ) [T/x] = θ [T/x] + Θ [T/x] (θ + Θ) [E/α] = θ [E/α] + Θ [E/α]

assuming usual conditions to avoid variable and name capture.

2.2 Reduction

Convolution Reduction. We call simply contextual relation any triplet r of binary
relations respectively on terms, contexts and commands, all denoted r, and such that:

– if s r S′ then λx s r λxS′ and 〈s , e〉 r 〈S′ , e〉;

– if e r E′ then s · e r s ·E′, 〈s , e〉 r 〈s ,E′〉 and e ∗ f r E′ ∗ f ;

– if c r C ′ then µα c r µα C ′;

– if S r S′ then S · e r S′ · e;

– and if θ0 r Θ′
0 then for all Θ1, θ0 + Θ1 r Θ′

0 + Θ1.

Definition 4. Reduction →β is the least simply contextual relation such that:

〈µα c , e〉 →β c [e/α] (1)

〈λx s , (S · e) ∗ f〉 →β 〈λy µα 〈s [y + S/x] , α ∗ e〉 , f〉 (2)

〈λx s , 1〉 →β 〈s [0/x] ,1〉 (3)

with y a fresh variable and α a fresh name in (2).

Notice that 〈λx s , S · e〉 →∗
β 〈s [S/x] , e〉 and, more interestingly,

〈

λx s , (S · e) ∗(S′ · e′)
〉

→∗
β

〈

s
[

S + S′/x
]

, e ∗ e′
〉

where →∗
β denotes the reflexive and transitive closure of →β. This enlightens the fact

that →β is a refined version of both usual reduction of λ̄µ-calculus and the coarser no-
tion of convolution reduction we first derived from cut elimination in the introduction.

9

Conversely, →β may be simulated by that coarse reduction, up-to the following gener-
alization of η-expansion on commands: recalling that the analogue of η-expansion in
λ̄µ-calculus is s←η λxµα 〈s , x ·α〉 we set

〈

s , e ∗ e′
〉

←η′

〈

λxµα 〈s , e ∗ (x ·α)〉 , e′
〉

.

This can be thought of as η-expansion w.r.t. only one component of a product. If e′

actually holds an argument at top-level, i.e. e′ = S · f , we can get back:

〈λxµα 〈s , e ∗ (x ·α)〉 , S · f〉 →∗
β 〈s , e ∗ (S · f)〉 =

〈

s , e ∗ e′
〉

which validates ←η′ as a notion of η-expansion.

Remark 5. Recall (e.g., from [Sch66]) that the definition of the convolution product of
distributions is as follows: if e and f are distributions with compact domains and ϕ is a
test function, then e ∗ f is such that

〈λz ϕ(z) , e ∗ f〉 = 〈λy 〈λxϕ(x + y) , e〉 , f〉 .

Analoguously, one can check that the following two commands

〈λz s , (S · e) ∗(T · f)〉 and 〈λy µβ〈λxµα〈s [x + y/z] , α ∗ β〉 , S · e〉 , T · f〉

are identified by reduction: both reduce to 〈s [S + T/z] , e ∗ f〉. The apparent complexity
of that last identity has two main causes.

First, in the formalism of distributions and test functions, ϕ is supposed to be a
function with scalar values. The type corresponding to scalars is that of commands, but
in λ̄µ-calculus, as in λ-calculus, functions and values are represented by terms. Hence the
µ-abstractions and the innermost cut: these handle the possible remaining arguments.
Second, functions are in general considered extensionally. Expansion ←η′ may be used
to introduce sufficient extensionality:

〈λz s , e ∗ f〉 ←η′ 〈λy µβ 〈λz s , e ∗ (y · β)〉 , f〉
→β 〈λy µβ〈λxµα〈s [x + y/z] , α ∗β〉 , e〉 , f〉 .

Confluence. We prove confluence of reduction using usual Tait-Martin-Löf technique:
introduce a parallel extension of one-step reduction, and prove this has the diamond
property.

A binary relation r on commutative monoid A is said to be linear if: for all a1, . . .,
an, b1, . . . , bn ∈ A, if ai r bi holds for all i, then

∑n
i=1 ai r

∑n
i=1 bi also holds (in particular

0 r 0). Notice that →β is not linear: 0 6→β 0. We call contextual relation any triplet
r of binary relations respectively on terms, contexts and commands, all denoted r, such
that each of them is reflexive and linear, and if S r S′, E r E′, F r F ′ and C r C ′, then
λxS r λxS′, µα C r µα C ′, S ·E r S′ ·E′, E ∗F r E′ ∗F ′ and 〈S ,E〉 r 〈S′ , E′〉.

10

Definition 6. Parallel reduction →// is the least contextual relation →// such that, if
s→// S′, c→// C ′, e→// E′, and for all i = 0, . . . , n, Si →// S′

i and ei →// E′
i, then:

〈µα c , e〉 →// C ′
[

E′/α
]

(4)

〈λx s , e ∗
∏n

i=0 (Si · ei)〉 →//

〈

λy µα
〈

S′
[

y +
∑n

i=0S
′
i/x

]

, α ∗
∏n

i=0E
′
i

〉

, E′
〉

(5)

〈λx s ,
∏n

i=1(Si · ei)〉 →//

〈

s
[
∑n

i=1S
′
i/x

]

,
∏n

i=1E
′
i

〉

. (6)

with y a fresh variable α a fresh name in (5).

It should be clear that →β ⊂ →//, in the sense that if Θ →β Θ′ then Θ →// Θ′. In
particular, (6) is reminiscent of the coarse version of reduction. Moreover, →// ⊂ →

∗
β

by simple contextuality of →β. The following lemma states the essential property of
parallel reduction.

Lemma 7. If Θ and Θ′ are objects, S and S′ ∈ T +, and E and E′ ∈ E+, such that

Θ →// Θ′, S →// S′ and E →// E′, then for every variable x and every name α, the

following reductions hold:

Θ [S/x]→// Θ′
[

S′/x
]

and Θ [E/α]→// Θ′
[

E′/α
]

.

Proof. This is a simple induction on Θ, using contextuality of →//.

We now prove that →// enjoys the diamond property. Assume s ∈ T and e ∈ E , and

write e = (
∏n

i=1 Si · ei) ∗ (
∏k

j=1 αj); we then define

〈λx s , e〉0 =











〈s [
∑n

i=1 Si/x] ,
∏n

i=1 ei〉 if k = 0;
〈

λy µα 〈s [y +
∑n

i=1 Si/x] , α ∗
∏n

i=1 ei〉 ,
∏k

j=1 αj

〉

if nk > 0;

〈λx s , e〉 otherwise.

Clearly, 〈λx s , e〉 →// 〈λx s , e〉0, as a particular case of (5) or (6).

Definition 8. We define full reduction as follows:

x↓ = x α↓ = α 〈x , e〉 ↓ = 〈x , e↓〉
(λx s)↓ = λx s↓ (S · e)↓ = S↓ · e↓ 〈λx s , e〉 ↓ = 〈λx s↓ , e↓〉0
(µα c)↓ = µα c↓ 1↓ = 1 〈µα c , e〉 ↓ = c↓ [e↓/α]

(σ ∗ e)↓ = σ↓ ∗ e↓

and (
∑n

i=1 θi)↓ =
∑n

i=1 θi↓.

Full reduction fires all possible redexes in an object. Then one obtains the diamond
property for parallel reduction:

Lemma 9. If Θ and Θ′ are objects such that Θ→// Θ′, then Θ′ →// Θ↓.

Proof. This result is proved by inspecting all possible cases of reduction Θ→// Θ′, using
Lemma 7 in redex cases.

Theorem 10. Reduction is confluent.

Proof. This is a corollary of Lemma 9 and the inclusions →β ⊂ →// ⊂ →
∗
β.

11

3 Relational Semantics

In this section, we adapt the system R of [dC06] to the setting of convolution λµ-calculus:
we introduce a type system, the types of which are elements of the extensional λ-model
described in [BE04].

A Reflexive Object in the Category of Sets and Relations. If X is a set, we
denote by Mfin (X) the set of all finite multisets [x1, . . . , xn] of elements x1, . . . , xn ∈

X (possibly with repetitions). Also, we write (Mfin (X))(ω) for the set of all infinite
sequences a = (a(i))i∈ω of finite multisets of elements of X such that a(i) = [] holds for
almost all i ∈ ω.

We define an increasing family (Dn)n∈N of sets by: D0 = ∅ and Dn+1 = (Mfin (Dn))(ω).
Then we write D =

⋃

n∈N
Dn. If A ∈ Mfin (D) and a ∈ D, we write A :: a for the

sequence b such that b(0) = A and b(i + 1) = a(i) for all i ∈ ω. This mapping is clearly
a bijection between D andMfin (D)×D. We write ι for the sequence in which only the
empty multiset occurs: ι(i) = [] for all i ∈ ω, so that ι = [] :: ι. Observe that D1 = {ι}.

Type System. Call types the elements of D. We impose a commutative monoid
structure on types as follows. For all a, b ∈ D, we define a ⋆ b as the sequence such that,
for all i ∈ ω, (a ⋆ b)(i) = a(i) + b(i) where + denotes the union of multisets. Clearly ι is
neutral for that associative and commutative operation.

A variable environment is a function Γ : V −→Mfin (D) such that Γ(x) = [] for almost
all x ∈ V. If x ∈ V and A ∈ Mfin (D), we write x : A for the variable environment Γ
such that: Γ(x) = A and, for all y 6= x, Γ(y) = []. If Γ and Γ′ are variable environments,
we write Γ + Γ′ for the variable environment defined by (Γ + Γ′)(x) = Γ(x) + Γ′(x). If
Γ is a variable environment, we define its support Supp (Γ) = {x ∈ V; Γ(x) 6= []}.

Similarly, a name environment is a function ∆ : N −→ D such that ∆(α) = ι for
almost all α ∈ N. If α ∈ N and a ∈ D, we write α : a for the name environment ∆ such
that: ∆(α) = a and, for all β 6= α, ∆(β) = ι. If ∆ and ∆′ are name environments, we
write ∆ ⋆∆′ for the name environment defined by (∆ ⋆ ∆′)(α) = ∆(α) ⋆ ∆′(α) and we
set Supp (∆) = {α ∈ N;∆(α) 6= ι}.

Now we introduce type system Rλ̄µ∗ for the objects of convolution λ̄µ-calculus. Typing
judgements are of form Γ ⊢ S : a | ∆, Γ | E : a ⊢ ∆ or C : (Γ ⊢ ∆), where Γ is a variable
environment and ∆ is a name environment. We may omit Γ (resp. ∆) if it is the constant
function with value [] (resp. ι). The rules of system Rλ̄µ∗ are given in Fig. 1.

The reader may refer to [DGL05] and check that the rules of system Rλ̄µ∗, restricted
to the objects of ordinary λ̄µ-calculus, are quite similar to those of system M∩∪. This
similarity actually extends to the fact that all weakly normalizing objects are typable in
system Rλ̄µ∗, as we will show later. This feature is a characteristic of intersection type
systems: this was already prominent in system R.

Example 11. The term λxµα 〈x , x ·α〉 (the λ̄µ-calculus variant of δ = λx (x)x) has

12

x : [a] ⊢ x : a |
Var

Γ + x : A ⊢ s : a | ∆ Γ(x) = []

Γ ⊢ λx s : A :: a | ∆
Abs

c : (Γ ⊢ ∆ ⋆ α : a) ∆(α) = ι

Γ ⊢ µα c : a | ∆
Mu

| α : a ⊢ α : a
Name

Γ0 | e : a0 ⊢ ∆0 Γ1 ⊢ S : a1 | ∆1 · · · Γn ⊢ S : an | ∆n

Γ0 + · · · + Γn | S · e : [a1, . . . , an] :: a0 ⊢ ∆0 ⋆ · · · ⋆ ∆n
Cons

| 1 : ι ⊢
Unit

Γ | σ : a ⊢ ∆ Γ′ | e : a′ ⊢ ∆′

Γ + Γ′ | σ ∗ e : a ⋆ a′ ⊢ ∆ ⋆∆′ Conv

Γ ⊢ s : a | ∆ Γ′ | e : a ⊢ ∆′

〈s , e〉 : (Γ + Γ′ ⊢ ∆ ⋆∆′)
Cut

Γ ⊢ θi : a | ∆

Γ ⊢
∑n

i=0 θi : a | ∆
Sumi

Figure 1: Typing rules for system Rλ̄µ∗

the following typing derivation, recalling that ι = [] :: ι:

x : [ι] ⊢ x : ι |

| α : ι ⊢

| x ·α : ι ⊢

〈x , x ·α〉 : (x : [ι] ⊢)

x : [ι] ⊢ µα 〈x , x ·α〉 : ι |

⊢ λxµα 〈x , x ·α〉 : [ι] :: ι | .

Lemma 12. Every term, context or command which is in normal form is typable.

Proof. The result is proved by mutual induction on normal terms, contexts and com-
mands. Among the typing rules in figure 1, only Cut involves some compatibility con-
dition on the types of subobjects. Hence the only interesting induction case is that of
simple commands. Simple commands in normal form are those c = 〈s , e〉 such that:

(i) either s is a variable and e is a simple context in normal form;

(ii) or s = λx t, where t is a simple term in normal form, and e = α0 ∗ · · · ∗αn is a
product of names, with n > 0.

In both cases, it is easy to build a typing derivation using the inductive hypothesis and
axiom rules (Var or Name).

Denote by FV (Θ) (resp. FN (Θ)) the set of all variables (resp. names) free in Θ. To
simplify some of our next statements, we write Rλ̄µ∗ (Γ,∆,Θ, a) for:

Γ ⊢ S : a | ∆ if Θ = S ∈ T + ;
Γ | E : a ⊢ ∆ if Θ = E ∈ E+ ;
C : (Γ ⊢ ∆) if Θ = C ∈ C+ .

Lemma 13. If Rλ̄µ∗ (Γ,∆,Θ, a), then Supp (Γ) ⊆ FV (Θ) and Supp (∆) ⊆ FN(Θ).

Proof. This is easily proved by induction on Θ.

13

Denotational Semantics. We define the relational semantics of an object, as the set
of all its typings in system Rλ̄µ∗. More precisely:

Definition 14. Assume S ∈ T +, E ∈ E+ and C ∈ C+ are such that FV (Θ) ⊆
{x1, . . . , xn} and FN (Θ) ⊆ {α1, . . . , αp}, for Θ = S,E,C. We define

JSKα1,...,αp
x1,...,xn

= {(Γ(x1), . . . ,Γ(xn), a,∆(α1), . . . ,∆(αp)); Γ ⊢ S : a | ∆} ,

JEKα1,...,αp
x1,...,xn

= {(Γ(x1), . . . ,Γ(xn), a,∆(α1), . . . ,∆(αp)); Γ | E : a ⊢ ∆} and

JCKα1,...,αp
x1,...,xn

= {(Γ(x1), . . . ,Γ(xn),∆(α1), . . . ,∆(αp)); C : (Γ ⊢ ∆)} .

Remark 15. The reader can easily check that
q
(S · e) ∗(S′ · e′)

yα1,...,αp

x1,...,xn
=

q
(S + T) ·(e ∗ e′)

yα1,...,αp

x1,...,xn
.

The following three lemmas are proved by induction on objects.

Lemma 16. We have Rλ̄µ∗ (Γ,∆,Θ [0/x] , a) if and only if x 6∈ Supp (Γ) and Rλ̄µ∗ (Γ,∆,Θ, a).

Lemma 17. Assume x 6∈ FV (T). Then the following are equivalent:

– Rλ̄µ∗ (Γ,∆,Θ [x + T/x] , a);

– there exist variable environments Γ′,Γ1, . . . ,Γn, and name environments ∆′, ∆1, . . . ,∆n

and types a1, . . . , an ∈ D such that

• Γ = Γ′ + Γ1 + · · ·+ Γn and ∆ = ∆′ ⋆ ∆1 ⋆ · · · ⋆ ∆n;

• for all i = 1, . . . , n, Γi ⊢ T : ai | ∆i;

• and Rλ̄µ∗ (Γ′ + x : [a1, . . . , an] ,∆′,Θ, a).

Lemma 18. The following statements are equivalent:

– Rλ̄µ∗ (Γ,∆,Θ [E/α] , a);

– there exist variable environments Γ′ and Γ′′, name environments ∆′ and ∆′′, and

type b ∈ D, such that

• α 6∈ Supp (∆′);

• Γ = Γ′ + Γ′′ and ∆ = ∆′ ⋆ ∆′′;

• Γ′′ | E : b ⊢ ∆′′;

• and Rλ̄µ∗ (Γ′,∆′ ⋆ α : b,Θ, a).

Theorem 19. If Θ →β Θ′, then we have: Rλ̄µ∗ (Γ,∆,Θ, a) iff Rλ̄µ∗ (Γ,∆,Θ′, a). If

moreover FV (Θ) ⊆ {x1, . . . , xn} and FN(Θ) ⊆ {α1, . . . , αp}, then

JΘKα1,...,αp
x1,...,xn

=
q
Θ′

yα1,...,αp

x1,...,xn
.

Proof. The proof is by induction on Θ, inspecting all possible cases for reduction Θ→β

Θ′, and using the previous three lemmas in redex cases.

Hence the relational semantics is preserved by reduction. As a corollary, Lemma 12
implies that every object that has a normal form is typable.

14

4 Future Work

On Pure Calculi. Although grounded in ideas coming from models of differential
λ-calculus, convolution λ̄µ-calculus provides no differentiation primitive. Indeed, recall
from our introduction that the nets associated with convolution λ̄µ-calculus are polarized
nets, extended with cocontraction and coweakening on types !o and i. In particular, they
do not involve derivative ∂.

One may augment these nets by including ∂ and the associated cut elimination rules,
but this needs caution. Uncontrolled use of ∂ breaks one essential property of polarized
nets: namely, the occurrence of at most one positive type (!o or i in our setting) among
all output wires. That matter is discussed in [Vau07b] in more details.

This remark, however, does not hamper the fact that one may propose differential
extensions of convolution λ̄µ-calculus. Some first attempts even suggest that the in-
troduction of convolution product of contexts actually simplifies the presentation of a
would-be differential λ̄µ-calculus.

On Denotational Semantics. In [dC06], Carvalho provides precise results relating
the relational semantics of λ-terms with their normalization properties (which are very
close to those we expect from an intersection type system); he also provides bounds for
the execution time of terms in variants of Krivine’s abstract machine, according to the
size of their typing derivations in system R. We do not know yet, to which extent these
results may accomodate themselves to the setting of Bucciarelli-Ehrhard’s model and
convolution λ̄µ-calculus (or even usual λµ- or λ̄µ-calculus for that matter).

Another promising direction for further research is to study more precisely how the
categorical constructions of [LR03] may be extended to a setting with costructural rules.

References

[BE04] Antonio Bucciarelli and Thomas Ehrhard. An extensional model of the
lambda-calculus in the category of sets and relations. Manuscript, 2004.

[dC06] Daniel de Carvalho. Execution time of lambda-terms via non uniform seman-
tics and intersection types. Research report, 2006.

[DGL05] Daniel J. Dougherty, Silvia Ghilezan, and Pierre Lescanne. Intersection and
union types in the lambda-bar-mu-mu-tilde-calculus. Electr. Notes Theor.

Comput. Sci., 136:153–172, 2005.

[DJS95] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. Sequent calculi
for second order logic. In J.-Y. Girard, Y. Lafont, and L. Regnier, editors,
Advances in Linear Logic, pages 211–224. Cambridge University Press, 1995.

[Ehr01] Thomas Ehrhard. On Köthe sequence spaces and linear logic. Mathematical

Structures in Computer Science, 12:579–623, 2001.

15

[Ehr05] Thomas Ehrhard. Finiteness spaces. Mathematical. Structures in Comp. Sci.,
15(4):615–646, 2005.

[ER03] Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. The-

oretical Computer Science, 309:1–41, 2003.

[ER05] Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Electr.

Notes Theor. Comput. Sci., 123:35–74, 2005.

[Her95] Hugo Herbelin. Séquents qu’on calcule. Phd thesis, Université Paris 7, 1995.

[Laf95] Yves Lafont. From proof nets to interaction nets. In J.-Y. Girard, Y. Lafont,
and L. Regnier, editors, Advances in Linear Logic, pages 225–247. Cambridge
University Press, 1995.

[Lau02] Olivier Laurent. Etude de la polarisation en logique. Thèse de doctorat, Uni-
versité Aix-Marseille II, March 2002.

[Lau03] Olivier Laurent. Polarized proof-nets and λµ-calculus. Theoretical Computer

Science, 290(1):161–188, January 2003.

[LR03] Olivier Laurent and Laurent Regnier. About translations of classical logic into
polarized linear logic. In Proceedings of the 18th annual IEEE symposium on

Logic In Comp. Sci., pages 11–20. IEEE Computer Society Press, June 2003.

[Par92] Michel Parigot. λµ-calculus: An algorithmic interpretation of classical natural
deduction. In Proceedings of the International Conference on Logic Program-

ming and Automated Reasoning, pages 190–201. Springer-Verlag, 1992.

[Reg92] Laurent Regnier. Lambda-calcul et réseaux. PhD thesis, Université Paris 7,
1992.

[Sch66] Laurent Schwartz. Théorie des distributions. Hermann, 1966.

[Vau06] Lionel Vaux. λ-calculus in an algebraic setting. Research report, 2006.

[Vau07a] Lionel Vaux. The differential λµ-calculus. To appear in Theoretical Computer
Science, doi:10.1016/j.tcs.2007.02.028, 2007.

[Vau07b] Lionel Vaux. Polarized proof nets and differential structures. Unpublished
manuscript, 2007.

16

