
Primitive recursion in �niteness spaces

Lionel Vaux?

Laboratoire de Mathématiques de l'Université de Savoie
UFR SFA, Campus Scienti�que, 73376 Le Bourget-du-Lac Cedex, France

E-mail: lionel.vaux@univ-savoie.fr

Abstract. We study iteration and recursion operators in the multiset
relational model of linear logic and prove them �nitary in the sense of
the �niteness spaces recently introduced by Ehrhard. This provides a
denotational semantics of Gödel's system T and paves the way for a
systematic study of a large class of algorithms, following the ideas of
Girard's quantitative semantics in a standard algebraic setting.

1 Introduction

The category Fin of �niteness spaces and �nitary relations was introduced by
Ehrhard [1], re�ning the purely relational model of linear logic. A �niteness
space is a set equipped with a �niteness structure, i.e. a particular set of subsets
which are said to be �nitary; and the model is such that the usual relational
denotation of a proof in linear logic is always a �nitary subset of its conclusion.
By the usual co-Kleisli construction, this also provides a model of the simply
typed lambda-calculus: the cartesian closed category Fin!.

The main property of �niteness spaces is that the intersection of two �nitary
subsets of dual types is always �nite. This feature allows to reformulate Gi-
rard's quantitative semantics in a standard algebraic setting, where morphisms
interpreting typed λ-terms are analytic functions between the topological vector
spaces generated by vectors with �nitary supports. This provided the seman-
tical foundations of Ehrhard-Regnier's di�erential λ-calculus [2] and motivated
the general study of a di�erential extension of linear logic [3].

It is worth noticing that �niteness spaces can accomodate typed λ-calculi
only: for instance, the relational semantics of �xpoint combinators is never �ni-
tary. The whole point of the �niteness construction is actually to reject in�nite
computations. Indeed, from a logical point of view, computation is cut elim-
ination: the �niteness structure ensures the intermediate sets involved in the
relational interpretation of a cut are all �nite. In that sense, the �nitary seman-
tics is intrinsically typed.

Despite this restrictive design, Ehrhard proved that a limited form of recur-
sion was available, by de�ning a �nitary tail-recursive iteration operator. The
main result of the present paper is that �niteness spaces can actually accomo-
date the usual notion of primitive recursion in models of the λ-calculus: Fin!

? Supported by French ANR project CHOCO

admits a weak natural number object in the sense of [4,5], hence it is a model
of the iterator variant of Gödel's system T . We moreover exhibit a recursion
operator for this interpretation of the type of natural numbers and prove it is
also �nitary: �niteness spaces model recursion on all functionals of �nite type.

Our construction interprets the type of natural numbers di�erently from that
of Ehrhard. The latter relies on a peculiarity of tail-recursive iteration. Write Nat
for the type of natural numbers, and let t, u and v be terms of types respectively
Nat, X ⇒ X and X. In the iteration step J (S t)u v J t u (u v), no erasing
nor duplication involves t, only the successor S is consumed: the tail-recursive
iterator uses its integer argument linearly. The situation is very di�erent in the
case of the standard iterator: in I (S t)u v u (I t u v), the term t is fed into
the argument of u, which needs not be linear. In particular, if u is de�ned as a
constant function (a weakening in linear logic terminology), then t is erased in
the right hand side. In that case, the denotational semantics of I (S t)u v must not
depend on t. This forbids the successor S to be linear, because S t must produce
a result to be distinguished from the null constant O, even without looking at t.1

This phenomenon was already noted by Girard in his interpretation of system T
in coherence spaces [6]. We adopt the solution he proposed in that setting, and
interpret terms of type Nat by so-called lazy natural numbers.

Structure of the paper. We �rst provide a quick survey of the essential de�nitions
and properties of �niteness spaces we shall use, and introduce the categories Fin
and Fin!. We then make explicit the denotational semantics of typed λ-calculi
in Fin!, and present the �niteness space Nl of lazy natural numbers together
with some �nitary relations useful in later constructions. We prove that Fin! is a
model of system T , by showing that lazy natural numbers form a weak natural
number object: for all �niteness space A, we de�ne a �nitary relation IA of type
Nl⇒ (A⇒A)⇒A⇒A, which obeys the equations of an iterator. We actually
consider the stronger version of system T with a recursion operator and show
that Fin! admits an internal recursor RA from which IA is derived. Hence the
algorithmic expressivity of Fin! turns out to be quite rich. The relation RA is
built as the �xpoint of a �nitary relation StepA, but since the �xpoint operator
is not itself �nitary, we have to show the �nitary approximants (StepnA(∅))n≥0
enjoy additional properties to ensure RA is itself �nitary.

2 Finiteness spaces

The construction of �niteness spaces follows a well known pattern. It is given by
the following notion of orthogonality: a ⊥ a′ i� a ∩ a′ is �nite. Then one unrolls
familiar de�nitions, as we do in the following paragraphs. For a more detailled
presentation and proofs of the properties, the obvious reference is [1].

Let A be a set. Denote by P (A) the powerset of A and by Pf (A) the set
of all �nite subsets of A. Let F ⊆ P (A) any set of subsets of A. We de�ne

1 This �moral� argument might seem obscure to the reader not familiar with the rela-
tional or coherence semantics. It will be made formal later in the paper.

the pre-dual of F in A as F⊥A = {a′ ⊆ A; ∀a ∈ F, a ∩ a′ ∈ Pf (A)}. In general
we will omit the subscript in the pre-dual notation and just write F⊥. For all
F ⊆ P (A), we have the following immediate properties: Pf (A) ⊆ F⊥; F ⊆ F⊥⊥;
if G ⊆ F, F⊥ ⊆ G⊥. By the last two, we get F⊥ = F⊥⊥⊥. A �niteness structure
on A is then a set F of subsets of A such that F⊥⊥ = F.

A �niteness space is a dependant pair A = (|A| ,F (A)) where |A| is the
underlying set (the web of A) and F (A) is a �niteness structure on |A|. We then

write A⊥ for the dual �niteness space:
∣∣A⊥∣∣ = |A| and F

(
A⊥
)

= F (A)⊥. The
elements of F (A) are called the �nitary subsets of A.

Example 1. For all set A, (A,Pf (A)) is a �niteness space and (A,Pf (A))⊥ =
(A,P (A)). In particular, each �nite set A is the web of exactly one �niteness
space: (A,Pf (A)) = (A,P (A)). We introduce the following two: 0 = 0⊥ =
(∅, {∅}) and 1 = 1⊥ = ({∅} , {∅, {∅}}). We also introduce the �niteness space
of natural numbers N by: |N | = N and a ∈ F (N) i� a is �nite. We write
O = {0} ∈ F (N).

Notice that F is a �niteness structure i� it is of the form G⊥. It follows that
any �niteness structure F is downwards closed for inclusion, and closed under
�nite unions and arbitrary intersections. Notice however that F is not closed
under directed unions in general: for all k ∈ N, write k↓ = {j; j ≤ k} ∈ F (N);
then k↓ ⊆ k′↓ as soon as k ≤ k′, but

⋃
k≥0 k↓ = N 6∈ F (N).

Multiplicatives. For all �niteness spaces A and B, we de�ne A⊗B by |A ⊗ B| =
|A| × |B| and F (A⊗ B) = {a× b; a ∈ F (A) , b ∈ F (B)}⊥⊥. It can be shown
that F (A⊗ B) = {c ⊆ |A| × |B| ; c|l ∈ F (A) , c|r ∈ F (B)}, where c|l and c|r
are the obvious projections.

Let f ⊆ A×B be a relation from A to B, we write f⊥ = {(β, α); (α, β) ∈ f}.
For all a ⊆ A, we set f · a = {β ∈ B; ∃α ∈ a, (α, β) ∈ f}. If moreover g ⊆ B ×
C, we de�ne g ◦ f = {(α, γ) ∈ A× C; ∃β ∈ B, (α, β) ∈ f ∧ (β, γ) ∈ g}. Then,
setting A(B =

(
A⊗ B⊥

)⊥
, F (A(B) ⊆ |A| × |B| is characterized as follows:

f ∈ F (A(B) i� ∀a ∈ F (A), f · a ∈ F (B) and ∀b ∈ F
(
B⊥
)
, f⊥ · b ∈ F

(
A⊥
)

i� ∀a ∈ F (A), f · a ∈ F (B) and ∀β ∈ |B|, f⊥ · {β} ∈ F
(
A⊥
)

i� ∀α ∈ |A|, f · {α} ∈ F (B) and ∀b ∈ F
(
B⊥
)
, f⊥ · b ∈ F

(
A⊥
)

The elements of F (A(B) are called �nitary relations from A to B. By the pre-
vious characterization, the identity relation idA = {(α, α); α ∈ |A|} is �nitary,
and the composition of two �nitary relations is also �nitary. One can thus de�ne
the category Fin of �niteness spaces and �nitary relations: the objects of Fin
are all �niteness spaces, and Fin(A,B) = F (A(B). Equipped with the tensor
product ⊗, Fin is symmetric monoidal, with unit 1; it is monoidal closed by the
de�nition of (; it is ∗-autonomous by the obvious isomorphism between A⊥
and A(1.

Example 2. Setting S = {(k, k + 1); k ∈ N} and P = {(k + 1, k); k ∈ N}, we
have S,P ∈ Fin(N ,N) and P ◦ S = idN .

Additives. We now introduce the cartesian structure of Fin. We de�ne A ⊕ B
by |A ⊕ B| = |A|] |B| and F (A⊕ B) = {a] b; a ∈ F (A) , b ∈ F (B)} where
] denotes the disjoint union of sets: x] y = ({1} × x) ∪ ({2} × y). We have

(A⊕ B)⊥ = A⊥ ⊕ B⊥. The category Fin is both cartesian and co-cartesian,
with ⊕ being the product and co-product, and 0 the initial and terminal object.
Projections are given by:

λA,B = {((1, α), α) ; α ∈ |A|} ∈ Fin(A⊕ B,A)
ρA,B = {((2, β), β) ; β ∈ |B|} ∈ Fin(A⊕ B,B)

and if f ∈ Fin(C,A) and g ∈ Fin(C,B), pairing is given by:

〈f, g〉 = {(γ, (1, α)) ; (γ, α) ∈ f} ∪ {(γ, (2, β)) ; (γ, β) ∈ g} ∈ Fin(C,A⊕ B).

The unique morphism from A to 0 is the empty relation. The co-cartesian struc-
ture is obtained symmetrically.

Example 3. Write O⊥ = {(0, ∅)} ∈ Fin(N ,1). Then
〈
O⊥,P

〉
= {(0, (1, ∅))} ∪

{(k + 1, (2, k)); k ∈ N} ∈ Fin (N ,1⊕N) is an isomorphism.

Exponentials. If A is a set, we denote byM�n (A) the set of all �nite multisets of
elements of A, and if a ⊆ A, we write a! =M�n (a) ⊆M�n (A). If α ∈M�n (A),
we denote its support by Supp(α) ∈ Pf (A). For all �niteness space A, we de�ne
!A by: |!A| =M�n (|A|) and F (!A) =

{
a!; a ∈ F (A)

}⊥⊥
. It can be shown that

F (!A) =
{
a ⊆M�n (|A|) ;

⋃
α∈a Supp(α) ∈ F (A)

}
. Then, for all f ∈ Fin(A,B),

we set

!f = {([α1, . . . , αn] , [β1, . . . , βn]) ; ∀i, (αi, βi) ∈ f} ∈ Fin(!A, !B),

which de�nes a functor. Natural transformations derA = {([α] , α); α ∈ |A|} ∈
Fin(!A,A) and digA = {(

∑n
i=1 αi, [α1, . . . , αn]); ∀i, αi ∈ |!A|} make this func-

tor a comonad.

Example 4. We have isomorphisms {([] , ∅)} ∈ Fin(!0,1) and{(
αl + βr,

(
α, β

))
; (αl, α) ∈ !λA,B ∧ (βr, β) ∈ !ρA,B

}
∈ Fin(!(A⊕ B), !A⊗ !B).

More generally, we have ! (A1 ⊕ · · · ⊕ An) ∼= !A1 ⊗ · · · ⊗ !An.

All the usual structure of models of propositional classical linear logic is now
introduced: one can check that Fin is a new-Seely category, following the termi-
nology of [7].

The co-Kleisli construction. Since the structure we have just described provides
a denotational model of linear logic, the co-Kleisli construction gives rise to a
cartesian closed category, which we denote by Fin!: objects are �niteness spaces,

(Var)
Γ, x : A,∆ ` x : A

(Unit)
Γ ` 〈〉 : >

a ∈ CA (Const)
Γ ` a : A

Γ, x : A ` s : B
(Abs)

Γ ` λx s : A→ B

Γ ` s : A→ B Γ ` t : A (App)
Γ ` s t : B

Γ ` s : A Γ ` t : B (Pair)
Γ ` 〈s, t〉 : A×B

Γ ` s : A×B
(Left)

Γ ` πl s : A

Γ ` s : A×B
(Right)

Γ ` πr s : B

Fig. 1. Rules of typed λ-calculi with products

and Fin!(A,B) = F (A⇒B), following Girard's translation of intuitionistic im-
plication A⇒B = !A(B. The identity morphism of Fin!(A,A) is just derA. If
f ∈ !A(B, the promotion of f is

f ! = !f ◦ digA =

{(
n∑
i=1

αi, [β1, . . . , βn]

)
; ∀i, (αi, βi) ∈ f

}
∈ !A(!B.

If f ∈ A⇒B and g ∈ B ⇒ C, their composition in Fin! is then g • f = g ◦ f !.

Remark 1. Recalling the characterizations of A(B and !A, we get that f ∈
F (A⇒B) i� ∀a ∈ F (A), f · a! ∈ F (B) and ∀β ∈ |B|, (f⊥ · {β}) ∩ a! is �nite.

The cartesian product of Fin! is of course ⊕, with projections πA,Bl = λA,B ◦
derA⊕B and πA,Br = ρA,B ◦ derA⊕B; pairing is the same as in Fin. The isomor-
phism (A1 ⊕ · · · ⊕ An)⇒ B ∼= A1 ⇒ · · · ⇒ An ⇒ A deduced from Example 4
subsumes the adjunction Fin!(A⊕B, C) ∼= Fin!(A,B⇒C). As a particular case,
0⇒ A ∼= A and we can identify any morphism f ∈ 0⇒ A with the �nitary
subset f · {[]} ∈ F (A).

3 Semantics of typed λ-calculi

In this section, we give an explicit description of the interpretation in Fin! of the
basic constructions of typed λ-calculi with products.

Typed λ-calculi. Let be given a collection A of atomic types and consider the
type expressions given by:

A,B ::=X | A→ B | A×B | >

where X ranges over A. For each type A, there are countably many formal
variables of that type, and also a collection CA of term constants of that type.
Then term expressions are given by:

s, t ::= x | a | λx s | s t | 〈s, t〉 | πl s | πr s | 〈〉

JVarK
Γ [], x[α] : A,∆[] ` xα : A

JUnitK
Γ [] ` 〈〉∅ : >

a ∈ CA α ∈ JaK
JConstK

Γ [] ` aα : A

Γ, xα : A ` sβ : B
JAbsK

Γ ` λx s(α,β) : A→ B

Γ0 ` s([α1,...,αk],β) : A→ B Γ1 ` tα1 : A · · · Γk ` tαk : A JAppKPk
j=0 Γj ` s t

β : B

Γ ` sα : A JPairlK
Γ ` 〈s, t〉(1,α) : A×B

Γ ` tβ : B JPairrK
Γ ` 〈s, t〉(2,β) : A×B

Γ ` s(1,α) : A×B JLeftK
Γ ` πl sα : A

Γ ` s(2,β) : A×B JRightK
Γ ` πr sβ : B

Fig. 2. Computing points in the relational semantics

and we de�ne free and bound variables as usual. We denote by s [x := t] the
substitution of t for x in s.

A context Γ is a �nite list (x1 : A1, . . . , xn : An) where the xi's are pairwise
distinct variables and Ai is the type of xi. A typing judgement is an expression
Γ ` s : A derived from the rules in Figure 1: we then say term s is of type A in
context Γ . Clearly, if a term s is typable, then its type is uniquely determined,
say A, and then Γ ` s : A i� Γ contains the free variables of s.

The operational semantics of a typed λ-calculus is given by a contextual
equivalence relation ' on typed terms: if s ' t, then s and t have the same
type, say A; we then write Γ ` s ' t : A whenever Γ contains the free variables
of s and t. In general, we will give ' as the re�exive, symmetric and transitive
closure of a contextual relation > on typed terms. We de�ne >0 as the least
one such that: πl 〈s, t〉 >0 s, πr 〈s, t〉 >0 t and (λx s) t >0 s [x := t] (with the
obvious assumptions ensuring typability). And we write '0 for the corresponding
equivalence.

Relational interpretation and �niteness property. The interpretation of such a
calculus in Fin! goes as follows. First on types: assume a �niteness space JXK is
given for each base type X; then we interpret type constructions by JA→ BK =
JAK⇒ JBK, JA×BK = JAK⊕ JBK and J>K = 0. Further assume that with every
constant a ∈ CA is associated a �nitary subset JaK ∈ F (JAK): we de�ne the
semantics of a derivable typing judgement x1 : A1, . . . , xn : An ` s : A, as a
�nitary relation JsKx1:A1,...,xn:An

∈ F (JA1K⇒ · · · ⇒ JAnK⇒ JAK).
We �rst introduce the deductive system of Figure 2. In this system, derivable

judgements are semantic annotations of typing judgements:

xα1
1 : A1, . . . , x

αn
n : An ` sα : A stands for (α1, . . . , αn, α) ∈ JsKx1:A1,...,xn:An

where each αi ∈M�n (|JAiK|) and α ∈ |JAK|. In rules JVarK, JUnitK and JConstK,
Γ [] denotes an annotated context of the form x

[]
1 : A1, . . . , x

[]
n : An. In rule JAppK,

the sum of annotated contexts is de�ned pointwise: if Γ = xα1
1 : A1, . . . , x

αn
n : An

and Γ ′ = x
α′

1
1 : A1, . . . , x

α′
n
n : An, we set Γ + Γ ′ = x

α1+α
′
1

1 : A1, . . . , x
αn+α′

n
n : An.

Finally we de�ne the semantics of a term as the set of its annotations:

JsKx1:A1,...,xn:An
=
{
(α1, . . . , αn, α); xα1

1 : A1, . . . , x
αn
n : An ` sα : A

}
.

It remains to prove that JsKx1:A1,...,xn:An
∈ F (JA1K⇒ · · · ⇒ JAnK⇒ JAK).

Remark 2. The rules of Figure 2 are actually those of the relational semantics:
this is the semantics of typed λ-calculi in the cartesian closed category Rel!,
deduced from the relational model of linear logic in the category Rel of sets
and relations (see the Appendix A from [1] for instance). Notice indeed that
the de�nitions of the natural transformations of Fin (and the de�nitions of the
morphism component of the associated functors) that make it a model of classical
linear logic, as presented in section 2, are free from any reference to the �niteness
structure: they are just introduced as relations on webs, and it simply turns out
they are �nitary, whatever �niteness structure we consider on the underlying
objects. The only restriction we make in the interpretation of λ-calculi is that
JaK ∈ F (JAK) for all a ∈ CA.

Theorem 1 (Finiteness). The semantics of a typed term is �nitary: if x1 :
A1, . . . , xn : An ` s : A then JsKx1:A1,...,xn:An

∈ F (JA1K⇒ · · · ⇒ JAnK⇒ JAK).
Proof This holds directly because the semantics we have introduced is just
rephrasing the usual interpretation of typed λ-calculi in a cartesian closed cat-
egory [5], in the particular case of Fin!. Notably: rules JUnitK, JPairlK, JPairrK,
JLeftK and JRightK match the de�nition of the cartesian structure of Fin!; rules
JAbsK and JAppK match the adjunction Fin!(Γ ⊕ A,B) ∼= Fin!(Γ,A ⇒ B) and
the de�nition of composition in Fin!.

For the reader not familiar with this construction, a direct proof is also
possible by induction on typing derivations. The only non-trivial case is that of
JAppK, which essentially boils down to Remark 1. �

The interpretation of terms we have just de�ned is of course a model of '0

whatever the choice of base types and constants.

Theorem 2 (Invariance). If Γ ` s '0 t : A then JsKΓ = JtKΓ .
Proof Again, this follows directly from the fact that we used the standard
translation of typed λ-calculi in cartesian closed categories. A direct proof is also
easy:

� �rst show by induction on s that, if Γ0, x : A[α1,...,αk], ∆0 ` sβ : B, and, for
all j ∈ {1, . . . , k}, Γj , ∆j ` tαj : A, then

∑k
j=0 Γj ,

∑k
j=0∆j ` s [x := t]β : B;

� then check that for a basic reduction Γ ` s >0 t : A, (α1, . . . , αn, α) ∈ JsKΓ
i� (α1, . . . , αn, α) ∈ JtKΓ , which is direct by the rules of Figure 2 and the
previous result on substitution;

� conclude by contextuality of the semantics.

Notice that the invariance of the semantics has nothing to do with the �niteness
structure: the result is actually a property of the relational interpretation only.�

Examples. Let us consider some particular calculi. Pure typed λ-calculi are those
with no additional constant or conversion rule: �x a set A of atomic types, and
write ΛA

0 for the calculus where CA = ∅ for all A, and s ' t i� s '0 t. This is
the most basic case and we have just shown that �niteness spaces model '0. Be
aware that if we introduce no atomic type, then the semantics is actually trivial:
in Λ∅0, all types are interpreted by 0 and all terms by the empty set.

By contrast, we can consider the internal language ΛFin of Fin! in which
all �nitary relations can be described: �x A as the collection of all �niteness
spaces and CA = F (JAK). Then set s 'Fin t i� JsKΓ = JtKΓ , for any suitable
Γ . The point in de�ning such a monstrous language is to enable very natural
notations for �nitary relations: in general, we will identify closed terms in ΛFin

with the relations they denote in the empty context. In that case, we might make
explicit the type of bound variables. For instance, we write λxA x = derA; and
if f ∈ Fin!(A,B) and g ∈ Fin!(B, C), we have λxA (g (f x)) = g • f ∈ Fin!(A,B).

Before we address the main subject of the paper, system T , let's just review
some easy examples of usual λ-calculi constructions that can be modelled in Fin!.
First, being a cartesian closed category, Fin! is actually an model of pure typed
λ-calculi with extensionality, surjective pairing and terminal object: Theorem 2
still holds if we add the reductions λx (ux) >0 u, 〈πl s, πr s〉 >0 s and v >0 〈〉 as
soon as x is not free in u and v has type > (notice, however, that in that case
>0 is no longer con�uent [5]).

We can also extend the language with particular base types and constants.
For instance, we can introduce base type Bool together with constants T and
F of type Bool, and DA of type Bool → A → A → A, with the additional
reductions D T s t > s and D F s t > t (we will in general omit the type subscript
of such parametered constants, with the obvious hypotheses on typability) and
�x interpretations as follows: write B = 1 ⊕ 1 and write the only two elements
of |B| as tt and ff ; then let JBoolK = B, JTK = T = {tt}, JFK = F = {ff} and
JDAK = DJAK = {([tt] , [α] , [] , α); α ∈ JAK} ∪ {([ff] , [] , [α] , α); α ∈ JAK}. That
these interpretations are �nitary should be clear. Then one retains that Γ ` s '
t : A implies JsKΓ = JtKΓ .

System T . The main contribution of the present paper is to establish that Fin!

models Gödel's system T , which can be presented in various ways. The iterator
version of system T is the typed λ-calculus with an atomic type Nat of natural
numbers, and constants O of type Nat, S of type Nat→ Nat and for all type A,
IA of type Nat → (A → A) → A → A and subject to the following additional
conversions: I (O)u v > v and I (S t)u v > u (I t u v). The recursor variant is
similar, but the iterator is replaced with RA of type Nat → (Nat → A → A) →
A → A subject to conversions R (O)u v > v and R (S t)u v > u t (R t u v). Yet

another possible system is obtained with tail recursive iteration: take JA of type
Nat→ (A→ A)→ A→ A and let J (S t)u v > J t u (u v).

Those systems allow to represent exactly the same functions on the set of
natural numbers, where the number n is obviously denoted by Sn O: this is
the consequence of a normalization theorem (see [6]). Notice in particular that,
when applied to a canonical integer, I and J coincide: I (Sn O)uv ' J (Sn O)uv '
un v; this does not hold for all term of type Nat, however. Also, we can de-
�ne a recursor using iteration and products with the standard encoding rec =
λxλy λz πl (Ix 〈z,O〉λw 〈y (πr w) (πl w),S (πr w)〉), and we get rec (Sn O)uv '
R (Sn O)uv. The idea is to reconstruct the integer argument on the �y. Again,
this encoding is valid only by values and rec (S t)u v ' u t (rec t u v) holds only if
we suppose t is of the form Sn O (notice we could as well use J in the de�nition
of rec). Only the encoding of the iterator by iter = λxλy λz (Rx (λx′ y) z) is
extensionally valid: iterOu v ' v and iter (S t) u v ' u (iter t u v).

The fact that in general the encoding of one system into the other holds only
on values indicate that their respective algorithmic properties may di�er. And
these di�erences will appear in the semantics. Recall for instance the discussion
in our introduction: J uses its integer argument linearly. This enabled Ehrhard
to de�ne a semantics of iteration, with JNatK = N = (N,Pf (N)), JOK = O =
{0} and JSK = S! = {([n] , n+ 1); n ∈ N}. Such an interpretation of natural
numbers, however, fails to provide a semantics of I or R.

Lemma 1. Assume JNatK = N , JOK = O and JSK = S!, and let A be any type

such that JAK 6= 0. Then there is no IA ∈ F (N ⇒ (JAK⇒ JAK)⇒ JAK⇒ JAK)
such that, setting JIAK = IA, we obtain JI Ou vKΓ = JvKΓ and JI (S t) u vKΓ =
Ju (I t u v)KΓ as soon as Γ ` t : Nat, Γ ` u : A→ A and Γ ` v : A.
Proof By contradiction, assume the above equations hold. We get

JI (Sx) (λz′ y) zKx:Nat,y:A,z:A = JyKx:Nat,y:A,z:A = {([] , [α] , [] , α); α ∈ |JAK|} .

One can check that:

x[] : Nat, y[α] : A, z[] : A ` I (Sx) (λz′ y) zα : A
i� x[] : Nat, y[α] : A ` I (Sx) (λz′ y)([],α) : A
i� x[] : Nat ` I (Sx)([([],α)],[],α) : A
i� ` I ([],[([],α)],[],α) : A (∗)

and then ` I O([([],α)],[],α) for all α ∈ |JAK|. This contradicts the fact that, by the
�rst equation:

JI OK = Jλy λz (I O y z)K = Jλy λz zK = {([] , [α] , α); α ∈ |JAK|}

because we supposed |JAK| 6= ∅. �

Remark 3. The equivalence (∗) holds because JSK = S! is linear, hence strict:
this re�ects the general fact that, if s ∈ F (A⇒B) contains no ([] , β) then,
for all t ∈ F (B ⇒ C), ([] , γ) in t • s i� ([] , γ) ∈ t. Such a phenomenon was

already noted by Girard in his interpretation of system T in coherence spaces
[6]. His evidence that there was no interpretation of the iteration operator using
the linear successor relied on a coherence argument. The previous lemma is
stronger: notice that this makes no use of hypotheses on �niteness structures;
hence, it holds in the relational model as well, and actually any web based model
of linear logic where promotion is de�ned similarly, as soon as the interpretation
of successor is strict.

Lazy integers. In short, strict morphisms cannot produce anything ex nihilo;
but the successor of any integer should be marked as non-zero, for the iterator
to distiguish between both cases. Hence the successor should be a�ne: similarly
to Girard's solution, we will interpret Nat by so-called lazy natural numbers.
Let Nl = (|Nl| ,Pf (|Nl|)) be such that |Nl| = N ∪ N>, where N> is just a
disjoint copy of N. The elements of N> are denoted by k>, for k ∈ N: n>

represents a partial integer, not fully determined but strictly greater than k. If
ν ∈ |Nl|, we de�ne ν+ as k + 1 if ν = k and (k + 1)> if ν = k>. Then we
set Sl = {([] , 0>)} ∪ {([ν] , ν+)}, which is a�ne. Notice that O ∈ F (Nl) and
Sl ∈ F (Nl⇒Nl).

We will show that these allow to provide an interpretation of recursion,
hence iteration, in system T : for all �niteness space A, there exists RA ∈
F (Nl⇒ (Nl⇒A⇒A)⇒A⇒A) such that, in ΛFin,

y : Nl⇒A⇒A, z : Nl ` RO y z ' z : A

and

x : Nl, y : Nl⇒A⇒A, z : Nl ` R (Sl x) y z ' y x (Rx y z) : A.

4 A recursion operator in �niteness spaces

For all �niteness space A, write RecOp [A] = Nl⇒ (Nl⇒A⇒A)⇒A⇒A. We
want to introduce a recursion operator RA ∈ F (RecOp [A]) intuitively subject
to the following de�nition:

R t u v = match t with

{
O 7→ v

S t′ 7→ u t′ (R t′ u v) .

This de�nition is recursive, and a natural means to obtain such an operator is
as the �xpoint of:

λXRecOp λxNl λyNl⇒A⇒A λzA
(
match x with

{
O 7→ z

Sx′ 7→ y x′ (X x′ y z)

)
. (1)

Fixpoints. The cartesian closed category Rel! is cpo-enriched, the order on mor-
phisms being inclusion. Hence it has �xpoints at all types: for all set A and
f ∈ Rel!(A,A), the least �xpoint of f is

⋃
k≥0 f

k ∅, which is an increasing union.

The least �xpoint operator is itself de�nable as the supremum of �nitary ap-

proximants, FixA =
⋃
k≥0 Fix

(k)
A , where:

Fix(0)
A = ∅

Fix(k+1)
A = λf

(
f
(
Fix(k)

A f
))

=

{(
[([α1, . . . , αn] , α)] +

n∑
i=1

ϕi, α

)
; ∀i, (ϕi, αi) ∈ Fix

(k)
A

}
.

Notice indeed that if A is a �niteness space then, for all k, Fix(k)
A = Fix(k)

|A| ∈
F ((A⇒A)⇒A). The �xpoint, however, is not �nitary in general: one can check
for instance that FixNl

Sl = N> 6∈ F (Nl) hence FixNl
6∈ F ((Nl⇒Nl)⇒Nl).

So our de�nition of a recursor operator is in two steps: we �rst introduce the

�nitary approximants R(k)
A ∈ F (RecOp [A]) by R(k)

A = StepkA ∅, where Step ∈
F (RecOp [A]⇒RecOp [A]) is de�ned as in formula (1); then we prove RA =⋃
k≥0R

(k)
A ∈ F (RecOp [A]).

Pattern matching on lazy integers. We introduce a �nitary operator Case, intu-
itively de�ned as:

Case t u v = match t with

{
O 7→ v

S t′ 7→ u t′
.

More formally:

De�nition 1. If ν = [ν1, . . . , νk] ∈ M�n (|Nl|), we write ν+ =
[
ν+
1 , . . . , ν

+
n

]
.

Then for all �niteness space A, we let CaseA = {([0] , [] , [α] , α); α ∈ |A|} ∪{
([0>] + ν+, [(ν, α)] , [] , α); ν ∈M�n (|Nl|) ∧ α ∈ |A|

}
.

Lemma 2. The relation Case is �nitary: CaseA ∈ F (Nl⇒ (Nl⇒A)⇒A⇒A).
Moreover, y : Nl⇒A, z : A ` CaseO y z ' z : A and x : Nl, y : Nl⇒A, z : A `
Case (Sl x) y z ' y x : A.

Proof That the equations hold is a routine exercise. We use Remark 1 to
prove Case is �nitary. For all n ∈ F (N),

CaseA n ⊆ {([] , [α] , α); α ∈ |A|} ∪
{
([(ν, α)] , [] , α); ν ∈ n! ∧ α ∈ |A|

}
⊆
(
λyNl⇒A λzA z

)
∪
(
λyNl⇒A λzA (y n)

)
and the union of two �nitary subsets is �nitary. In the reverse direction, we
are left to prove that, for all (ϕ, α, α) ∈ |(Nl⇒A)⇒A⇒A|, setting N ′ =
Case⊥A · {(ϕ, α, α)}, n!∩N ′ is �nite; this is immediate because N ′ is �nite (it has
at most one element). �

A recursor in Rel!. We now introduce the interpretation of recursor as the
�xpoint of the operator (1).

De�nition 2. For all �niteness space A, we de�ne

StepA = λXRecOp[A] λxNl λyNl⇒A⇒A λzA
(
CaseA x

(
λx′A (y x′ (X x′ y z))

)
z
)

∈ F (RecOp [A]⇒RecOp [A])

and, for all k ∈ N, R(k)
A = StepkA ∅ ∈ F (RecOp [A]).

Lemma 3. The relations R(k)
A are given by: R(0)

A = ∅ and

R(k+1)
A = {([0] , [] , [α] , α); α ∈ |A|}∪{(

[0>] +
∑n
i=0 ν

+
i , [(ν0, [α1, . . . , αn] , α)] +

∑n
i=1 ϕi,

∑n
i=1 αi, α

)
;

∀i, (νi, ϕi, αi, αi) ∈ R
(k)
A

}
.

Proof Routine exercise. �

De�nition 3. We set RA =
⋃
k≥0R

(k)
A ∈ |RecOp [A]|.

At that point, we already have a recursor in Rel!:

Theorem 3 (Correctness of the recursion operator). If, following Remark

2, we consider the relational semantics of typed λ-calculi, then in the internal

language ΛRel of Rel!, the following conversions hold:

y : |Nl| → A→ A, z : A ` RO y z ' z : A

and

x : |Nl| , y : |Nl| → A→ A, z : A ` R (Sl x) y z ' y x (Rx y z) : A.
Proof This follows directly from Lemma 2 and the fact that R = StepR:

RO y z ' StepRO y z ' CaseO (λx′ (y x′ (Rx′ y z))) z ' z

and

R (Sl x) y z ' StepR (Sl x) y z
' Case (Sl x) (λx′ (y x′ (Rx′ y z))) z
' λx′ (y x′ (Rx′ y z))x
' y x (Rx y z).

�

Finiteness. It only remains to prove R is �nitary.

De�nition 4. If n ∈ F (Nl), we set max (n) = max {k; k ∈ n ∨ k> ∈ n}, with
the convention that max (∅) = 0; then if ν ∈ |!Nl| we set max (ν) = max (Supp(ν))
and if n ∈ F (!Nl), max (n) = max

(⋃
ν∈n Supp(ν)

)
.

Lemma 4. For all γ = (ν, ϕ, α, α) ∈ RA, γ ∈ R(max(ν)+1)
A .

Proof By induction on max (ν), using Lemma 3. �

Lemma 5. If n ∈ F (Nl), then RA n ∈ F ((Nl⇒A⇒A)⇒A⇒A).

Proof The previous Lemma entails RA n = R(max(n)+1)
A n. We conclude re-

calling that R(max(n)+1)
A n ∈ F ((Nl⇒A⇒A)⇒A⇒A). �

De�nition 5. For all α = [α1, . . . , αk] ∈ |!A|, we write # (α) = k for its size.

For all ϕ = [(ν1, α1, α1), . . . , (νk, αk, αk)] ∈ |Nl⇒A⇒A|, we set ## (ϕ) =∑k
j=1 # (νj).

Lemma 6. If (ν, ϕ, α, α) ∈ RA, then # (ν) = # (α) + # (ϕ) + ## (ϕ).

Proof Using Lemma 3, the result is proved for (ν, ϕ, α, α) ∈ R(k)
A , by induc-

tion on k. �

Theorem 4 (The recursion operator is �nitary). RA ∈ F (RecOp [A]).

Proof By Remark 1 and Lemma 5, we are left to prove that, for all n ∈ F (Nl)
and all γ ∈ |(Nl⇒A⇒A)⇒A⇒A|, N = n! ∩

(
R⊥A · {γ}

)
is �nite. But by

Lemma 6,

N ⊆ {ν ∈ |!Nl| ; # (ν) = # (α) + # (ϕ) + ## (ϕ) ∧max (ν) ≤ max (n)}

which is �nite. �

Remark 4. We keep callingR �the� recursion operator, but notice such an opera-
tor is not unique in Rel! or Fin!. Consider Case′A = {([0, 0] , [] , [α] , α); α ∈ |A|}∪{
([0>] + ν+, [(ν, α)] , [] , α); ν ∈M�n (|Nl|) ∧ α ∈ |A|

}
. This variant of matching

operator behaves exactly like Case, and one can reproduce our construction of
the recursor based on that.

5 About iteration

We have just provided a semantics of the recursor variant of system T in �nite-
ness spaces. From this, we can deduce the following interpretation of the iteration
operator:

De�nition 6. For all �niteness space A, we write ItOp [A] = Nl⇒ (A⇒A)⇒
A⇒A, and set IA = λxNl λyA⇒A λzA

(
RA x

(
λx′Nl y

)
z
)
∈ F (ItOp [A]).

By Theorem 3 this de�nes an internal implementation of an iteration operator,
and we obtain that the triple (Nl,O,Sl) is a weak natural number object in the
cartesian closed category Fin! [4,5]:

Lemma 7. For all f ∈ Fin!(A,A), for all a ∈ F (A), there is h ∈ Fin!(Nl,A)
such that hO = a and h • Sl = f • h.
Proof Take h = λxNl (IA x f a). �

We could also have introduced I by a construction similar to that of R:
De�nition 7. Let

ItStepA = λX ItOp[A] λxNl λyA⇒A λzA
(
CaseA x

(
λx′A (y (X x′ y z))

)
z
)

∈ F (ItOp [A]⇒ItOp [A])

and, for all k ∈ N, I(k)
A = ItStepkA ∅ ∈ F (ItOp [A]).

Lemma 8. The relations I(k)
A are given by: I(0)

A = ∅ and

I(k+1)
A = {([0] , [] , [α] , α); α ∈ |A|}∪{(

[0>] +
∑n
i=1 ν

+
i , [([α1, . . . , αn] , α)] +

∑n
i=1 ϕi,

∑n
i=1 αi, α

)
;

∀i, (νi, ϕi, αi, αi) ∈ I
(k)
A

}
.

Proof Again, routine exercise. �

Lemma 9. We have
⋃
k≥0 I

(k)
A = IA.

Proof Check that, for all k, I(k)
A = λxNl λyA⇒A λzA

(
R(k)
A x

(
λx′Nl y

)
z
)
. �

A uniformity property of iteration. We can now demonstrate how the concept
of recursion is richer than that of iteration in the setting of the �niteness space
semantics, or the relational one for that matter. Indeed, one distictive feature of
the model is that it is non-uniform. Indeed, if a, a′ ∈ F (A) then a ∪ a′ ∈ F (A);
and in the construction of a! ∈ !A, there is no condition on the elements of the
multisets we consider: a! = M�n (a). This is very di�erent from the setting of
coherence spaces for instance. But the iterator only considers uniform sets of
integers, in the following sense:

De�nition 8. If k ∈ N, we de�ne k = Skl O = {l>; l < k} ∪ {k} ∈ F (Nl). We

say n ∈ F (Nl) is uniform if n ⊆ k for some k.

Notice that, in the coherence space of lazy natural numbers used by Girard in
[6] to interpret system T , the sets k are the �nite maximal cliques. Coherence is
indeed given by: k ¨ l i� k = l, k ¨ l> i� k > l and k> ¨ l> for all k, l. There
is also an in�nite maximal clique, which is just N> (recall this was the �xpoint
of Sl). We prove I considers only uniform integers.

De�nition 9. Let be given the following relations in F (ItOp [A]): Stage(0)A =
{([0] , [] , [α] , α); α ∈ |A|}; Stage(1)A = {([0>] , [([] , α)] , [] , α) ; α ∈ |A|}; and, for
all k > 0, Stage(k+1)

A = I(k+1)
A \ I(k)

A .

Check that Stage(0)A ∪ Stage
(1)
A = I(1)

A , hence IA =
⋃
k≥0 Stage

(k)
A .

Lemma 10. Suppose A 6= 0. Then, for all k ∈ N,⋃{
Supp(ν); ∃(ϕ, α, α), (ν, ϕ, α, α) ∈ Stage(k)A

}
= k.

Proof That all the elements are in k is easy by induction on k, using Lemma
8. To prove the reverse inclusion, consider λxN λzA

(
IA x

(
λz′A z′

)
z
)
. �

As a consequence, for all (ν, ϕ, α, α) ∈ I, Supp(ν) is uniform. Of course, no
such property holds for R, because

R(1)
A ⊇

{([
0>
]
+ ν+, [(ν, [] , α)] , [] , α

)
; α ∈ |A| ∧ ν ∈M�n (|Nl|)

}
.

An immediate consequence is that no recursor can be derived from I.

Aknowledgements

The present work stems from a discussion with Thomas Ehrhard. It also greatly
bene�ted from many working sessions in the company of Christine Tasson, to
whom I am most grateful.

References

1. Ehrhard, T.: Finiteness spaces. Mathematical. Structures in Comp. Sci. 15(4)
(2005) 615�646

2. Ehrhard, T., Regnier, L.: The di�erential lambda-calculus. Theoretical Computer
Science 309 (2003) 1�41

3. Ehrhard, T., Regnier, L.: Di�erential interaction nets. Electr. Notes Theor. Comput.
Sci. 123 (2005) 35�74

4. Thibault, M.F.: Pre-recursive categories. Journal of Pure and Applied Algebra 24

(1982) 79�93
5. Lambek, J., Scott, P.J.: Introduction to higher order categorical logic. Cambridge

University Press, New York, NY, USA (1988)
6. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and types. CUP, Cambridge (1989)
7. Bierman, G.M.: What is a categorical model of intuitionistic linear logic? In Dezani,

M., ed.: Proceedings of Conference on Typed lambda calculus and Applications,
Springer-Verlag LNCS 902 (1995)

	Primitive recursion in finiteness spaces
	Lionel Vaux

