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A-terms as computable functions

Normal terms represent data:

n=AfAx.(f)"x=AfA x.(f) - (f)x
Terms represent (e.g., Turing-)computable functions:
succ = AaAf x.(f) (a) fx

Evaluation is normalization:

(succ)n =5 M2 (f) () f o =5 MAz.(f) (/)" =n+1



A-terms as computable functions

Normal terms represent data:
n=AfAx.(f)"x=AfA x.(f) - (f)x
Terms represent (e.g., Turing-)computable functions:
succ = AaAf A x.(f) (a) fx

Evaluation is normalization:

(succ)n =5 M2 (f) () f o =5 MAz.(f) (/)" =n+1

Normalization may fail (computable functions are partial functions):
o N:=(A)A =5 Q with A = Az.(x)x
o There is © s.t. FixM = (©) M —j (M) FixM —3 (M) --- (M) FixM

~ while-loops, recursive definitions, etc.



A-terms as proofs
Simple functional types: A,B,...:=X | A— B

z:AF-M:B T+FM:A—-B TFN:A
e:A+z:A THMX.M:A— B 'H(M)N:B

Subject reduction
ETFM:Aand M —g M’ then T - M': A

Strong normalization

If '+ M : A then every S-reduction sequence from M is finite.



A-terms as proofs: Curry-Howard
Simple functional types: A,B,...:=X | A— B

z:AF-M:B T+FM:A—-B TFN:A
e:A+z:A THMX.M:A— B 'H(M)N:B

Subject reduction
ETFM:Aand M —g M’ then T - M': A

Strong normalization
If '+ M : A then every S-reduction sequence from M is finite.

Minimal implicative logic:

INAFB T+A-SB THA
LA+A THA—>B I'+B

type ~ formula term ~ proof [B-reduction ~ cut-elimination
10



A-terms as morphisms

Typed terms induce set-theoretic functions:
o [I'+ M : A] € [A]I'] with [B — C] = [C][P]
o [M] =[M'] whenever M —5 M’
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A-terms as morphisms

Typed terms induce set-theoretic functions:
o [I'+ M : A] € [A]I'] with [B — C] = [C][P]
o [M] =[M'] whenever M —5 M’

Denotational semantics

[T M: A]

[T] = [A] > - x [44]

in any cartesian (x) closed (—) category.

[A]
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A-terms as morphisms: Curry-Howard-Lambek

Typed terms induce set-theoretic functions:
o [I'+ M : A] € [A]I'] with [B — C] = [C][P]
o [M] =[M'] whenever M —5 M’

Denotational semantics

[T+ M : A]
[C] = [Ax] x -+ x [Aqg] [4]

in any cartesian (x) closed (—) category.

A-calculus (with product types and up to =g,,) is the language of CCCs.
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A-terms as morphisms: Curry-Howard-Lambek

Typed terms induce set-theoretic functions:
o [I'+ M : A] € [A]I'] with [B — C] = [C][P]
o [M] =[M'] whenever M —5 M’

Denotational semantics

[T M: A]
[T] = [A] > - x [44] [A]

in any cartesian (x) closed (—) category.
A-calculus (with product types and up to =g,,) is the language of CCCs.

o Un(i)typed calculus: use a reflexive object D ~ DP.
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A-terms as morphisms: Curry-Howard-Lambek

Typed terms induce set-theoretic functions:
o [I'+ M : A] € [A]I'] with [B — C] = [C][P]
o [M] =[M'] whenever M —5 M’

Denotational semantics

[T M: A]
[T] = [A] > - x [44] [A]

in any cartesian (x) closed (—) category.
A-calculus (with product types and up to =g,,) is the language of CCCs.
o Un(i)typed calculus: use a reflexive object D ~ DP.

e Some CCCs are K-linear for some field/ring/semiring K:
we can form linear combinations of morphisms.
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Linear combinations
of \-terms
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AL SMN,. . =2 | e.M|(M)N|M+N|0|aM

(Az.M)N — M[N/x]

(a € S, some semiring)

17



ArSMN,...:=z | XM |(M)N| M+ N|0]|aM (a€ S, some semiring)

(Az.M)N — M[N/x]
(M+N)P=(M)P+ (N)P Ax.(M + N) =X z.M + \x.Ns
0)P =0 Az.0=0
(aM)P =a(M)P Az.(aM) = adz. M
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ArSMN,...:=z | XM |(M)N| M+ N|0]|aM (a€ S, some semiring)

(Az.M)N — M[N/x]

(M+N)P=(M)P+ (N)P Ax.(M + N) =X z.M + \x.Ns
0)P =0 Az.0 =0
(aM)P =a(M)P Az.(aM) = adz. M

+ module equations
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The algebraic A-calculus (V., RTA 2007)

ArSMN,...:=z | XM |(M)N| M+ N|0]|aM (a€ S, some semiring)

(Az.M)N — M[N/x]

(M+N)P=(M)P+ (N)P Ax.(M + N) =X z.M + \x.Ns
0)P =0 Az.0=0
(aM)P =a(M)P Az.(aM) = adz. M

+ module equations + contextuality:

M—gM = aM+N—gaM' +N

20



The algebraic A-calculus (V., RTA 2007)

ArSMN,...:=z | XM |(M)N| M+ N|0]|aM (a€ S, some semiring)

(Az.M)N — M[N/x]

(M+N)P=(M)P+ (N)P Ax.(M + N) =X z.M + \x.Ns
0)P =0 Az.0=0
(aM)P =a(M)P Az.(aM) = adz. M

+ module equations + contextuality:

M—gM = aM+N—gaM' +N

Retains confluence.
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Why?

Non-deterministic choice:

Ml @Mg —+ Mz
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Why?

Non-deterministic choice:
Ml D MQ —+ Mz

Probabilistic choice:

1
M1 D M2 —+ MZ with probablhty 5
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Why?

Non-deterministic choice:

Probabilistic choice:

1
(M1 D MQ) N —+ (Mz) N with probablhty 5
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Why?

Non-deterministic choice:

(My @ Mz) N = (My) N + (M2) N (S =B)

Probabilistic choice:
1 1 4

Quantitative non-determinism in the A-calculus, contextually.
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Why?

Non-deterministic choice:

(My @ Mz) N = (My) N + (M2) N (S =B)

Probabilistic choice:

(M; ® My) N — %(Ml)N + %(Mg) N (S=R")

Quantitative non-determinism in the A-calculus, contextually.

Relevant for quantum stuff as well (e.g. Arrighi-Dowek, RTA 2008).
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Why?

Non-deterministic choice:

Probabilistic choice:

(M; ® My) N — %(Ml)N + %(Mg) N (S=R")

Quantitative non-determinism in the A-calculus, contextually.
Relevant for quantum stuff as well (e.g. Arrighi-Dowek, RTA 2008).

@ A unified framework for quantitative non-determinism?
@ The internal language of S-linear CCCs?
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A museum of horrors

ooy = FixAz.(M + x)
%Z nM + ooy

0=M—M —3 M—M

O:OOM—OOMZBM

1 1
= \ﬁ? + = \:Z
1 1
= 7\4 + = \4/
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A museum of horrors

ooy = FixAz.(M + x)
%Z nM + ooy

D

0=M—M —3 M—M

O:OOM—OOMZBM

1 1
1 1
= 7\4 + = \4/
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A museum of horrors

ooy = FixAz.(M + x)
%Z nM + ooy

D

0=M—M —3 M—M

) Do /\\/V/ /\\ 4

' breaks strong

4 normalizability A
M = M+im

—p M+ M

O:OOM—OOMZBM
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A museum of horrors

ooy = FixAz.(M + x)
—>;§ M + ocopr
—>Z nM + ooy

D

0=M—M—3M—M

no normal forms

" breaks strong =~
3.,, normalizability
// //\//\/\/\\/ —
M = iM+iM
—p M+ M

OZOOM—OOMZQM



A museum of horrors

ooy = Fix\x.(M + x) M B
=% M+ ooy © breaks strong i
=5 nM+oom 3. normalizability :

¢ ) /\//\/\/\\/7\\\
M sM+ M

—3 %M—i—%M'
OZM—M—>BM—M'

no normal forms up to vector

space equations,
-equality is unsound!

OZOOM—OOMZQM
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Positive coefficients: a +b=0=a=b=10

Subject reduction holds and typed terms are normalizable on the nose.
(V., 2007-2009)
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Positive coefficients: a +b=0=a=b=10

Subject reduction holds and typed terms are normalizable on the nose.
(V., 2007-2009)

Weak normalizability scheme

@ temporarily neutralize coefficients, replacing them with indeterminates
@ try to normalize with polynomial coefficients

@ obtain a normal term by evaluating polynomials

The result depends only on the original term. (Alberti, 2014)
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Positive coefficients: a +b=0=a=b=10

Subject reduction holds and typed terms are normalizable on the nose.
(V., 2007-2009)

Weak normalizability scheme

@ temporarily neutralize coefficients, replacing them with indeterminates
@ try to normalize with polynomial coefficients

@ obtain a normal term by evaluating polynomials

The result depends only on the original term. (Alberti, 2014)

Conservativity
If M,N € Athen M =5 N in A} iff M =5 N in A.

(V., 2007-2009)
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Positive coefficients: a +b=0=a=b=10

Subject reduction holds and typed terms are normalizable on the nose.
(V., 2007-2009)

Weak normalizability scheme

@ temporarily neutralize coefficients, replacing them with indeterminates
@ try to normalize with polynomial coefficients

@ obtain a normal term by evaluating polynomials

The result depends only on the original term. (Alberti, 2014)

Conservativity
If M,N € Athen M =5 N in A} iff M =5 N in A.

(V. 009) (Kerinec—V., 2019, unpublished)
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algebraic A-terms

n
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oM %

Fix(2 M + Lx) 2
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algebraic A-terms

n
pure E
A-terms oM @)
O
Fix(%M + %x) é
_ A
OONM — OOM
2
Fix(M — )
%
O
an
J

J
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Plain n.d. choice (S = B)

plenty of models:
e.g., De’Liguoro-Piperno’s trees
or the relational model

\
algebraic A-terms
921
pure %
A-terms oo = Lor M @)
O
Fix =x) <
o
<A
3 IR
s H
Fix(?W—= z) E
1921
O
as
J
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Probabilistic (sub)distributions

[

probabilistic Bohm trees
(Leventis, 2016)

many models from
various communities
(game semantics,
domain theory,
linear logic, etc.)

pure
A-terms

algebraic A-terms

stochastic

HC SVNT DRACONES

J

-
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Positive coefficients (e +b=0=a=0=0)

4 )
algebraic A-terms
n
pure E
A-terms oM @)
1 1 >
Fix(5M + 5) <«
—_ 3 me.
i)
typed terms normalize — typed terms M 'S
normalizable i ) % ;
terms Fix =Z
>
192]
O
o
- J

a1



algebraic A-terms

OM

Fix(%M + %x)

typed terms

OM — OM

normalizable )
terms Fix(M — )

J

HC SVNT DRACONES

-
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The syntax of
quantitative semantics



Quantitative semantics
Normal functors (Girard, '80s, before LL)

A-terms ~~» set-valued power series (cf. Joyal’s analytic functors)

[[M + N]]a = [[M]]a + [[N]]a (disjoint sum of sets)

44



Quantitative semantics
Normal functors (Girard, ’80s, before LL)

A-terms ~~» set-valued power series (cf. Joyal’s analytic functors)

[M+ N], = [M]a.+ [N]a (disjoint sum of sets)

Finiteness spaces (Ehrhard, early 2000’s)

@ types ~» particular topological vector spaces (or semimodules):
[[A]] - SlAl + some additional structure (with S an arbitrary semifield)
o x: A M : B ~ power series [M] € SMs(4DxI5
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Finiteness spaces
give a model

algebraic A-terms

M
Fix(%M + %x)
typed terms

OM — OM

Fix(M — )

J

HC SVNT DRACONES

-
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Quantitative semantics
Normal functors (Girard, ’80s, before LL)

A-terms ~~» set-valued power series (cf. Joyal’s analytic functors)

[M+ N], = [M]a.+ [N]a (disjoint sum of sets)

Finiteness spaces (Ehrhard, early 2000’s)
@ types ~» particular topological vector spaces (or semimodules):
[[A]] - SlAl + some additional structure (with S an arbitrary semifield)
o z: AF M : B ~ power series [M] € SMs(ADXIBI s analytic map

M:ac[A]l = (b Y [Mapa®)
aeM;(|A])

a7



Quantitative semantics
Normal functors (Girard, ’80s, before LL)

A-terms ~~ set-valued power series (cf. Joyal’s analytic functors)

[M+ N], = [M]a.+ [N]a (disjoint sum of sets)

Finiteness spaces (Ehrhard, early 2000’s)

@ types ~» particular topological vector spaces (or semimodules):
[[A]] C SlAI + some additional structure (with S an arbitrary semifield)
o 2:AF M : B ~ power series [M] € SMsUADXIBI s analytic map

M:ac[A]l = (b Y [Mapa®)
aeM;(|A])

Differentiation of A-terms (Ehrhard-Regnier, 2003-2004)

o differential A-calculus (requires sums of terms)
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Quantitative semantics

Normal functors (Girard, ’80s, before LL)

A-terms ~~ set-valued power series (cf. Joyal’s analytic functors)

[M+ N], = [M]a.+ [N]a (disjoint sum of sets)

Finiteness spaces (Ehrhard, early 2000’s)
@ types ~» particular topological vector spaces (or semimodules):
[[A]] C SlAI + some additional structure (with S an arbitrary semifield)
o 2:AF M : B ~ power series [M] € SMsUADXIBI s analytic map

M:ac[A]l = (b Y [Mapa®)
aeM;(|A])

Differentiation of A-terms (Ehrhard-Regnier, 2003-2004)

o differential A-calculus (requires sums of terms)
@ a finitary fragment: resource A-calculus = the target of Taylor expansion
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Resource M\-calculus

| <

A
A!

W w
@ @
\.(‘k

x| Ax.s | (s)t
[$15--,Sn]

(terms)
(monomials)
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Resource M\-calculus

. u= x| Aws | (s)t (terms)
Jtyoon u= 81,000, 80 (monomials)

w| »

JANI=)
Al o

Resource reduction

<)\.T8> t —9 8353 -t (anywhere)

Semantically: (at least in a typed setting)

028 [t1, .., tn] = (%)1:0 (1, stn)
Syntactically:

9 S'E: deenS[ttr(l)a-~-ata(n)/1‘17~--7xn] 1fnx(s):#f:n
v 0 otherwise

o Linearity: Ax.0 =0, (s) [t1 + to,u] = (s) [t1,u] + (s) [t2,u], ...
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Resource reduction

(Ax.s) [t1, ..., tn]

ST

tq

to(1)

to(n)

59



Resource reduction
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Resource M\-calculus

ty... = x|Az.s|(s)t (terms)
tyooo u= [S1,...,8n] (monomials)

)

w| »

JANI=)
Al o

)

Resource reduction

<)\.T8> t —9 8938 -t (anywhere)

Semantically: (at least in a typed setting)

028 [t1, ..., tn] = (%)zzo (1, stn)
Syntactically:

a T ZUEG S[tg(l),...,ta(n)/l‘l,...,xn] 1fnx(s):#f:n
.St = ® .

0 otherwise
o Linearity: Ax.0 =0, (s) [t1 + to,u] = (s) [t1,u] + (s) [t2,u], ...

@ Resource reduction preserves free variables, is size-decreasing, strongly
confluent and strongly normalizing.
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Taylor expansion of A-terms

Taylor expansion: M* € Q4
1 n
(M)N)* =" —(M*)N*

neN w
=z (Aax.M)* = z.M*

x*

Many models related with LL validate [M] = [M*].

5K



Taylor expansion of A-terms

Taylor expansion: M* € Q4

(M)N) =Y —(M")N™"

neN w
=z (Az.M)*=Xx.M*
Many models related with LL validate [M] = [M*].

Quantitative semantics in two steps
Taylor expansion: M*
normalization: [M] := N (M*)
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Taylor expansion of A-terms

Taylor expansion: M* € Q4

()N = 3 = () N

n.
neN

=z (Az.M)*=Xx.M*
Many models related with LL validate [M] = [M*].

Quantitative semantics in two steps
Taylor expansion: M*
normalization: [M] := N (M*)

linearity ~~ a generic semantics of non-deterministic superpositions

(aM + bN)* = aM* + bN*
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Taylor expansion of A-terms

Taylor expansion: M* € Q4

()N = 3 = () N

n.
neN

=z (Az.M)*=Xx.M*
Many models related with LL validate [M] = [M*].

Quantitative semantics in two steps
Taylor expansion: M*
normalization: [M] := N (M*)

linearity ~~ a generic semantics of non-deterministic superpositions

(aM + bN)* = aM* + bN*
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Taylor expansion of A-terms

Taylor expansion: M* € Q4

()N = 3 = () N

n.
neN

=z (Az.M)*=Xx.M*
Many models related with LL validate [M] = [M*].

Quantitative semantics in two steps
Taylor expansion: M*
normalization: [M] = N (M*) ?

linearity ~~ a generic semantics of non-deterministic superpositions

(aM + bN)* = aM* + bN*

50



Normalizing Taylor expansions

We want to set

N(Zalsz) = ZCLM\[(SJ

icl el

Normalizing vectors fails in general!

N(ook) =7 oo contains infinitely many terms s; such that AV (s;) = .

60



Normalizing Taylor expansions

We want to set
N( Z aisi) = Z ai./\/(si)
icl el
Normalizing vectors fails in general!
N(ook) =7 oo contains infinitely many terms s; such that AV (s;) = .
Theorem (Ehrhard-Regnier, 2004)
For all M € A and t € A, there is at most one s € M* such that N(s); # 0.

Proof. A-terms are uniform: their approximants all have the same structure. O
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Normalizing Taylor expansions

We want to set
N( Z aisi) = Z ai./\/(si)
icl icl
Normalizing vectors fails in general!

N(ook) =7 oo contains infinitely many terms s; such that AV (s;) = .

Theorem (Ehrhard-Regnier, 2004)
For all M € A and t € A, there is at most one s € M* such that N(s); # 0.

Proof. A-terms are uniform: their approximants all have the same structure. O

Theorem (Ehrhard-Regnier, CiE 2006)
N(M*) ~ B(M) (in particular N (Q*) =0~ 1)
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N(M*) = N(M)
We want:
o If M —4 N then M* =, N*.

o If § € 82 is normalizable and S =, S’ then N(S) = N(S").
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‘We want:
o If M =3 N then M* =5 N*.
o If § € 82 is normalizable and S =, S’ then N(S) = N(S").
Parallel reduction on resource vectors
Z a;s; Sa Z a;S;
ici iel

whenever s; =5 S, for all i € I, where = is the parallel version of —4.
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N(M*) = N(M)*
We want:

o If M —4 N then M* =, N*.
o If § € 82 is normalizable and S =, S’ then N(S) = N(S").

Parallel reduction on resource vectors

Z a;s; Sa Z a;S;

) iel

whenever s; =5 S, for all i € I, where = is the parallel version of —4.

Technical issue

Again, the sum on the right might not converge:

S aa) 113 Sy with () [yl = () [aa) [l S0y

ieN i€EN
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N(M*) = N(M)*
We want:

o If M —4 N then M* =, N*.
o If § € 82 is normalizable and S =, S’ then N(S) = N(S").
Parallel reduction on resource vectors
Z a;S; Sa Z a;S;
1€L el

whenever s; =5 S, for all i € I, where = is the parallel version of —4.

Technical issue

Again, the sum on the right might not converge:

S aa) 113 Sy with () [yl = () [aa) [l S0y

ieN i€EN

But it is always OK when we follow S-reductions. ..
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N(M*) = N(M)*
We want:

o If M —4 N then M* =, N*.
o If § € 82 is normalizable and S =, S’ then N(S) = N(S").

Parallel reduction on resource vectors
> aisi =g ) aiS]
ici iel

whenever s; =5 S, for all i € I, where = is the parallel version of —4.

Technical issue

Again, the sum on the right might not converge:

S aa) 113 Sy with () [yl = () [aa) [l S0y

ieEN ieN
But it is always OK when we follow S-reductions. ..

. or if we do not consider coefficients:
this simplifies the proof in the uniform case (Olimpieri—V., 2018, 2021)
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Key technique: bounding the size of antireducts

The resource A-calculus is extremely regular:

Lemma

If s =5 S’ &', then size(s’) < size(s)
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Key technique: bounding the size of antireducts

The resource A-calculus is extremely regular:

Lemma

If s 9 S 5 &', then size(s’) < size(s) < 2size(s’) + 2.

690



Resource reduction

70



Key technique: bounding the size of antireducts

The resource A-calculus is extremely regular:

Lemma

If s 9 S 5 &', then size(s’) < size(s) < 2size(s’) + 2.

Lemma
If s =9 5" 2§, then size(s') < size(s) < ¢(size(s’), height(s)).
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Key technique: bounding the size of antireducts

The resource A-calculus is extremely regular:

Lemma
If s 9 S 5 &', then size(s’) < size(s) < 2size(s’) + 2.

Lemma
If s =25 8" 5 8/, then size(s) < size(s) < ¢(size(s’), height(s)).

Z a;S; 55 Z a1S1/

€1 i€l

is always OK when height(s;) is bounded (e.g. by height(M) when s; € M™).

Hence
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Key technique: bounding the size of antireducts

The resource A-calculus is extremely regular:

Lemma
If s 9 S 5 &', then size(s’) < size(s) < 2size(s’) + 2.

Lemma
If s =25 8" 5 8/, then size(s) < size(s) < ¢(size(s’), height(s)).

Z a;S; 55 Z alSl’

€1 i€l

is always OK when height(s;) is bounded (e.g. by height(M) when s; € M™).

Hence

Lemma
If s =5 5" 2 ', then height(s") < v(height(s)).

Hence we can iterate.
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M*

is normalizable and
N(M*) =N (M)* —
(V., 2017-2019)

\
algebraic A-terms
n
Z
M
o
1 1 >
Fix(3 M + 5x) <«
~
typed terms con — coN ]
normalizable ) E
terms Fix(M — ) >
n
O
o
J
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For terms s.t. M* is normalizable
N(—*) is stable under 3

(V., 2017)

-

typed terms

normalizable
terms

Taylor
normalizable

terms

algebraic A-terms

M
Fix(%M + %x)
00N — 0N

Fix(M — )

J

HC SVNT DRACONES

-
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For terms s.t. M* is normalizable
N(—*) is stable under 3

(V., 2017)

Proposal

B(M) = N (M*)

-

typed terms

normalizable
terms

Taylor
normalizable

terms

algebraic A-terms

M
Fix(%M + %x)
00N — 0N

Fix(M — )

J

HC SVNT DRACONES

-
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Taylor expansion in MELL



Taylor expansion in MELL proof nets

A= B=1!A-—-B=74A"%B

78



Taylor expansion in MELL proof nets

A= B=1!A-—-B=74A"%B

Taylor expansion of promotion

(

P*

neN

e
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Resource nets
MLL nets + 7 and ! links of any arity:

1A
with cut elimination:
n k
A - A AJ_ e AJ_
8 3 e,
o e

cud 0

ifn=k

otherwise

20



Resource nets
MLL nets + 7 and ! links of any arity:

o g

1A 7A

with cut elimination:

n k

Y ves, [ o ] ifn=k
—>c.e.
O O >

@ 0 otherwise

Geometrically, this is essentially multiplicative:
o ! works like an n-ary ®
e 7 works like an n-ary %
(at least if we forget about sums, typing and the order of premisses)
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Cut elimination and Taylor expansion

Fact
If P —¢. P then P* =, P'*.

Z a;iS; /—:\EC.E‘ Z alSll

i€ icl

whenever s; ¢ S) for all ¢ € I, where = . is parallel cut elimination.
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Cut elimination and Taylor expansion

Fact
If P —¢. P then P* =, P'*.

Z a;iS; Sc.e‘ Z alSz/

S icl

whenever s; ¢ S) for all ¢ € I, where = . is parallel cut elimination.

Same issue
Given S = )., a;s; and a family of reductions (s; Zc.e. S7)icr

> icr @:S; might not converge.

Same solution, replacing height(s) with the length of switching paths in s
(4 jump-in-degree for treating weakening/coweakening)
(Chouquet—V., 2018-2021)
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A suivre. ..

Three ongoing research directions
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Taylor expansion for the infinitary A-calculus

o Infinite A-terms generalize both pure A-terms and Béhm trees

e Extending Taylor expansion to these is easy (at least for A1)
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Taylor expansion for the infinitary A-calculus

o Infinite A-terms generalize both pure A-terms and Béhm trees

e Extending Taylor expansion to these is easy (at least for A1)

We must also consider infinite S-reduction sequences:
in general, these are unwieldy.
Claim

=} simulates strongly convergent sequences

w/ Rémy Cerda (PhD started 2020)

Should give a new proof of standardization.
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Revisiting operational properties of proof nets

e Parallel cut elimination is very well-behaved in MLL and resource nets
e Can we extend it to MELL?
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Revisiting operational properties of proof nets

e Parallel cut elimination is very well-behaved in MLL and resource nets

o Can we extend it to MELL? I seems so.

Claim

Parallel cut elimination in MELL is strongly confluent.

w/ Giulio Guerrieri and Giulia Manara (PhD started 2021, w/ T. Ehrhard)
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Revisiting operational properties of proof nets

e Parallel cut elimination is very well-behaved in MLL and resource nets
e Can we extend it to MELL? I seems so.

Claim

Parallel cut elimination in MELL is strongly confluent.

w/ Giulio Guerrieri and Giulia Manara (PhD started 2021, w/ T. Ehrhard)
The difficult part is the definition. ..
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Extensional Taylor expansion and game semantics

In some versions of g.s., strategies look like sets of normal resource terms.
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Extensional Taylor expansion and game semantics

In some versions of g.s., strategies look like sets of normal resource terms.

Claim
This can be made formal, and then [M]games = N (M*).

w/ Lison Blondeau-Patissier (PhD started 2021, w/ P. C.)
and Pierre Clairambault.
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Extensional Taylor expansion and game semantics

In some versions of g.s., strategies look like sets of normal resource terms.
Claim

This can be made formal, and then [M]games = N (M*).

w/ Lison Blondeau-Patissier (PhD started 2021, w/ P. C.)
and Pierre Clairambault.

But g.s. is essentially extensional!l We need an extensional Taylor expansion.
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Extensional Taylor expansion and game semantics

In some versions of g.s., strategies look like sets of normal resource terms.

Claim
This can be made formal, and then [M]games = N (M*).

w/ Lison Blondeau-Patissier (PhD started 2021, w/ P. C.)
and Pierre Clairambault.

But g.s. is essentially extensional!l We need an extensional Taylor expansion.
A trick: enforce infinite extensionality in the syntax:

su=Ag(s)m | Ay (x) (

miu=¢€|[s1,...,8,) T (

= (Yi)ien)
=[] e=([Dien)

o
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