An introduction to ludics

Lionel Vaux

Institut de Mathématiques de Luminy, Marseille, France

LOCI Symposium:

Rebuilding logic and rethinking language in interaction terms 21 July 2011

Ludics in a few words

Ludics:

- erases the distinction between syntax and semantics;
- ▶ allows to rebuild logic from the sole notion of interaction.

The basic artifact of ludics is the design:

- designs are abstract representations of linear logic proofs;
- designs rely on an alternation of polarities in proofs;
- designs retain only the information relevant for *local* interaction;
- designs needs not represent correct proofs.

Linear Logic

- ► Girard, 80's
- classical logic: negation is involutive
- takes cut elimination in sequent calculus seriously
- drops structural rules

A quick reminder

- ▶ a sequent is a pair of lists: $A_1, ..., A_n \vdash B_1, ..., B_p$
- ▶ it "means" $A_1 \wedge \cdots \wedge A_n \Rightarrow B_1 \vee \cdots \vee B_p$
- ▶ the cut rule is $\frac{A \vdash B}{A \vdash C}$
- cut elimination gives proofs without detours, which have good properties
- ▶ up to De Morgan laws, we can restrict to sequents $\vdash B_1, \ldots, B_p$ and the cut becomes $\frac{\vdash A, B \qquad \vdash \neg B, C}{\vdash A, C}$
- provable sequents admit cut free proofs

Linear logic: rules

Linear logic: rules

$$\land : \qquad \frac{\vdash \Gamma, A \qquad \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B} (\otimes) \qquad \frac{\vdash \Gamma, A \qquad \vdash \Gamma, B}{\vdash \Gamma, A \otimes B} (\&)$$

$$\lor : \qquad \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \otimes B} (?) \qquad \frac{\vdash \Gamma, A_i}{\vdash \Gamma, A_1 \oplus A_2} (\oplus_i)$$

$$\frac{\vdash \Gamma, A \qquad \vdash A^{\perp}, \Delta}{\vdash \Gamma, \Delta} (\mathsf{cut})$$

Linear logic: rules

$$\overline{\vdash X^{\perp}, X}$$
 (ax)

$$\begin{array}{c|c} \text{multiplicative} & \text{additive} \\ \land: & \frac{\vdash \Gamma, A & \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B} (\otimes) & \frac{\vdash \Gamma, A & \vdash \Gamma, B}{\vdash \Gamma, A \& B} (\&) \\ \lor: & \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \, \Im \, B} (\Im) & \frac{\vdash \Gamma, A_i}{\vdash \Gamma, A_1 \oplus A_2} (\oplus_i) \\ & \frac{\vdash \Gamma, A & \vdash A^\perp, \Delta}{\vdash \Gamma, \Delta} \left(\text{cut} \right) \\ A, B := X \mid X^\perp \mid A \, \Im \, B \mid A \otimes B \mid A \& B \mid A \oplus B \end{array}$$

$$(A \ \Im B)^{\perp} = A^{\perp} \otimes B^{\perp}$$

$$(A \& B)^{\perp} = A^{\perp} \oplus B^{\perp}$$

A multiplicative cut $(\%/\otimes)$:

$$\frac{\vdots}{\frac{\vdash \Gamma, A \qquad \vdash \Gamma', B}{\vdash \Gamma, \Gamma', \underline{A \otimes B}}} (\otimes) \quad \frac{\vdash \Delta, A^{\perp}, B^{\perp}}{\vdash \Delta, \underline{A^{\perp} \ \Im \ B^{\perp}}} (?) \\ \frac{\vdash \Gamma, \Gamma', \underline{A \otimes B}}{\vdash \Gamma, \Gamma', \Delta} (cut)$$

$$\frac{\vdots}{\vdash \Gamma, A} \quad \frac{\vdash \Gamma', B \quad \vdash \Delta, A^{\perp}, B^{\perp}}{\vdash \Gamma', \Delta, A^{\perp}} \text{(cut)}$$
$$\vdash \Gamma, \Gamma', \Delta$$

A multiplicative cut $(\%/\otimes)$:

$$\frac{\vdots}{\vdash \Gamma, A} \quad \frac{\vdash \Gamma', B \quad \vdash \Delta, A^{\perp}, B^{\perp}}{\vdash \Gamma', \Delta, A^{\perp}} \text{(cut)}$$
$$\vdash \Gamma, \Gamma', \Delta$$

A multiplicative cut $(\%/\otimes)$:

$$\frac{\vdots}{\frac{\vdash \Gamma, A \qquad \vdash \Gamma', B}{\vdash \Gamma, \Gamma', \underline{A \otimes B}}} (\otimes) \quad \frac{\vdash \Delta, A^{\perp}, B^{\perp}}{\vdash \Delta, \underline{A^{\perp} \ \Im \ B^{\perp}}} (?) \\ \frac{\vdash \Gamma, \Gamma', \underline{A \otimes B}}{\vdash \Gamma, \Gamma', \Delta} (cut)$$

$$\frac{\vdots}{\vdash \Gamma, \textcolor{red}{A}} \quad \frac{\vdash \Gamma', \textcolor{red}{B} \quad \vdash \Delta, \textcolor{red}{A^{\perp}, \textcolor{red}{B^{\perp}}}}{\vdash \Gamma', \textcolor{red}{\Delta, \textcolor{red}{A^{\perp}}}(\texttt{cut})} (\texttt{cut})$$

An additive cut $(\&/\oplus)$:

$$\frac{ \begin{array}{ccc} \vdots & \vdots & \vdots \\ \vdash \Gamma, A & \vdash \Gamma, B \\ \hline \vdash \Gamma, A \& B \\ \end{array} (\&) & \frac{\vdash \Delta, A^{\perp}}{\vdash \Delta, A^{\perp} \oplus B^{\perp}} (\oplus_{1}) \\ \vdash \Gamma, \Delta \\ \end{array} (cut)$$

An additive cut $(\&/\oplus)$:

An additive cut $(\&/\oplus)$:

An additive cut $(\&/\oplus)$:

$$\frac{\vdots}{\vdash \Gamma, A \vdash \Gamma, B} \vdots \\ \frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, \underline{A \& B}} (\&) \frac{\vdash \Delta, \underline{A^{\perp}}}{\vdash \Delta, \underline{A^{\perp} \oplus B^{\perp}}} (\oplus_{1}) \\ \vdash \Gamma, \Delta$$
 (cut)

$$\frac{\vdots}{\vdash \Gamma, A} \vdash \Delta, A^{\perp} \vdash \Gamma, \Delta}$$
(cut)

Identity:

$$\frac{ \frac{\vdots}{\vdash A, \underline{\underline{A}^{\perp}}} (ax) \quad \vdots}{\vdash A, \Gamma} (cut)$$

Bureaucracy: e.g.,

$$\frac{\vdots}{\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \ 7\!\!\!/ B}} (7\!\!\!/) \quad \frac{\vdash \Delta, A^{\perp} \otimes B^{\perp}, C}{\vdash \Delta, A^{\perp} \otimes B^{\perp}, C \oplus D} (\oplus_{1})}{\vdash \Gamma, \Delta, C \oplus D} (\text{cut})$$

Bureaucracy: e.g.,

$$\frac{\vdots}{\vdash \Gamma, A, B} (?) \frac{\vdash \Delta, A^{\perp} \otimes B^{\perp}, C}{\vdash \Delta, \underline{A^{\perp}} \otimes \underline{B^{\perp}}, C \oplus D} (\oplus_{1}) \\ \frac{\vdash \Gamma, \underline{A ?? B}}{\vdash \Gamma, \Delta, C \oplus D} (\text{cut})$$

Bureaucracy: e.g.,

$$\frac{\vdots}{\frac{\vdash \Gamma, A, B}{\vdash \Gamma, \underline{A \, \Im \, B}}} (?) \quad \frac{\vdash \Delta, A^{\perp} \otimes B^{\perp}, \underline{C}}{\vdash \Delta, \underline{A^{\perp} \otimes B^{\perp}}, \underline{C} \oplus \underline{D}} (\oplus_{1})}{\vdash \Gamma, \Delta, \underline{C} \oplus \underline{D}} (\text{cut})$$

Bureaucracy: e.g.,

$$\frac{\vdots}{ \vdash \Gamma, A, B \atop \vdash \Gamma, \underline{A \nearrow B}} (\nearrow) \quad \frac{\vdash \Delta, A^{\perp} \otimes B^{\perp}, C}{\vdash \Delta, \underline{A^{\perp}} \otimes \underline{B^{\perp}}, C \oplus \underline{D}} (\oplus_{1}) \\ \frac{\vdash \Gamma, \Delta, \underline{C} \oplus \underline{D}}{} (\text{cut})$$

$$\frac{\vdash \Gamma, A, B}{\vdash \Gamma, \underline{A \, \mathcal{B} \, B}}(\mathcal{P}) \qquad \vdots \\
\vdash \Gamma, \underline{A \, \mathcal{P} \, B} \qquad \vdash \Delta, \underline{A^{\perp} \otimes B^{\perp}, C} \\
\frac{\vdash \Gamma, \Delta, C}{\vdash \Gamma, \Delta, C \oplus D}(\oplus_{1})$$

Focusing

Reversibility

The connectives \Im and & are reversible:

from the conclusion and active formula, one can recover the premises.

During proof search, one can always perform reversible rules.

We thus divide connectors between two classes: \Re and & are *negative*, and \otimes and \oplus are *positive*.

Positive connectors are not reversible but:

Focusing

Every provable sequent admits a focused cut-free proof.

A cut-free proof is focused if:

- each time we decompose a formula using an introduction rule, we focus on its subformulas, as long as they have the same polarity;
- if a sequent contains a negative formula, we first apply negative rules.

Synthetic connectives: rules

Up to focusing and the distributivity isomorphism $A \otimes (B \oplus C) = (A \otimes B) \oplus (A \otimes C)$, we obtain:

one negative (reversible) rule:

$$\frac{\left(\vdash (P_{i,j})_{j\in J_i}, \Gamma\right)_{i\in I}}{\vdash \&_{i\in I} \aleph_{j\in J_i} P_{i,j}, \Gamma} (-)$$

one positive rule:

$$\frac{(\vdash N_{i_0,j}, \Gamma_j)_{j \in J_{i_0}}}{\vdash \bigoplus_{i \in I} \bigotimes_{j \in J_i} N_{i,j}, \Gamma} (+, i_0)$$
 with $\Gamma = \sum_{j \in J_{i_0}} \Gamma_j$.

Synthetic connectives: rules

Up to focusing and the distributivity isomorphism $A \otimes (B \oplus C) = (A \otimes B) \oplus (A \otimes C)$, we obtain:

one negative (reversible) rule:

$$\frac{\left(\vdash (P_{i,j})_{j\in J_i}, \Gamma\right)_{i\in I}}{\vdash \&_{i\in I} \aleph_{j\in J_i} P_{i,j}, \Gamma} (-)$$

one positive rule:

$$\frac{\left(\vdash N_{i_0,j}, \Gamma_j\right)_{j \in J_{i_0}}}{\vdash \bigoplus_{i \in I} \bigotimes_{j \in J_i} N_{i,j}, \Gamma} \left(+, i_0\right)$$
 with $\Gamma = \sum_{j \in J_{i_0}} \Gamma_j$.

Plus axiom and cut.

$$\frac{\begin{pmatrix} \pi_{j} \\ \vdots \\ \vdash P_{i_{0},j}^{\perp}, \Gamma_{j} \end{pmatrix}_{j \in J_{i_{0}}}}{\vdash \bigoplus_{i \in I} \bigotimes_{j \in J_{i}} P_{i,j}^{\perp}, \Gamma} (+, i_{0}) \quad \frac{\begin{pmatrix} \rho_{i,j} \\ \vdots \\ \vdash (P_{i,j})_{j \in J_{i}}, \Delta \end{pmatrix}_{i \in I}}{\vdash \&_{i \in I} \bigotimes_{j \in J_{i}} P_{i,j}, \Delta} (-) \\ \vdash \Gamma, \Delta \quad (\text{cut})$$

$$\frac{\begin{pmatrix} \pi_{j} \\ \vdots \\ \vdash P_{i_{0},j}^{\perp}, \Gamma_{j} \end{pmatrix}_{j \in J_{i_{0}}}}{\vdash \bigoplus_{i \in I} \bigotimes_{j \in J_{i}} P_{i,j}^{\perp}, \Gamma} (+, i_{0}) \qquad \frac{\begin{pmatrix} \rho_{i,j} \\ \vdots \\ \vdash (P_{i,j})_{j \in J_{i}}, \Delta \end{pmatrix}_{i \in I}}{\vdash \underbrace{\bigotimes_{i \in I} \bigotimes_{j \in J_{i}} P_{i,j}}_{j \in J_{i}}, \Delta} (-)}$$

$$\vdash \Gamma, \Delta$$

$$\frac{\begin{pmatrix} \pi_{j} \\ \vdots \\ \vdash P_{i_{0},j}^{\perp}, \Gamma_{j} \end{pmatrix}_{j \in J_{i_{0}}}}{\vdash \bigoplus_{i \in I} \bigotimes_{j \in J_{i}} P_{i,j}^{\perp}, \Gamma} (+, i_{0}) \qquad \frac{\begin{pmatrix} \rho_{i,j} \\ \vdots \\ \vdash (P_{i,j})_{j \in J_{i}}, \Delta \end{pmatrix}_{i=i_{0}}}{\vdash \underbrace{\bigotimes_{i \in I} \bigotimes_{j \in J_{i}} P_{i,j}, \Delta}_{(cut)}} (-)$$

$$\frac{\begin{pmatrix} \pi_{j} \\ \vdots \\ \vdash P_{i_{0},j}^{\perp}, \Gamma_{j} \end{pmatrix}_{j \in J_{i_{0}}}}{\vdash \bigoplus_{i \in I} \bigotimes_{j \in J_{i}} P_{i,j}^{\perp}, \Gamma} (+, i_{0}) \qquad \frac{\begin{pmatrix} \rho_{i,j} \\ \vdots \\ \vdash (P_{i,j})_{j \in J_{i}}, \Delta \end{pmatrix}_{i=i_{0}}}{\vdash \underbrace{\bigotimes_{i \in I} \bigotimes_{j \in J_{i}} P_{i,j}, \Delta}} (-)$$

$$\vdash \Gamma, \Delta$$

Loci

Ludics founds logic on the interaction between proofs: cut-elimination between A and A^{\perp} .

To enable this dialogue without preconception:

- Ludics forgets about the meaning of formulas. Sequents only retain information on the location of subformulas: the *locus*.
- ▶ It introduces a generic "dummy" proof: the daimon.

 The essential point of interaction is that both parties should reach an agreement: one must give up, using the daimon.

Definition

An address (or locus) is a finite list of natural numbers. A sequent is a pair $\Lambda \vdash \Delta$ where Λ holds at most one formula. If $\Lambda = \emptyset$ the sequent is positive, otherwise it is negative.

Designs

... as abstract proof trees (dessins)

daimon

$$\frac{}{\vdash \Delta}(\maltese)$$

negative rule

$$\frac{\left(\vdash \left(\xi i\right)_{i\in I},\Delta_{I}\right)_{I\in\mathcal{N}}}{\xi\vdash\Delta}\left(-,\xi,\mathcal{N}\right)$$

where $\mathcal{N} \subseteq \mathfrak{P}_f(\mathbf{N})$ and each $\Delta_I \subseteq \Delta$.

positive rule

$$\frac{(\xi i \vdash \Delta_i)_{i \in I}}{\vdash \xi, \Delta} (+, \xi, I)$$

where I is finite, $\bigcup \Delta_i \subseteq \Delta$, and $\Delta_i \cap \Delta_j = \emptyset$ for all $i \neq j$.

Proofs as designs

$$\frac{\vdots}{\frac{\vdash P, Q, S}{\vdash (P ? Q) \& R, S}} (-)} \frac{\vdash P, Q, S}{\vdash (P ? Q) \& R, S} (+, \{2\})$$

$$\vdash T \oplus ((P ? Q) \& R) \oplus U, S$$

becomes

$$\frac{\vdots}{\frac{\vdash \xi 21, \xi 22, \sigma}{\vdash \xi 23, \sigma}} (-, \xi 2, \{\{1, 2\}, \{3\}\})} \frac{\xi 2 \vdash \sigma}{\vdash \xi, \sigma} (+, \xi, \{2\})$$

▶ Designs have possibly infinite width and depth.

- Designs have possibly infinite width and depth.
- ▶ In fact, every daimon free design is infinite.

- Designs have possibly infinite width and depth.
- ▶ In fact, every daimon free design is infinite.
- ► There is no cut rule: designs represent cut-free proofs.

- Designs have possibly infinite width and depth.
- ▶ In fact, every daimon free design is infinite.
- ▶ There is no cut rule: designs represent cut-free proofs.
- ▶ There is not even an axiom rule: see later.

- Designs have possibly infinite width and depth.
- ▶ In fact, every daimon free design is infinite.
- There is no cut rule: designs represent cut-free proofs.
- There is not even an axiom rule: see later.
- Designs as dessins (trees) actually retain irrelevant information about the context of rules: compare

$$\frac{\frac{-\xi 12}{\xi 1 \vdash \sigma} (\maltese)}{\frac{\xi 1 \vdash \sigma}{\vdash \xi, \sigma} (+, \xi, \{1\})} \quad \text{with} \quad \frac{\frac{-\xi 12}{\xi 1 \vdash \sigma} (\maltese)}{\frac{\xi 1}{\vdash \xi, \sigma} (+, \xi, \{1\})}$$

Remarks

- Designs have possibly infinite width and depth.
- ▶ In fact, every daimon free design is infinite.
- ► There is no cut rule: designs represent cut-free proofs.
- There is not even an axiom rule: see later.
- Designs as dessins (trees) actually retain irrelevant information about the context of rules: compare

$$\frac{\overline{+\xi12}}{\frac{\xi1+\sigma}{+\xi,\sigma}}(+,\xi,\{1\}) \quad \text{with} \quad \frac{\overline{+\xi12}}{\frac{\xi1+}{+\xi,\sigma}}(+,\xi,\{1\})$$

One can introduce a further level of abstraction to fix this: designs as strategies (desseins).

Intuitively: desseins = sets of branches in a dessin.

Interaction: cut nets

Definition

A cut net is a non empty set of designs s.t.:

- addresses in conclusions are either disjoint or identical;
- each address appears in at most two conclusions, and then with opposite polarities: this is a cut;
- the graph with conclusions as vertices and cuts as arrows is connected and acyclic.

Interaction: cut nets

Definition

A cut net is a non empty set of designs s.t.:

- addresses in conclusions are either disjoint or identical;
- each address appears in at most two conclusions, and then with opposite polarities: this is a cut;
- the graph with conclusions as vertices and cuts as arrows is connected and acyclic.

In particular there is exactly one design without a cut on the left: its conclusion is the main sequent and its last rule the main rule.

Interaction: cut elimination as normalization

The case of closed nets: all addresses are cuts

The main design D is then necessarily positive.

- ► The main rule is (♣): normalization immediately ends and results in ♣.
- ▶ The main rule is $(+, \xi, I)$: then ξ is a cut, with the negative address of another design E, whose last rule is $(-, \xi, \mathcal{N})$.
 - if $I \notin \mathcal{N}$, normalization fails;
 - ▶ otherwise, for all $i \in I$, we consider the subdesign D_i of D with conclusion $(\xi i \vdash \cdots)$, and the subdesign E' of E with conclusion $(\vdash \xi I, \cdots)$: we replace D with the D_i 's and E with E'. We normalize the net obtained as the component of E'.

The general case

When none of the above cases applies, we normalize above the main rule (cf. commutative cuts in sequent calculus).

Start from a net made of two designs:

$$\frac{\vdots}{\xi 1 \vdash \xi 2 \vdash \sigma 31} (+, \xi, \{1, 2\}) \\
\frac{\vdash \xi, \sigma 31}{\sigma 3 \vdash \xi} (-, \sigma 3, \{\{1\}\}) \\
\vdash \xi, \sigma$$

$$\vdots \\
\vdash \xi 0, \tau \qquad \vdash \xi 1, \xi 2, \tau \qquad \vdash \xi 3, \tau \\
\xi \vdash \tau \qquad (-, \xi, \{\{0\}, \{1, 2\}, \{3\}\})$$

Start from a net made of two designs:

$$\frac{\vdots}{\xi 1 \vdash \xi 2 \vdash \sigma 31} (+, \xi, \{1, 2\}) \\
\frac{\vdash \xi, \sigma 31}{\sigma 3 \vdash \xi} (-, \sigma 3, \{\{1\}\}) \\
\vdash \xi, \sigma$$

$$\vdots \\
\vdash \xi 0, \tau \qquad \vdash \xi 1, \xi 2, \tau \qquad \vdash \xi 3, \tau \\
\xi \vdash \tau \qquad (-, \xi, \{\{0\}, \{1, 2\}, \{3\}\})$$

Start from a net made of two designs:

$$\begin{array}{c} \vdots & \vdots \\ \frac{\xi 1 \vdash \quad \xi 2 \vdash \sigma 31}{\vdash \xi, \sigma 31} (+, \xi, \{1, 2\}) \\ \hline \frac{\vdash \xi, \sigma 31}{\sigma 3 \vdash \xi} (-, \sigma 3, \{\{1\}\}) & \vdots \\ \vdash \sigma & \\ \hline \vdots & \vdots & \vdots \\ \hline \frac{\vdash \xi 0, \tau \quad \vdash \xi 1, \xi 2, \tau \quad \vdash \xi 3, \tau}{\xi \vdash \tau} (-, \xi, \{\{0\}, \{1, 2\}, \{3\}\}) \\ \hline \end{array}$$

Start from a net made of two designs:

Start from a net made of two designs.
$$\vdots \qquad \vdots \\ \frac{\xi 1 \vdash \qquad \xi 2 \vdash \sigma 31}{\vdash \xi, \sigma 31} (+, \xi, \{1, 2\}) \qquad \vdots \\ \frac{\vdash \xi, \sigma 31}{\sigma 3 \vdash } (-, \sigma 3, \{\{1\}\}) \qquad \vdots \\ \vdash \sigma \qquad \qquad (+, \sigma, \{3, 7\})$$

$$\vdots \qquad \vdots \qquad \vdots \\ \frac{\vdash \xi 0, \tau \qquad \vdash \xi 1, \xi 2, \tau \qquad \vdash \xi 3, \tau}{\xi \vdash \tau} (-, \xi, \{\{0\}, \{1, 2\}, \{3\}\})$$

We reached a genuine cut.

It remains to normalize a cut net made of three designs:

```
\frac{\xi 1 \vdash \qquad \xi 2 \vdash \sigma 31}{\sigma 3 \vdash \qquad (-, \sigma 3, \{\{1\}\})} \qquad \vdots \\
\vdash \sigma \qquad \qquad \vdash (+, \sigma, \{3, 7\})

\vdots \\
\vdash \xi 1 \xi 2 \tau
```

Fax

There are no axioms, because there are no formulas. Instead there is a generic η -expansion, given by the fax design $\mathfrak{F}_{\xi,\xi'}$:

$$\begin{array}{c}
\mathfrak{F}_{\xi'i,\xi i} \\
\vdots \\
\cdots \qquad \xi'i \vdash \xi i \qquad \cdots \\
\vdash \xi', (\xi i)_{i \in I} \qquad (+,\xi',I) \\
\xi \vdash \xi'
\end{array} \qquad (-,\xi,\mathfrak{P}_f(\mathbf{N}))$$

Fax

There are no axioms, because there are no formulas. Instead there is a generic η -expansion, given by the fax design $\mathfrak{F}_{\xi,\xi'}$:

$$\begin{array}{c}
\mathfrak{F}_{\xi'i,\xi i} \\
\vdots \\
\cdots \qquad \xi'i \vdash \xi i \qquad \cdots \\
\vdash \xi', (\xi i)_{i \in I} \qquad (+,\xi',I) \\
\hline
\xi \vdash \xi'
\end{array} \qquad (-,\xi,\mathfrak{P}_f(\mathbf{N}))$$

The axiom $P \oplus Q \vdash P \oplus Q$ becomes:

$$\begin{array}{ccc}
\mathfrak{F}_{\xi'1,\xi 1} & \mathfrak{F}_{\xi'1,\xi 1} \\
\vdots & \vdots \\
\underline{\xi'1 \vdash \xi 1}_{\vdash \xi 1, \xi'} (+, \xi', \{1\}) & \underline{\xi'2 \vdash \xi 2}_{\vdash \xi 2, \xi'} (+, \xi', \{2\}) \\
\underline{\xi \vdash \xi'} & (-, \xi, \{\{1\}, \{2\}\})
\end{array}$$

Fax

There are no axioms, because there are no formulas. Instead there is a generic η -expansion, given by the fax design $\mathfrak{F}_{\xi,\xi'}$:

Normalizing a design D of conclusion $\xi' \vdash \Gamma$ with $\mathfrak{F}_{\xi,\xi'}$ results in a relocalized design D', with conclusion $\xi \vdash \Gamma$.

Rebuilding logic: orthogonality

Definition

Let D be a design with conclusion $\Lambda \vdash \Gamma$ and for all $\xi \in \Lambda \cup \Gamma$, let E_{ξ} be a designs of conclusion $\vdash \xi$ or $\xi \vdash$ so that $N = \{D\} \cup \{E_{\xi} \mid \xi \in \Lambda \cup \Gamma\}$ is a closed cut net. We say D is orthogonal to (E_{ξ}) if N normalizes to the daimon.

Rebuilding logic: behaviours

Definition

Let ${\bf D}$ be a set of designs with the same conclusion: we write ${\bf D}^{\perp\perp}$ for its bidual.

We say **D** is a behaviour if $\mathbf{D} = \mathbf{D}^{\perp \perp}$.

Rebuilding logic: behaviours

Definition

Let **D** be a set of designs with the same conclusion: we write $\mathbf{D}^{\perp\perp}$ for its bidual.

We say **D** is a behaviour if $\mathbf{D} = \mathbf{D}^{\perp \perp}$.

Behaviours are the ludics counterpart of formulas.

Rebuilding logic: additives

- Any intersection of behaviours is a behaviour.
- ▶ It does not necessarily hold for union: write $\bigsqcup \mathbf{D}_i = (\bigcup \mathbf{D}_i)^{\perp \perp}$.
- ▶ If $D_1 \cap D_2 = \emptyset$, $D_1 \cup D_2 = D_1 \cup D_2$.

Fact

 \bigcap and \bigcup provide *locative* interpretations of & and \bigoplus . To recover the usual connectives, we should introduce some more structure.

Rebuilding logic: multiplicatives

The basic idea is to introduce a binary operation on positive designs:

if the first (positive) actions of D and D' are I and J, we form a new design $D \odot D'$ with first action $I \cup J$, and branches selected among those of D and D'.

Fact

Several choices for \odot are possible, with interesting properties. Setting $\mathbf{D}\otimes\mathbf{D}'=\{D\odot D'\mid D\in\mathbf{D}, D'\in\mathbf{D}'\}^{\perp\perp}$ provides a locative interpretation of tensor. We recover $\mbox{9}$ by duality.

What is missing from this talk?

Almost everything :-)

- the good notion of designs (desseins);
- beautiful theorems (associativity, separation, stability, . . .);
- the notion of truth;
- completeness theorems;
- etc.

(...)