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Ludics in a few words

Ludics:
> erases the distinction between syntax and semantics;
> allows to rebuild logic from the sole notion of interaction.
The basic artifact of ludics is the design:
> designs are abstract representations of linear logic proofs;
» designs rely on an alternation of polarities in proofs;

> designs retain only the information relevant for local
interaction;

v

designs needs not represent correct proofs.



Linear
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v
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Logic

Girard, 80's
classical logic: negation is involutive
takes cut elimination in sequent calculus seriously

drops structural rules

A quick reminder

a sequent is a pair of lists: Ay,...,ApF By,...,Bp
it “means” AiA---ANA, = B1V---VBp
A B B+ C
> .
the cut rule is AFC
cut elimination gives proofs without detours, which have good properties
up to De Morgan laws, we can restrict to sequents - By, ..., By and the cut
b A B F-B,C
ecomes FAC

provable sequents admit cut free proofs



Linear logic: rules
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Linear logic: rules
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Linear logic: cut elimination

A multiplicative cut (¥/®):
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Linear logic: cut elimination

A multiplicative cut (¥/®):

~T,A FI'.B

T, (@) Ta (%)
| LA (cut)
reduces to
FT'.B  FA AL B
(cut)

T, A -1 A, AT
SRV

(cut)



Linear logic: cut elimination

An additive cut (&/®):
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Linear logic: cut elimination

An additive cut (&/®):
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Linear logic: cut elimination

An additive cut (&/®):
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Linear logic: cut elimination

An additive cut (&/®):

"TA FT.B - AL AL
T, &) A (1)
-T.A (cut)
reduces to

FTLA FAAL
FT.A

(cut)



Linear logic: cut elimination

Identity:

T (ax)

T (cut)

- AT

reduces to

AT



Linear logic: cut elimination

Bureaucracy: e.g.,

T, A B FA AT @B C
I—F,A7S’B( ) FAAPRBY.CeD
FT,A,CaD

($1)
(cut)




Linear logic: cut elimination

Bureaucracy: e.g.,
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Linear logic: cut elimination

Bureaucracy: e.g.,

FTAB e FAATGBLC
FT,A%E ) FAA - BLCaD
FT.A,CoD

(®1)

(cut)




Linear logic: cut elimination

Bureaucracy: e.g.,

T, A B - A AN @B C

- T, (%) 4, ,CaD (@13
FT.A.CoD (cut)
reduces to
-T,A B ;
Trane ) o, C
FT.A, C (cut)

“T.ACaD (@)



Focusing

Reversibility

The connectives 7% and & are reversible:
from the conclusion and active formula, one can recover the
premises.

During proof search, one can always perform reversible rules.
We thus divide connectors between two classes: %8 and & are
negative, and ® and & are positive.

Positive connectors are not reversible but:

Focusing
Every provable sequent admits a focused cut-free proof.
A cut-free proof is focused if:

» each time we decompose a formula using an introduction rule,
we focus on its subformulas, as long as they have the same
polarity;

» if a sequent contains a negative formula, we first apply
negative rules.



Synthetic connectives: rules

Up to focusing and the distributivity isomorphism
AR (B C)=(A® B)® (A® C), we obtain:
» one negative (reversible) rule:
oD,
= &ier jes, PiinT
> one positive rule:
(F Niojs T3 je s, (+, i)
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Synthetic connectives: rules

Up to focusing and the distributivity isomorphism
AR (B C)=(A® B)® (A® C), we obtain:
» one negative (reversible) rule:
('_ (Pis)jes; I') cl(-)
= &ier Bjes Pii T
> one positive rule:
(l— Nio,ja rj)jg_/,b (+ . )
» lo
- @iel ®jeJ,- NiJ> r
Plus axiom and cut.




Synthetic connectives: cut elimination

7T Pij
J_ .
~ P,O,p [ jeJ,-O (+ i ) F (PiJ)jeJ A ,e/ (
» 10 -
- @IG/ ®J€J I_]’ - &IG/ 7?_]6_/ ’d’ (cut)

FT,A



Synthetic connectives: cut elimination

7 Pij
J_ .
P = (47) " Fisdies & ()
» 10 -
F@/ /®j =J; IJ’ F&IG/@JPJ ’J’ ( t)
cu

FT,A



Synthetic connectives: cut elimination

] Pij
L .
l_ P’Oa./7 r jEJ,O (+ . ) l_ (P’J)JGJ’A i= Io ( )
» 1o -
|_ @IG/ ®J\TJ /j’ l_ &lr/ 7?er ’J’ ( t)
Cu

FILA

Y



Synthetic connectives: cut elimination

. Pij
- PIOL_/’ r jed, (+ ' ) + (Pivj)jGJi’A i=ip ( )
y 1o B

- T - -z
= (cut)
reduces to
m; pioJ
a ’Diijv rJ JjeJ - (P’O’J)JGJ A



Loci

Ludics founds logic on the interaction between proofs:
cut-elimination between A and AL,

To enable this dialogue without preconception:
» Ludics forgets about the meaning of formulas.
Sequents only retain information on the location of
subformulas: the locus.
> It introduces a generic “"dummy” proof: the daimon.
The essential point of interaction is that both parties should
reach an agreement: one must give up, using the daimon.

Definition

An address (or locus) is a finite list of natural numbers.

A sequent is a pair A+ A where A holds at most one formula.
If A = () the sequent is positive, otherwise it is negative.



Designs

. as abstract proof trees (dessins)

daimon

—x (%)

negative rule

('_ (fi)ie/ ) A/) eN
f"A I (_7§7N)

where N' C B¢(N) and each A; C A.

positive rule
(&i+ Ai)ie/
'_ é” A (+7 57 l)

where [ is finite, |JA; C A, and A; N A;j =0 for all i # .



Proofs as designs

-P,Q,S KRS o)
F(PRQ)&R,S
FTo(PRQ&R) S U,S

(+:{2})

becomes

F€21,622,0 - 52: o
£2|—O' (_’52’{{172}’{3}})

=T (R 642
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Remarks

» Designs have possibly infinite width and depth.

» In fact, every daimon free design is infinite.

» There is no cut rule: designs represent cut-free proofs.
» There is not even an axiom rule: see later.

» Designs as dessins (trees) actually retain irrelevant
information about the context of rules: compare

e (%) e (%)
T (LR i e (6L ICD)
L7 (16 (1) S e

One can introduce a further level of abstraction to fix this:
designs as strategies (desseins).
Intuitively: desseins = sets of branches in a dessin.



Interaction: cut nets

Definition
A cut net is a non empty set of designs s.t.:
» addresses in conclusions are either disjoint or identical,

» each address appears in at most two conclusions, and then
with opposite polarities: this is a cut;

> the graph with conclusions as vertices and cuts as arrows is
connected and acyclic.



Interaction: cut nets

Definition
A cut net is a non empty set of designs s.t.:
» addresses in conclusions are either disjoint or identical,
» each address appears in at most two conclusions, and then
with opposite polarities: this is a cut;
> the graph with conclusions as vertices and cuts as arrows is
connected and acyclic.

In particular there is exactly one design without a cut on the left:
its conclusion is the main sequent and its last rule the main rule.



Interaction: cut elimination as normalization

The case of closed nets: all addresses are cuts
The main design D is then necessarily positive.
» The main rule is (%¥): normalization immediately ends and
results in M.

» The main rule is (+,&,/): then £ is a cut, with the negative
address of another design E, whose last rule is (—, &, ).

» if | ¢ N, normalization fails;

» otherwise, for all / € I, we consider the subdesign D; of D with
conclusion (&/ F ---), and the subdesign E’ of E with
conclusion (F &/,---): we replace D with the D;'s and E with
E’. We normalize the net obtained as the component of E’.

The general case
When none of the above cases applies, we normalize above the
main rule (cf. commutative cuts in sequent calculus).



Example

Start from a net made of two designs:

Ak &F 031

> (+&412))
AN
Tt (4+,0,{3,7})

Fe0,r  FeLEr b 5:3,7
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Example

Start from a net made of two designs:
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Example

Start from a net made of two designs:

lF F 031

(+,&{1,2}) :
FO‘?E:?. (_’037{{1}}) 0'7. =
: — (+,0,{3,7})

o, r H;lffﬁ T T (e, ({0} {12}, {3})




Example

Start from a net made of two designs:

1k €2+ 031

(+.6.{1.2))
T R 11}
— (+,0,{3,7})

-0 7k 51,152,7 - §:3,T
cFr (— & {{0},{1,2},{3}})

We reached a genuine cut.



Example

It remains to normalize a cut net made of three designs:

51:F {2!—:031 :
ey (= 03,{{1}}) oTh

Fo

+,0,{3,7})

1,62,



Fax

There are no axioms, because there are no formulas.
Instead there is a generic 77-expansion, given by the fax design F¢ ¢/
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Fax

There are no axioms, because there are no formulas.
Instead there is a generic 77-expansion, given by the fax design F¢ ¢/

Serici

¢t gi
H 6/7 (gi)iel
(¢

The axiom P& Q F P ® Q becomes:

(+:¢.1)
(= & Br(N))

Ser1e1 Sere
gira fere
e (+,& A1) 4 (+.8,{2})
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Fax

There are no axioms, because there are no formulas.
Instead there is a generic 77-expansion, given by the fax design F¢ ¢/

Serici

{lil.—{i
& (E0)ie
ERE

Normalizing a design D of conclusion ' = T with ¢ ¢ results in a
relocalized design D', with conclusion £ - T.

(+,¢.1)

(=& PBr(N))



Rebuilding logic: orthogonality

Definition

Let D be a design with conclusion A 1T and for all £ € AUT, let
E¢ be a designs of conclusion I- £ or £ I so that
N={D}U{E:|§€NUT} is a closed cut net.

We say D is orthogonal to (E¢) if N normalizes to the daimon.



Rebuilding logic: behaviours

Definition

Let D be a set of designs with the same conclusion: we write
for its bidual.

We say D is a behaviour if D = D+,

DLL



Rebuilding logic: behaviours

Definition
Let D be a set of designs with the same conclusion: we write D+

for its bidual.
We say D is a behaviour if D = D+,

Behaviours are the ludics counterpart of formulas.



Rebuilding logic: additives

> Any intersection of behaviours is a behaviour.
> It does not necessarily hold for union: write
LID; = (UDi)*.

» fD;NDy, =0, D;UDy = D; UD>.

Fact
() and | | provide locative interpretations of & and €p.
To recover the usual connectives, we should introduce some more

structure.



Rebuilding logic: multiplicatives

The basic idea is to introduce a binary operation on positive
designs:

if the first (positive) actions of D and D’ are | and J,

we form a new design D ® D’ with first action / U J,

and branches selected among those of D and D'.

Fact

Several choices for @ are possible, with interesting properties.
Setting D@D’ ={D® D' | D € D, D’ € D'} provides a
locative interpretation of tensor.

We recover % by duality.



What is missing from this talk?

Almost everything :-)

v

the good notion of designs (desseins);

v

v

the notion of truth;

v

completeness theorems;

> etc.

beautiful theorems (associativity, separation, stability, ... );
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