Lecture 3:
From linearity in coherence spaces
to Linear Logic

Lionel Vaux

Institut de Mathématiques de Luminy, Université d’Aix-Marseille, France

School on Proof Theory
Paraty 2012

A computational point of view on coherence semantics
An alternative presentation:

Iaz":A+s": B
I'EXxs :A— B
Lok s :A— B Lt A -0 Tkttt A (%)

AV ARzt A

T +(s)t':B

Fl—sl ZAl FI_SQ:AQ F|—31:A1 Fl_SQ 1A2
F|—<51,82> IA1XA2 F|—<51,82> 1A1XA2

I'ks 1A1><A2
I'tms™: A;

A computational point of view on coherence semantics
An alternative presentation:

Iz*:AFs?: B
I'FXxs@® .4 B
o b sdonanhB) . 4 5 B NMEtm:A .. TphHt*%:A

A@,x{o‘}:Al—aza:A

Ul ()t : B

Fl—slo‘:Al FI_SQ:AQ F|—31:A1 Fl_SQQZAQ
' <51,82>(1’a) : Al X A2 '+ <81,82>(2’a) : A1 X A2

'k S(i7a) : A1 X AQ
't ms®: A;

The stable function [z1 : A1, ..., 2z, : Ay F s : B] has trace:

{(al—i—...—i—an,ﬂ); :UCILI:Al,...,fo”:AnI—sB:B}

Linearity: algebraically

Definition
A stable function f : A — B is linear if it preserves coherent
unions:

aUd € Aimplies f (aUd") = f(a)U f(a)

and

f0) =0

Linearity: algebraically

Definition
A stable function f : A — B is linear if it preserves coherent
unions:

aUd € Aimplies f (aUd") = f(a)U f(a)

and

f0) =0

Consider U (resp. 0)) as a “qualitative” counterpart to + (resp. 0).

Linearity: computationally

Definition
A stable function f is linear iff all the elements of 7r(f) are of
the form ({a}, ().

~~ Show the equivalence with the previous definition.

Linearity: computationally

Definition
A stable function f is linear iff all the elements of 7r(f) are of

the form ({a}, ().

~~ Show the equivalence with the previous definition.

Computational linearity: f uses its argument exactly once.

Linearity: computationally

Definition
A stable function f is linear iff all the elements of 7r(f) are of
the form ({a}, ().

~~ Show the equivalence with the previous definition.

Computational linearity: f uses its argument exactly once.

Example

Consider the expanded identity
Ay (z)y: (A— B) - A— B: it is linear in x

~» Compute the trace.

Linearity: computationally

Definition
A stable function f is linear iff all the elements of 7r(f) are of
the form ({a}, ().

~~ Show the equivalence with the previous definition.

Computational linearity: f “uses its argument exactly once.”

Example

Consider the expanded identity
Ay (z)y: (A— B) - A— B: it is linear in = but not
necessarily in y (although y has exactly one occurrence).

~» Compute the trace.

Examples

The identity function is linear
No big deal.

Examples

The identity function is linear
No big deal.

Application is linear in the function

Fix some a € A. The (stable) operator f — f(a) from A — B
to B is linear.

Examples

The identity function is linear
No big deal.

Application is linear in the function

Fix some a € A. The (stable) operator f + f(a) from A — B
to B is linear.

“Applicators”
All terms of the form Ax s such that x occurs only as the head
variable of s, have a linear semantics.

~ Hasy from the rules.

Projections
The projections A; & As — A; are linear.

Linear trace

Definition
Let f be a linear function from A to B. The linear trace of f is:

Tr(f) ={(a, B); B € f({a})}

In other words:

Tri(f) = {(e, 8); {a},) € Tr(f)}-

Clearly, if f is linear, then f(a) = Tri(f) - a,
where - denotes the straightforward relation composition.

Examples

Tri(Axz) = {(a,a);a € |A|}.
= Ti(Az dy (z) yy) =7

Another key example: (graphs of) rigid embeddings are linear
traces.

linear implication, lollypop

Linear implication

Recall that. ..
Traces of stable functions A — B form a coherence space with
web Ag, x |B| and such that (a,8) ca-p (d,) iff:

» aUd € Aimplies B < B

» if moreover a # d/, then 8 ~p5 /3.

Linear implication

Recall that. ..
Traces of stable functions A — B form a coherence space with
web Ag, x |B| and such that (a,8) ca-p (d,) iff:

» aUd € Aimplies 8 cp 3/

» if moreover a # d/, then 8 ~p5 /3.

Linear functions actually form a coherence space by themselves:

Definition
Let A —o B be the coherence space with web |A| x |B], and such

that: (o, 8) cap (/,3) iff:
» o<y o implies 8 <p [

» if moreover a # da/, then 8 ~p /3.

Linear implication

Recall that. ..
Traces of stable functions A — B form a coherence space with
web Ag, x |B| and such that (a,8) ca-p (d,) iff:

» aUd € Aimplies 8 cp 3/

» if moreover a # d/, then 8 ~p5 /3.

Linear functions actually form a coherence space by themselves:

Definition
Let A —o B be the coherence space with web |A| x |B], and such

that: (o, 8) cap (/,3) iff:

» o<y o implies 8 <p [

>

Linear implication

Recall that. ..
Traces of stable functions A — B form a coherence space with
web Ag, x |B| and such that (a,8) ca-p (d,) iff:

» aUd € Aimplies 8 cp 3/

» if moreover a # d/, then 8 ~p5 /3.

Linear functions actually form a coherence space by themselves:

Definition
Let A —o B be the coherence space with web |A| x |B], and such

that: (o, 8) cap (/,3) iff:

» o<y o implies 8 <p [

>

Linear implication

Recall that. ..
Traces of stable functions A — B form a coherence space with
web Ag, x |B| and such that (a,8) ca-p (d,) iff:

» aUd € Aimplies 8 cp 3/

» if moreover a # d/, then 8 ~p5 /3.

Linear functions actually form a coherence space by themselves:

Definition
Let A —o B be the coherence space with web |A| x |B], and such

that: (o, 8) cap (/,3) iff:

» o<y o implies 8 <p [

>

“of course”, bang

Linearization of stable maps

The similarity between the conditions for —o:
» oy o implies 8 <p 3
» o ~4 o implies B ~5 .

and those for —:
» aUdad € A implies 8 < 3
» if moreover a # da’, then 8 ~p 3.

suggests the introduction of a space of finite cliques !A:

Definition
The space ! A has web Ag, and coherence:

aciyd <= aUd € A.

Linearization of stable maps

The similarity between the conditions for —o:
» oy o implies 8 <p 3
» o ~4 o implies B ~5 .

and those for —:
» aUdad € A implies 8 < 3
» if moreover a # da’, then 8 ~p 3.

suggests the introduction of a space of finite cliques !A:

Definition
The space ! A has web Ag, and coherence:

aciyd <= aUd € A.

Then A — B =14 — B, and stable functions from A — B
“are” linear functions from ! A4 to B.

~» Describe the bijection extensionally.

linear negation, dual, polar, orthogonal

Linear negation
The symmetry of conditions:
» o<y o implies B <
» 3 =g implies a <p o
suggests the introduction of linear negation:

Definition
The dual space of A, denoted A, has web |.A| and coherence:

acyd = axyd
Transposition

Clearly A = A and there is a linear involution from A —o B
to B+ — AL,

(we could even write A — B = A+ o— B1)

~ Find the (linear) trace of this involution. ..

Linear negation
The symmetry of conditions:
» o<y o implies B <
» 3 =g implies a <p o
suggests the introduction of linear negation:

Definition
The dual space of A, denoted A, has web |.A| and coherence:

/ /
o gL« — Xy«

Transposition
Clearly A = A and there is a linear involution from A —o B
to B+ — AL,

(we could even write A — B = A+ o— B1)

~ Find the (linear) trace of this involution. ..
(hint in the paragraph title)

Linear logic?

The story so far

» logic: A-calculus, system F|, ...

Linear logic?

The story so far

» logic: A-calculus, system F|, ...

» semantics: stable functions between coherence spaces

Linear logic?

The story so far

» logic: A-calculus, system F|, ...
» semantics: stable functions between coherence spaces

» decomposition of implication

Linear logic?

The story so far

» logic: A-calculus, system F|, ...
» semantics: stable functions between coherence spaces

» decomposition of implication

Is there a logical system behind that refinement, based on linear
implication?

Linear category of coherence spaces

Linear functions compose

More precisely, coherence spaces and linear functions between
them form a category Coh;.

Product
The direct product & is still a categorical product (pairing)

Linear category of coherence spaces

Linear functions compose

More precisely, coherence spaces and linear functions between
them form a category Coh;.

Product

The direct product & is still a categorical product (pairing)
but not properly related with —o:

A& B —o C is not the type of bilinear functions.

Linear category of coherence spaces

Linear functions compose

More precisely, coherence spaces and linear functions between
them form a category Coh;.

Product

The direct product & is still a categorical product (pairing)
but not properly related with —o:

A& B —o C is not the type of bilinear functions.

~ Do you see why?

tensor

Tensor product

Definition
The tensor product of A and B, denoted A ® B has web
|A| x |B|, and coherence:

(aaﬁ) CA®B (0/75/) — (Oé A O/ A /6 B B/)

Tensor product

Definition
The tensor product of A and B, denoted A ® B has web
|A| x |B|, and coherence:

(aaﬁ) CA®B (0/75/) — (Oé A O/ A /6 B B/)

Then A — (B —o () is isomorphic to (A ® B) — C.

~» Write down the isomorphism.

Tensor product

Definition
The tensor product of A and B, denoted A ® B has web
|A| x |B|, and coherence:

(aaﬁ) CA®B (0/75/) — (Oé A O/ A /6 B B/)

Then A — (B —o () is isomorphic to (A ® B) — C.
~» Write down the isomorphism.

This product is associative and symmetric (AQ@ B B® A),
and has a unit:

Definition
Let 1 be the only coherence space with web {(}.

par

par

Multiplicatives

By de Morgan, we obtain the connective % as dual to ®:
ABB=(AteBYH*t

and then
A—oB=A"7%B

~» Write down an explicit definition of coherence for 7§

Multiplicatives

By de Morgan, we obtain the connective % as dual to ®:
ABB=(AteBYH*t
and then
A—-B=A"%B

~» Write down an explicit definition of coherence for 7§

We thus have three connectives based on set theoretical
product, aka.

» linear implication: —o;
> the associated conjunction: ®;

» the associated disjunction: 7.

Multiplicatives

By de Morgan, we obtain the connective % as dual to ®:
ABB=(AteBYH*t

and then
A—oB=A"7%B

~» Write down an explicit definition of coherence for 7§

We thus have three connectives based on set theoretical
product, aka.

» linear implication: —o;
> the associated conjunction: ®;

» the associated disjunction: 7.

The unit of ®is 1 = 1-+.

A (minor) degeneracy in this case: L =1

Sequents

Linear negation is classical (because it is involutive).

Sequents

Linear negation is (because it is involutive).
The framework of choice is thus that of sequents: a proof of
Ay, A E BB,
denotes a linear map
Al®..0A, =B 7%...%8,
and negation swaps sides
(AF B) = (B F AL

so we can freely move things around.

Linear sequents

Recall that. ..
The product & is not adjoint to —o. Hence, in the process of
proving, we can’t:

» duplicate hypotheses (there is no diagonal for ®)
» discard hypotheses (the terminal object is not 1)

In other words, the structural rules of contraction and
weakening do not hold.

Multiplicative linear logic

identity (axiom) AF A
composition (cut) LE AF = AA E4

'HA AFB

tensor

I'N'AFA®B
unit F1
ar I'+AB
P IFA%B
bottom L

'e_1

direct product, with

Product
Recall that. ..
The direct product A; & Ay has web |A;] + | A2| and coherence:

(i,) Saed, (J,0) <= (i=j=acy d)

» It is the type of pairs:
a clique in A; & As can be uniquely written as a; + as.

» Its unit is T: the only space with empty web.

Product

Recall that. ..
The direct product A; & Ay has web |A;] + | A2| and coherence:

(i,) Saed, (J,0) <= (i=j=acy d)

» It is the type of pairs:
a clique in A; & As can be uniquely written as a; + as.

» Its unit is T: the only space with empty web.

A I'-B
'-A&B

pairing (with)

terminal object (top) TFT

direct sum, plus

Sums

The category Coh; also has coproducts (or sums), dual to &:

Definition
The direct sum A; & As has web |A;| + | A2| and coherence:

(i,0) Sarpa, (J,0) <= (i=jAhacy o)

The unit is 0 = T+.

Again: 0 =T

Sums

The category Coh; also has coproducts (or sums), dual to &:

Definition
The direct sum A; & As has web |A;| + | A2| and coherence:

(i,a) Saea, (J,0) <= (i=jAhacy o)
The unit is 0 = T+.

Again: 0 =T

I'-B r-A
'-Ae B I'-Ae B

injections (plus)

Sums

The category Coh; also has coproducts (or sums), dual to &:

Definition
The direct sum A; & As has web |A;| + | A2| and coherence:

(i,a) Saea, (J,0) <= (i=jAhacy o)
The unit is 0 = T+.

Again: 0 =T

I'-B r-A
'-Ae B I'-Ae B

injections (plus)

By contrast, there was no sum type in the stable semantics!

Additives

Together & and @ are the connectives of linear logic.
Moreover:

A (BaC) =2 (AB)® (AxC)
(and dually for % and &).

“of course” and “why not”: the exponentials

Exponentials

Recall that. ..
The space !A has web Ag, and coherence:

aciyd <= aUd € A.

Its de Morgan dual is denoted 74 = (14+)+.

Structural rules hold on exponentials
1A, AR A
AF A

kA
IAF A

contraction

weakening

Exponentials

Recall that. ..
The space !A has web Ag, and coherence:

aciyd <= aUd € A.

Its de Morgan dual is denoted 74 = (14+)+.

Structural rules hold on exponentials
a: 1A AR A
aUad AR A
_ A
0:1AFA

contraction

weakening

Introduction rules for exponentials: dereliction

Linearization of the (stable) identity Az x : A — A gives
{({a},a); ae A} eld—A

Hence the rule

_AFA
AR A

- A A

or equivalently TN

Introduction rules for exponentials: promotion

Exponentials are functors
If f: A—o B, define !If : 1A — !B by its trace

{({al, .. .,an},{ﬁl, - ,ﬁn}) S .Aﬁn X Bﬁn; Vi, (ai,ﬁi) S f}

So we could have a rule

r-A
1A

Introduction rules for exponentials: promotion

Exponentials are (co-)monads
We only miss the “multiplication” 4 — A4, given by

n

Uaja{ala---yan} €AﬁnX!Aﬁn

j=1
which would give a rule

NHAEFA
AFA

called digging.

Introduction rules for exponentials: promotion

The previous two are subsumed by the promotion rule:

THA
'+1A

Introduction rules for exponentials: promotion

The previous two are subsumed by the promotion rule:

(10, F o A>v]}‘:1
UL]/‘.':l!Fj F{oag,...,op}: 1A

Cut elimination

» Next talk!

» Reflects properties of the things we used (properties of
functors, products, sums, ...).

» Makes the system logically relevant.

Cut elimination

v

Next talk!

Reflects properties of the things we used (properties of
functors, products, sums, ...).

v

v

Makes the system logically relevant.

v

Refines p-reduction. . .

Lambda-calculus in LL

Principle
The decomposition A —+ B = 1A — B leads to translate a typed
term I' s : A as a proof of IT" - A.

Variable

becomes

Lambda-calculus in LL

Abstraction

Iz":A+s’: B

'FXxs@? :A— B

becomes

T,a:'A+/5:B (
Tk 7)) :1A—B

—)

Lambda-calculus in LL

Application

]__‘0 '_ S({(\,l,...,(\]\»}.ﬁ)) :A _) B (F] |_ t(‘-j A)le
U_/;"’:()FJ = (s) t': B

becomes

o+ ({aq. ..., apy.f):1A— B

('F/ l_ ”’,/ . A)];:]
U;'f:l!F\/ F{a,..., ap} 1A
Ul (o a3t lA— BF 3: B

T,) T, F5:B

k j
U,i—t)F./ Fio:B

(prom) __
T Br B @

(—o1)

(cut)

(cont)*

Digression 1: Orthogonality

Coherence spaces: a third definition

» If a,a’ C A, write a L o’ iff aNa’ is at most a singleton.
» If A C P(A), write A ={d’ C A; Va€ A, a Ld'}.
» Coherence spaces of web A are those A such that A = A++.

Then a relation f C | A| x |B| is a linear trace iff

Vaec A, Wb e BY, f-alb Aal fr- V0

Such orthogonality constructions are very common in the design
of LL. models.

Digression 2: Quantitative semantics

Why do we use such linear algebraic vocabulary, notations and
concepts? Historically:
coh. spaces <= qualitative domains < quantitative semantics

Digression 2: Quantitative semantics

Why do we use such linear algebraic vocabulary, notations and
concepts? Historically:

coh. spaces <= qualitative domains <= quantitative semantics
Rough intuition

Interpret terms as a linear combinations: s =) .. sq
so that application is given by a power series:

(D= D S@apt”

(a,B)€s

where ot — ¢ g,

Digression 2: Quantitative semantics

Why do we use such linear algebraic vocabulary, notations and
concepts? Historically:

coh. spaces <= qualitative domains <= quantitative semantics
Rough intuition

Interpret terms as a linear combinations: s =) .. sq
so that application is given by a power series:

(D= D S@apt”

(a,8)€s
where tlovokl — ¢ g

Taken litterally, it is only meaningful if we can ensure a form of
convergence.

The end

Thanks.

The end

Thanks.
Questions?

The end

Thanks.
Questions?

Next talk, Emmanuel Beffara:

sequent calculus, polarities, focalization, phase semantics

