Lecture 3: From linearity in coherence spaces to Linear Logic

Lionel Vaux

Institut de Mathématiques de Luminy, Université d'Aix-Marseille, France

School on Proof Theory Paraty 2012

A computational point of view on coherence semantics An alternative presentation:

$$\begin{array}{c} \overline{\Delta^{\emptyset}, x^{\{\alpha\}} : A \vdash x^{\alpha} : A} & \overline{\Gamma, x^{a} : A \vdash s^{\beta} : B} \\ \hline \Gamma \vdash \lambda x \, s^{(\alpha,\beta)} : A \to B & \overline{\Gamma} \vdash \lambda x \, s^{(\alpha,\beta)} : A \to B \\ \hline \underline{\Gamma_{0} \vdash s^{(\{\alpha_{1}, \dots, \alpha_{k}\}, \beta)} : A \to B} & \Gamma_{1} \vdash t^{\alpha_{1}} : A & \cdots & \Gamma_{k} \vdash t^{\alpha_{k}} : A & (*) \\ \hline \bigcup_{j=0}^{k} \Gamma_{j} \vdash (s) \, t^{\beta} : B & \\ \hline \underline{\Gamma \vdash s_{1}^{\alpha} : A_{1} \quad \Gamma \vdash s_{2} : A_{2}} & \underline{\Gamma \vdash s_{1} : A_{1} \quad \Gamma \vdash s_{2}^{\alpha} : A_{2}} \\ \hline \Gamma \vdash \langle s_{1}, s_{2} \rangle^{(1,\alpha)} : A_{1} \times A_{2} & \overline{\Gamma \vdash \langle s_{1}, s_{2} \rangle^{(2,\alpha)} : A_{1} \times A_{2}} \\ \hline \underline{\Gamma \vdash s_{i}^{(i,\alpha)} : A_{1} \times A_{2}} & \\ \hline \end{array}$$

A computational point of view on coherence semantics An alternative presentation:

 $\overline{\mathbf{a}}$

(*) Coherence: $\{\alpha_1, \ldots, \alpha_k\}$ and the labels of $\bigcup_{j=0}^k \Gamma_j$ must be cliques. The stable function $[\![x_1 : A_1, \ldots, x_n : A_n \vdash s : B]\!]$ has trace:

$$\left\{ (a_1 + \ldots + a_n, \beta); \ x_1^{a_1} : A_1, \ldots, x_n^{a_n} : A_n \vdash s^\beta : B \right\}$$

Linearity: algebraically

Definition

A stable function $f : \mathcal{A} \to \mathcal{B}$ is linear if it preserves coherent unions:

$$a \cup a' \in \mathcal{A}$$
 implies $f(a \cup a') = f(a) \cup f(a')$

and

$$f(\emptyset) = \emptyset$$

Linearity: algebraically

Definition

A stable function $f : \mathcal{A} \to \mathcal{B}$ is linear if it preserves coherent unions:

$$a \cup a' \in \mathcal{A}$$
 implies $f(a \cup a') = f(a) \cup f(a')$

and

$$f(\emptyset) = \emptyset$$

Consider \cup (resp. \emptyset) as a "qualitative" counterpart to + (resp. 0).

Definition

A stable function f is linear iff all the elements of $\mathcal{T}r(f)$ are of the form $(\{\alpha\}, \beta)$.

 \rightsquigarrow Show the equivalence with the previous definition.

Definition

A stable function f is linear iff all the elements of $\mathcal{T}r(f)$ are of the form $(\{\alpha\}, \beta)$.

 \rightsquigarrow Show the equivalence with the previous definition.

Computational linearity: f uses its argument exactly once.

Definition

A stable function f is linear iff all the elements of $\mathcal{T}r(f)$ are of the form $(\{\alpha\}, \beta)$.

 \rightsquigarrow Show the equivalence with the previous definition.

Computational linearity: f uses its argument exactly once.

Example

Consider the expanded identity $\lambda x \lambda y (x) y : (A \to B) \to A \to B$: it is linear in x

 \rightsquigarrow Compute the trace.

Definition

A stable function f is linear iff all the elements of $\mathcal{T}r(f)$ are of the form $(\{\alpha\}, \beta)$.

 \leadsto Show the equivalence with the previous definition.

Computational linearity: f "uses its argument exactly once."

Example

Consider the expanded identity $\lambda x \lambda y(x) y: (A \to B) \to A \to B$: it is linear in x but not necessarily in y (although y has exactly one occurrence).

 \rightsquigarrow Compute the trace.

Examples

The identity function is linear No big deal.

Examples

The identity function is linear No big deal.

Application is linear in the function

Fix some $a \in \mathcal{A}$. The (stable) operator $f \mapsto f(a)$ from $\mathcal{A} \to \mathcal{B}$ to \mathcal{B} is linear.

Examples

The identity function is linear No big deal.

Application is linear in the function

Fix some $a \in \mathcal{A}$. The (stable) operator $f \mapsto f(a)$ from $\mathcal{A} \to \mathcal{B}$ to \mathcal{B} is linear.

"Applicators"

All terms of the form $\lambda x s$ such that x occurs only as the head variable of s, have a linear semantics.

 \rightsquigarrow Easy from the rules.

Projections The projections $\mathcal{A}_1 \& \mathcal{A}_2 \to \mathcal{A}_i$ are linear.

Linear trace

Definition

Let f be a linear function from \mathcal{A} to \mathcal{B} . The linear trace of f is:

$$\mathcal{T}r_{l}(f) = \{(\alpha, \beta); \beta \in f(\{\alpha\})\}$$

In other words:

$$\mathcal{T}r_l(f) = \{(\alpha, \beta); (\{\alpha\}, \beta) \in \mathcal{T}r(f)\}.$$

Clearly, if f is linear, then $f(a) = \mathcal{T}r_l(f) \cdot a$, where \cdot denotes the straightforward relation composition.

Examples

$$\mathcal{T}r_l(\lambda x x) = \{(\alpha, \alpha); \alpha \in |\mathcal{A}|\}.$$

 $\rightsquigarrow \mathcal{T}r_l(\lambda x\,\lambda y\,(x)\,y\,y) = ?$

Another key example: (graphs of) rigid embeddings are linear traces.

linear implication, lollypop

Recall that...

Traces of stable functions $\mathcal{A} \to \mathcal{B}$ form a coherence space with web $\mathcal{A}_{\text{fin}} \times |\mathcal{B}|$ and such that $(a, \beta) \simeq_{\mathcal{A} \to \mathcal{B}} (a', \beta')$ iff:

- $a \cup a' \in \mathcal{A}$ implies $\beta \supset_{\mathcal{B}} \beta'$
- if moreover $a \neq a'$, then $\beta \sim_{\mathcal{B}} \beta'$.

Recall that...

Traces of stable functions $\mathcal{A} \to \mathcal{B}$ form a coherence space with web $\mathcal{A}_{\text{fin}} \times |\mathcal{B}|$ and such that $(a, \beta) \simeq_{\mathcal{A} \to \mathcal{B}} (a', \beta')$ iff:

- $a \cup a' \in \mathcal{A}$ implies $\beta \supset_{\mathcal{B}} \beta'$
- if moreover $a \neq a'$, then $\beta \sim_{\mathcal{B}} \beta'$.

Linear functions actually form a coherence space by themselves:

Definition

- $\alpha \subset_{\mathcal{A}} \alpha'$ implies $\beta \subset_{\mathcal{B}} \beta'$
- if moreover $a \neq a'$, then $\beta \sim_{\mathcal{B}} \beta'$.

Recall that...

Traces of stable functions $\mathcal{A} \to \mathcal{B}$ form a coherence space with web $\mathcal{A}_{\text{fin}} \times |\mathcal{B}|$ and such that $(a, \beta) \simeq_{\mathcal{A} \to \mathcal{B}} (a', \beta')$ iff:

- $a \cup a' \in \mathcal{A}$ implies $\beta \supset_{\mathcal{B}} \beta'$
- if moreover $a \neq a'$, then $\beta \sim_{\mathcal{B}} \beta'$.

Linear functions actually form a coherence space by themselves:

Definition

- $\alpha \subset_{\mathcal{A}} \alpha'$ implies $\beta \subset_{\mathcal{B}} \beta'$
- if moreover $a \neq a'$, then $\beta \sim_{\mathcal{B}} \beta'$.

Recall that...

Traces of stable functions $\mathcal{A} \to \mathcal{B}$ form a coherence space with web $\mathcal{A}_{\text{fin}} \times |\mathcal{B}|$ and such that $(a, \beta) \simeq_{\mathcal{A} \to \mathcal{B}} (a', \beta')$ iff:

- $a \cup a' \in \mathcal{A}$ implies $\beta \supset_{\mathcal{B}} \beta'$
- if moreover $a \neq a'$, then $\beta \sim_{\mathcal{B}} \beta'$.

Linear functions actually form a coherence space by themselves:

Definition

- $\alpha \subset_{\mathcal{A}} \alpha'$ implies $\beta \subset_{\mathcal{B}} \beta'$
- $\alpha \sim_{\mathcal{A}} \alpha'$ implies $\beta \sim_{\mathcal{B}} \beta'$.

Recall that...

Traces of stable functions $\mathcal{A} \to \mathcal{B}$ form a coherence space with web $\mathcal{A}_{\text{fin}} \times |\mathcal{B}|$ and such that $(a, \beta) \simeq_{\mathcal{A} \to \mathcal{B}} (a', \beta')$ iff:

- $a \cup a' \in \mathcal{A}$ implies $\beta \supset_{\mathcal{B}} \beta'$
- if moreover $a \neq a'$, then $\beta \sim_{\mathcal{B}} \beta'$.

Linear functions actually form a coherence space by themselves:

Definition

- $\alpha \subset_{\mathcal{A}} \alpha'$ implies $\beta \subset_{\mathcal{B}} \beta'$
- $\beta \asymp_{\mathcal{B}} \beta'$ implies $\alpha \asymp_{\mathcal{B}} \alpha'$.

"of course", bang

Linearization of stable maps

The similarity between the conditions for $-\infty$:

- $\alpha \subset_{\mathcal{A}} \alpha'$ implies $\beta \subset_{\mathcal{B}} \beta'$
- $\blacktriangleright \ \alpha \frown_{\mathcal{A}} \alpha' \text{ implies } \beta \frown_{\mathcal{B}} \beta'.$

and those for \rightarrow :

- $a \cup a' \in \mathcal{A}$ implies $\beta \subset_{\mathcal{B}} \beta'$
- if moreover $a \neq a'$, then $\beta \sim_{\mathcal{B}} \beta'$.

suggests the introduction of a space of finite cliques $!\mathcal{A}$:

Definition

The space $!\mathcal{A}$ has web \mathcal{A}_{fin} and coherence:

$$a \simeq_{!\mathcal{A}} a' \iff a \cup a' \in \mathcal{A}.$$

Linearization of stable maps

The similarity between the conditions for $-\infty$:

- $\blacktriangleright \ \alpha \bigcirc_{\mathcal{A}} \alpha' \text{ implies } \beta \bigcirc_{\mathcal{B}} \beta'$
- $\alpha \sim_{\mathcal{A}} \alpha'$ implies $\beta \sim_{\mathcal{B}} \beta'$.

and those for \rightarrow :

- $a \cup a' \in \mathcal{A}$ implies $\beta \subset_{\mathcal{B}} \beta'$
- if moreover $a \neq a'$, then $\beta \sim_{\mathcal{B}} \beta'$.

suggests the introduction of a space of finite cliques $!\mathcal{A}$:

Definition

The space $!\mathcal{A}$ has web \mathcal{A}_{fin} and coherence:

$$a \simeq_{!\mathcal{A}} a' \iff a \cup a' \in \mathcal{A}.$$

Then $\mathcal{A} \to \mathcal{B} = !\mathcal{A} \multimap \mathcal{B}$, and stable functions from $\mathcal{A} \to \mathcal{B}$ "are" linear functions from $!\mathcal{A}$ to \mathcal{B} .

 \rightsquigarrow Describe the bijection extensionally.

linear negation, dual, polar, orthogonal

Linear negation

The symmetry of conditions:

- $\alpha \subset_{\mathcal{A}} \alpha'$ implies $\beta \subset_{\mathcal{B}} \beta'$
- $\blacktriangleright \ \beta \asymp_{\mathcal{B}} \beta' \text{ implies } \alpha \asymp_{\mathcal{B}} \alpha'$

suggests the introduction of linear negation:

Definition

The dual space of \mathcal{A} , denoted \mathcal{A}^{\perp} , has web $|\mathcal{A}|$ and coherence:

$$\alpha \circ_{\mathcal{A}^{\perp}} \alpha' \iff \alpha \asymp_{\mathcal{A}} \alpha'$$

Transposition

Clearly $\mathcal{A}^{\perp\perp} = \mathcal{A}$ and there is a linear involution from $\mathcal{A} \multimap \mathcal{B}$ to $\mathcal{B}^{\perp} \multimap \mathcal{A}^{\perp}$.

(we could even write $\mathcal{A} \multimap \mathcal{B} = \mathcal{A}^{\perp} \multimap \mathcal{B}^{\perp}$)

 \rightsquigarrow Find the (linear) trace of this involution...

Linear negation

The symmetry of conditions:

- $\alpha \subset_{\mathcal{A}} \alpha'$ implies $\beta \subset_{\mathcal{B}} \beta'$
- $\blacktriangleright \ \beta \asymp_{\mathcal{B}} \beta' \text{ implies } \alpha \asymp_{\mathcal{B}} \alpha'$

suggests the introduction of linear negation:

Definition

The dual space of \mathcal{A} , denoted \mathcal{A}^{\perp} , has web $|\mathcal{A}|$ and coherence:

$$\alpha \circ_{\mathcal{A}^{\perp}} \alpha' \iff \alpha \asymp_{\mathcal{A}} \alpha'$$

Transposition

Clearly $\mathcal{A}^{\perp\perp} = \mathcal{A}$ and there is a linear involution from $\mathcal{A} \multimap \mathcal{B}$ to $\mathcal{B}^{\perp} \multimap \mathcal{A}^{\perp}$.

(we could even write $\mathcal{A} \multimap \mathcal{B} = \mathcal{A}^{\perp} \leadsto \mathcal{B}^{\perp}$)

 \rightsquigarrow Find the (linear) trace of this involution... (hint in the paragraph title)

The story so far

▶ logic: λ -calculus, system F, \ldots

The story so far

- ▶ logic: λ -calculus, system F, \ldots
- ▶ semantics: stable functions between coherence spaces

The story so far

- ▶ logic: λ -calculus, system F, \ldots
- ▶ semantics: stable functions between coherence spaces
- decomposition of implication semantically

The story so far

- ▶ logic: λ -calculus, system F, \ldots
- ▶ semantics: stable functions between coherence spaces
- ▶ decomposition of implication semantically

Is there a logical system behind that refinement, based on linear implication?

Linear category of coherence spaces

Linear functions compose

More precisely, coherence spaces and linear functions between them form a category \mathbf{Coh}_l .

Product

The direct product & is still a categorical product (pairing)

Linear category of coherence spaces

Linear functions compose

More precisely, coherence spaces and linear functions between them form a category \mathbf{Coh}_l .

Product

The direct product & is still a categorical product (pairing) but not properly related with $-\infty$: $\mathcal{A} \& \mathcal{B} \multimap \mathcal{C}$ is not the type of bilinear functions. Linear category of coherence spaces

Linear functions compose

More precisely, coherence spaces and linear functions between them form a category \mathbf{Coh}_l .

Product

The direct product & is still a categorical product (pairing) but not properly related with $-\infty$: $\mathcal{A} \& \mathcal{B} \multimap \mathcal{C}$ is not the type of bilinear functions.

 \rightsquigarrow Do you see why?

tensor

Tensor product

Definition

The tensor product of \mathcal{A} and \mathcal{B} , denoted $\mathcal{A} \otimes \mathcal{B}$ has web $|\mathcal{A}| \times |\mathcal{B}|$, and coherence:

$$(\alpha,\beta) \circ_{\mathcal{A}\otimes\mathcal{B}} (\alpha',\beta') \iff (\alpha \circ_{\mathcal{A}} \alpha' \land \beta \circ_{\mathcal{B}} \beta')$$

Tensor product

Definition

The tensor product of \mathcal{A} and \mathcal{B} , denoted $\mathcal{A} \otimes \mathcal{B}$ has web $|\mathcal{A}| \times |\mathcal{B}|$, and coherence:

$$(\alpha,\beta) \circ_{\mathcal{A}\otimes\mathcal{B}} (\alpha',\beta') \iff (\alpha \circ_{\mathcal{A}} \alpha' \land \beta \circ_{\mathcal{B}} \beta')$$

Then $\mathcal{A} \multimap (\mathcal{B} \multimap \mathcal{C})$ is isomorphic to $(\mathcal{A} \otimes \mathcal{B}) \multimap \mathcal{C}$.

 \rightsquigarrow Write down the isomorphism.

Tensor product

Definition

The tensor product of \mathcal{A} and \mathcal{B} , denoted $\mathcal{A} \otimes \mathcal{B}$ has web $|\mathcal{A}| \times |\mathcal{B}|$, and coherence:

$$(\alpha,\beta) \supset_{\mathcal{A}\otimes\mathcal{B}} (\alpha',\beta') \iff (\alpha \supset_{\mathcal{A}} \alpha' \land \beta \supset_{\mathcal{B}} \beta')$$

Then $\mathcal{A} \multimap (\mathcal{B} \multimap \mathcal{C})$ is isomorphic to $(\mathcal{A} \otimes \mathcal{B}) \multimap \mathcal{C}$.

 \rightsquigarrow Write down the isomorphism.

This product is associative and symmetric $(\mathcal{A} \otimes \mathcal{B} \cong \mathcal{B} \otimes \mathcal{A})$, and has a unit:

Definition

Let **1** be the only coherence space with web $\{\emptyset\}$.

par

par

Multiplicatives

By de Morgan, we obtain the connective \mathfrak{P} as dual to \otimes :

$${\mathcal A}$$
 ?? ${\mathcal B}=({\mathcal A}^\perp\otimes {\mathcal B}^\perp)^\perp$

and then

$$\mathcal{A} \multimap \mathcal{B} = \mathcal{A}^{\perp} \ \mathfrak{P} \mathcal{B}$$

 \rightsquigarrow Write down an explicit definition of coherence for $\ref{eq:coherence}$

Multiplicatives

By de Morgan, we obtain the connective $\boldsymbol{\Im}$ as dual to \otimes :

$${\mathcal A}$$
 ?? ${\mathcal B}=({\mathcal A}^\perp\otimes {\mathcal B}^\perp)^\perp$

and then

$$\mathcal{A} \multimap \mathcal{B} = \mathcal{A}^{\perp} \ \mathfrak{P} \mathcal{B}$$

 \rightsquigarrow Write down an explicit definition of coherence for $\boldsymbol{\eth}$

We thus have three connectives based on set theoretical product, aka. multiplicatives:

- ▶ linear implication: $-\circ$;
- the associated conjunction: \otimes ;
- ▶ the associated disjunction: 𝔅.

Multiplicatives

By de Morgan, we obtain the connective \Im as dual to \otimes :

$${\mathcal A}$$
 ?? ${\mathcal B}=({\mathcal A}^\perp\otimes {\mathcal B}^\perp)^\perp$

and then

$$\mathcal{A} \multimap \mathcal{B} = \mathcal{A}^{\perp} \ \mathfrak{P} \mathcal{B}$$

 \rightsquigarrow Write down an explicit definition of coherence for $\boldsymbol{\aleph}$

We thus have three connectives based on set theoretical product, aka. multiplicatives:

- ▶ linear implication: $-\circ$;
- the associated conjunction: \otimes ;
- ▶ the associated disjunction: **%**.

The unit of \mathfrak{P} is $\bot = \mathbf{1}^{\bot}$.

Sequents

Linear negation is classical (because it is involutive).

Sequents

Linear negation is classical (because it is involutive).

The framework of choice is thus that of sequents: a proof of

$$\mathcal{A}_1,\ldots,\mathcal{A}_n\vdash\mathcal{B}_1,\ldots,\mathcal{B}_p$$

denotes a linear map

$$\mathcal{A}_1 \otimes \ldots \otimes \mathcal{A}_n \multimap \mathcal{B}_1 \ \mathfrak{F} \ldots \mathfrak{F} \mathcal{B}_p$$

and negation swaps sides

$$(\mathcal{A} \vdash \mathcal{B}) \cong (\mathcal{B}^{\perp} \vdash \mathcal{A}^{\perp})$$

so we can freely move things around.

Recall that...

The product & is not adjoint to $-\infty$. Hence, in the process of proving, we can't:

- duplicate hypotheses (there is no diagonal for \otimes)
- ▶ discard hypotheses (the terminal object is not 1)

In other words, the structural rules of contraction and weakening do not hold.

Multiplicative linear logic

identity (axiom)
$$\overline{A \vdash A}$$

composition (cut) $\frac{\Gamma \vdash A \quad A \vdash \Delta}{\Gamma \vdash \Delta}$

tensor
$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B}$$

unit
$$\overline{\vdash \mathbf{1}}$$

par
$$\frac{\Gamma \vdash A, B}{\Gamma \vdash A \,\mathfrak{P} B}$$

bottom
$$\frac{\Gamma \vdash}{\Gamma \vdash \bot}$$

direct product, with

Product

Recall that...

The direct product $\mathcal{A}_1 \& \mathcal{A}_2$ has web $|\mathcal{A}_1| + |\mathcal{A}_2|$ and coherence:

$$(i, \alpha) \circ_{\mathcal{A}_1 \& \mathcal{A}_2} (j, \alpha') \iff (i = j \Rightarrow \alpha \circ_{\mathcal{A}_i} \alpha')$$

- It is the type of pairs: a clique in \mathcal{A}_1 & \mathcal{A}_2 can be uniquely written as $a_1 + a_2$.
- ▶ Its unit is \top : the only space with empty web.

Product

Recall that...

The direct product $\mathcal{A}_1 \& \mathcal{A}_2$ has web $|\mathcal{A}_1| + |\mathcal{A}_2|$ and coherence:

$$(i, \alpha) \circ_{\mathcal{A}_1 \& \mathcal{A}_2} (j, \alpha') \iff (i = j \Rightarrow \alpha \circ_{\mathcal{A}_i} \alpha')$$

- It is the type of pairs: a clique in \mathcal{A}_1 & \mathcal{A}_2 can be uniquely written as $a_1 + a_2$.
- ▶ Its unit is \top : the only space with empty web.

pairing (with)
$$\frac{\Gamma \vdash A}{\Gamma \vdash A \& B}$$

terminal object (top) $\Gamma \vdash \top$

direct sum, plus

Sums

The category \mathbf{Coh}_l also has coproducts (or sums), dual to &: Definition

The direct sum $\mathcal{A}_1 \oplus \mathcal{A}_2$ has web $|\mathcal{A}_1| + |\mathcal{A}_2|$ and coherence:

$$(i, \alpha) \circ_{\mathcal{A}_1 \oplus \mathcal{A}_2} (j, \alpha') \iff (i = j \land \alpha \circ_{\mathcal{A}_i} \alpha')$$

The unit is $\mathbf{0} = \top^{\perp}$.

Again: $\mathbf{0} = \top$

Sums

The category \mathbf{Coh}_l also has coproducts (or sums), dual to &: Definition

The direct sum $\mathcal{A}_1 \oplus \mathcal{A}_2$ has web $|\mathcal{A}_1| + |\mathcal{A}_2|$ and coherence:

$$(i, \alpha) \circ_{\mathcal{A}_1 \oplus \mathcal{A}_2} (j, \alpha') \iff (i = j \land \alpha \circ_{\mathcal{A}_i} \alpha')$$

The unit is $\mathbf{0} = \top^{\perp}$.

Again: $\mathbf{0} = \top$

injections (plus)
$$\frac{\Gamma \vdash B}{\Gamma \vdash A \oplus B} = \frac{\Gamma \vdash A}{\Gamma \vdash A \oplus B}$$

Sums

The category \mathbf{Coh}_l also has coproducts (or sums), dual to &: Definition

The direct sum $\mathcal{A}_1 \oplus \mathcal{A}_2$ has web $|\mathcal{A}_1| + |\mathcal{A}_2|$ and coherence:

$$(i, \alpha) \circ_{\mathcal{A}_1 \oplus \mathcal{A}_2} (j, \alpha') \iff (i = j \land \alpha \circ_{\mathcal{A}_i} \alpha')$$

The unit is $\mathbf{0} = \top^{\perp}$.

Again: $\mathbf{0} = \top$

injections (plus)
$$\frac{\Gamma \vdash B}{\Gamma \vdash A \oplus B} = \frac{\Gamma \vdash A}{\Gamma \vdash A \oplus B}$$

By contrast, there was no sum type in the stable semantics!

Together & and \oplus are the additive connectives of linear logic. Moreover:

$$\mathcal{A} \otimes (\mathcal{B} \oplus \mathcal{C}) \cong (\mathcal{A} \otimes \mathcal{B}) \oplus (\mathcal{A} \otimes \mathcal{C})$$

(and dually for \mathfrak{P} and &).

"of course" and "why not": the exponentials

Exponentials

Recall that... The space $!\mathcal{A}$ has web \mathcal{A}_{fin} and coherence:

$$a \circ_{!\mathcal{A}} a' \iff a \cup a' \in \mathcal{A}.$$

Its de Morgan dual is denoted $A = (A^{\perp})^{\perp}$.

Structural rules hold on exponentials

contraction
$$\frac{!A, \quad !A \vdash \Delta}{!A \vdash \Delta}$$
weakening
$$\frac{\vdash \Delta}{!A \vdash \Delta}$$

Exponentials

Recall that... The space $!\mathcal{A}$ has web \mathcal{A}_{fin} and coherence:

$$a \simeq_{!\mathcal{A}} a' \iff a \cup a' \in \mathcal{A}.$$

Its de Morgan dual is denoted $?A = (!A^{\perp})^{\perp}$.

Structural rules hold on exponentials

contraction
$$\frac{a: !A, a': !A \vdash \Delta}{a \cup a': !A \vdash \Delta}$$
weakening
$$\frac{\vdash \Delta}{\emptyset: !A \vdash \Delta}$$

Introduction rules for exponentials: dereliction

Linearization of the (stable) identity $\lambda x \, x : \mathcal{A} \to \mathcal{A}$ gives $\{(\{\alpha\}, \alpha); \ \alpha \in |\mathcal{A}|\} \in !\mathcal{A} \multimap \mathcal{A}$

Hence the rule

$$\frac{A \vdash \Delta}{!A \vdash \Delta} \quad \text{or equivalently} \quad \frac{\vdash A, \Delta}{\vdash ?A, \Delta}$$

Exponentials are functors If $f : \mathcal{A} \multimap \mathcal{B}$, define $!f : !\mathcal{A} \multimap !\mathcal{B}$ by its trace $\{(\{\alpha_1, \ldots, \alpha_n\}, \{\beta_1, \ldots, \beta_n\}) \in \mathcal{A}_{\text{fin}} \times \mathcal{B}_{\text{fin}}; \forall i, (\alpha_i, \beta_i) \in f\}$ So we could have a rule

$$\frac{\Gamma \vdash A}{!\Gamma \vdash !A}$$

Exponentials are (co-)monads

We only miss the "multiplication" $\mathcal{A} \to \mathcal{A}$, given by

$$\left\{ \left(\bigcup_{j=1}^{n} a_j, \{a_1, \dots, a_n\}\right) \in \mathcal{A}_{\text{fin}} \times !\mathcal{A}_{\text{fin}} \right\}$$

which would give a rule

$$\frac{!!A \vdash \Delta}{!A \vdash \Delta}$$

called digging.

The previous two are subsumed by the promotion rule:

 $\frac{!\Gamma \vdash A}{!\Gamma \vdash !A}$

The previous two are subsumed by the promotion rule:

$$\frac{(!\Gamma_j \vdash \alpha_j : A)_{j=1}^k}{\bigcup_{j=1}^k !\Gamma_j \vdash \{\alpha_1, \dots, \alpha_k\} : !A}$$

Cut elimination

- ► Next talk!
- Reflects properties of the things we used (properties of functors, products, sums, ...).
- ▶ Makes the system logically relevant.

Cut elimination

- ► Next talk!
- Reflects properties of the things we used (properties of functors, products, sums, ...).
- ▶ Makes the system logically relevant.
- ▶ Refines β -reduction...

Lambda-calculus in LL

Principle

The decomposition $A \to B = !A \multimap B$ leads to translate a typed term $\Gamma \vdash s : A$ as a proof of $!\Gamma \vdash A$.

Variable

$$\Delta^{\emptyset}, x^{\{\alpha\}} : A \vdash x^{\alpha} : A$$

becomes

$$\frac{\overline{\alpha: A \vdash \alpha: A}}{\{\alpha\}: !A \vdash \alpha: A} (\text{der})$$
$$\emptyset: !\Delta, \{\alpha\}: !A \vdash \alpha: A} (\text{weak})^*$$

Lambda-calculus in LL

Abstraction

$$\frac{\Gamma, x^{a} : A \vdash s^{\beta} : B}{\Gamma \vdash \lambda x \, s^{(a,\beta)} : A \to B}$$

becomes

$$\frac{!\Gamma, a: !A \vdash \beta: B}{!\Gamma \vdash (a, \beta): !A \multimap B} (\multimap)$$

Lambda-calculus in LL Application

$$\frac{\Gamma_0 \vdash s^{(\{\alpha_1, \dots, \alpha_k\}, \beta)} : A \to B \qquad (\Gamma_j \vdash t^{\alpha_j} : A)_{j=1}^k}{\bigcup_{j=0}^k \Gamma_j \vdash (s) t^\beta : B}$$

becomes

$$\begin{split} & !\Gamma_{0} \vdash \left(\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}, \beta\right) : !A \multimap B \\ & \vdots \\ & \underbrace{ \begin{array}{c} (!\Gamma_{j} \vdash \alpha_{j} : A)_{j=1}^{k} \\ \hline \bigcup_{j=1}^{k} !\Gamma_{j} \vdash \left\{\alpha_{1}, \ldots, \alpha_{k}\right\} : !A \end{array} (\text{prom}) \\ & \underbrace{ \begin{array}{c} \hline \bigcup_{j=1}^{k} !\Gamma_{j} \vdash \left\{\alpha_{1}, \ldots, \alpha_{k}\right\} : !A \end{array} (\text{prom}) \\ \hline & \underbrace{ \begin{array}{c} \hline \bigcup_{j=1}^{k} !\Gamma_{j}, \left(\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}, \beta\right) : !A \multimap B \vdash \beta : B \end{array} (\text{cut}) \\ \hline & \underbrace{ \begin{array}{c} \hline \bigcup_{j=1}^{k} !\Gamma_{j} \vdash \beta : B \end{array} (\text{cut})^{*} \\ \hline & \underbrace{ \begin{array}{c} \hline \bigcup_{j=0}^{k} \Gamma_{j} \vdash \beta : B \end{array} (\text{cont})^{*} \\ \hline & \underbrace{ \begin{array}{c} \hline \bigcup_{j=0}^{k} \Gamma_{j} \vdash \beta : B \end{array} (\text{cont})^{*} \end{array} } \end{split}$$

Digression 1: Orthogonality

Coherence spaces: a third definition

- If $a, a' \subseteq A$, write $a \perp a'$ iff $a \cap a'$ is at most a singleton.
- If $\mathcal{A} \subseteq \mathcal{P}(A)$, write $\mathcal{A}^{\perp} = \{a' \subset A; \forall a \in \mathcal{A}, a \perp a'\}.$
- Coherence spaces of web A are those \mathcal{A} such that $\mathcal{A} = \mathcal{A}^{\perp \perp}$.

Then a relation $f \subseteq |\mathcal{A}| \times |\mathcal{B}|$ is a linear trace iff

$$\forall a \in \mathcal{A}, \ \forall b' \in \mathcal{B}^{\perp}, \ f \cdot a \perp b' \wedge a \perp f^{\perp} \cdot b'$$

Such orthogonality constructions are very common in the design of LL models.

Digression 2: Quantitative semantics

Why do we use such linear algebraic vocabulary, notations and concepts? Historically:

coh. spaces \Leftarrow qualitative domains \Leftarrow quantitative semantics

Digression 2: Quantitative semantics

Why do we use such linear algebraic vocabulary, notations and concepts? Historically:

coh. spaces \Leftarrow qualitative domains \Leftarrow quantitative semantics

Rough intuition

Interpret terms as a linear combinations: $s = \sum_{\alpha \in s} s_{\alpha} \alpha$ so that application is given by a power series:

$$((s) t)_{\beta} = \sum_{(a,\beta) \in s} s_{(a,\beta)} t^{a}$$

where $t^{[\alpha_1,\ldots,\alpha_k]} = t_{\alpha_1}\cdots t_{\alpha_k}$.

Digression 2: Quantitative semantics

Why do we use such linear algebraic vocabulary, notations and concepts? Historically:

coh. spaces \Leftarrow qualitative domains \Leftarrow quantitative semantics

Rough intuition

Interpret terms as a linear combinations: $s = \sum_{\alpha \in s} s_{\alpha} \alpha$ so that application is given by a power series:

$$((s) t)_{\beta} = \sum_{(a,\beta) \in s} s_{(a,\beta)} t^{a}$$

where $t^{[\alpha_1,\ldots,\alpha_k]} = t_{\alpha_1}\cdots t_{\alpha_k}$.

Taken litterally, it is only meaningful if we can ensure a form of convergence.

The end

Thanks.

The end

Thanks. Questions?
The end

Thanks. Questions?

Next talk, Emmanuel Beffara: sequent calculus, polarities, focalization, phase semantics