
Lecture 3:
From linearity in coherence spaces

to Linear Logic

Lionel Vaux

Institut de Mathématiques de Luminy, Université d’Aix-Marseille, France

School on Proof Theory
Paraty 2012

A computational point of view on coherence semantics
An alternative presentation:

∆∅, x{α} : A ` xα : A
Γ, xa : A ` sβ : B

Γ ` λx s(a,β) : A→ B

Γ0 ` s({α1,...,αk},β) : A→ B Γ1 ` tα1 : A · · · Γk ` tαk : A (∗)⋃k
j=0Γj ` (s) tβ : B

Γ ` s1
α : A1 Γ ` s2 : A2

Γ ` 〈s1, s2〉(1,α) : A1 ×A2

Γ ` s1 : A1 Γ ` s2
α : A2

Γ ` 〈s1, s2〉(2,α) : A1 ×A2

Γ ` s(i,α) : A1 ×A2

Γ ` πisα : Ai

(∗) Coherence: {α1, . . . , αk} and the labels of
⋃k

j=0 Γj must be cliques.

The stable function Jx1 : A1, . . . , xn : An ` s : BK has trace:{
(a1 + . . .+ an, β); xa11 : A1, . . . , x

an
n : An ` sβ : B

}

A computational point of view on coherence semantics
An alternative presentation:

∆∅, x{α} : A ` xα : A
Γ, xa : A ` sβ : B

Γ ` λx s(a,β) : A→ B

Γ0 ` s({α1,...,αk},β) : A→ B Γ1 ` tα1 : A · · · Γk ` tαk : A (∗)⋃k
j=0Γj ` (s) tβ : B

Γ ` s1
α : A1 Γ ` s2 : A2

Γ ` 〈s1, s2〉(1,α) : A1 ×A2

Γ ` s1 : A1 Γ ` s2
α : A2

Γ ` 〈s1, s2〉(2,α) : A1 ×A2

Γ ` s(i,α) : A1 ×A2

Γ ` πisα : Ai

(∗) Coherence: {α1, . . . , αk} and the labels of
⋃k

j=0 Γj must be cliques.

The stable function Jx1 : A1, . . . , xn : An ` s : BK has trace:{
(a1 + . . .+ an, β); xa11 : A1, . . . , x

an
n : An ` sβ : B

}

Linearity: algebraically

Definition
A stable function f : A → B is linear if it preserves coherent
unions:

a ∪ a′ ∈ A implies f
(
a ∪ a′

)
= f(a) ∪ f(a′)

and
f(∅) = ∅

Consider ∪ (resp. ∅) as a “qualitative” counterpart to + (resp. 0).

Linearity: algebraically

Definition
A stable function f : A → B is linear if it preserves coherent
unions:

a ∪ a′ ∈ A implies f
(
a ∪ a′

)
= f(a) ∪ f(a′)

and
f(∅) = ∅

Consider ∪ (resp. ∅) as a “qualitative” counterpart to + (resp. 0).

Linearity: computationally

Definition
A stable function f is linear iff all the elements of Tr(f) are of
the form ({α} , β).

 Show the equivalence with the previous definition.

Computational linearity: f

“

uses its argument exactly once.

”

Example

Consider the expanded identity
λxλy (x) y : (A→ B)→ A→ B: it is linear in x

but not
necessarily in y (although y has exactly one occurrence).

 Compute the trace.

Linearity: computationally

Definition
A stable function f is linear iff all the elements of Tr(f) are of
the form ({α} , β).

 Show the equivalence with the previous definition.

Computational linearity: f

“

uses its argument exactly once.

”

Example

Consider the expanded identity
λxλy (x) y : (A→ B)→ A→ B: it is linear in x

but not
necessarily in y (although y has exactly one occurrence).

 Compute the trace.

Linearity: computationally

Definition
A stable function f is linear iff all the elements of Tr(f) are of
the form ({α} , β).

 Show the equivalence with the previous definition.

Computational linearity: f

“

uses its argument exactly once.

”

Example

Consider the expanded identity
λxλy (x) y : (A→ B)→ A→ B: it is linear in x

but not
necessarily in y (although y has exactly one occurrence).

 Compute the trace.

Linearity: computationally

Definition
A stable function f is linear iff all the elements of Tr(f) are of
the form ({α} , β).

 Show the equivalence with the previous definition.

Computational linearity: f “uses its argument exactly once.”

Example

Consider the expanded identity
λxλy (x) y : (A→ B)→ A→ B: it is linear in x but not
necessarily in y (although y has exactly one occurrence).

 Compute the trace.

Examples

The identity function is linear

No big deal.

Application is linear in the function

Fix some a ∈ A. The (stable) operator f 7→ f(a) from A → B
to B is linear.

“Applicators”

All terms of the form λx s such that x occurs only as the head
variable of s, have a linear semantics.

 Easy from the rules.

Projections

The projections A1 &A2 → Ai are linear.

Examples

The identity function is linear

No big deal.

Application is linear in the function

Fix some a ∈ A. The (stable) operator f 7→ f(a) from A → B
to B is linear.

“Applicators”

All terms of the form λx s such that x occurs only as the head
variable of s, have a linear semantics.

 Easy from the rules.

Projections

The projections A1 &A2 → Ai are linear.

Examples

The identity function is linear

No big deal.

Application is linear in the function

Fix some a ∈ A. The (stable) operator f 7→ f(a) from A → B
to B is linear.

“Applicators”

All terms of the form λx s such that x occurs only as the head
variable of s, have a linear semantics.

 Easy from the rules.

Projections

The projections A1 &A2 → Ai are linear.

Linear trace

Definition
Let f be a linear function from A to B. The linear trace of f is:

Trl(f) = {(α, β);β ∈ f({α})}

In other words:

Trl(f) = {(α, β); ({α}, β) ∈ Tr(f)} .

Clearly, if f is linear, then f(a) = Trl(f) · a,
where · denotes the straightforward relation composition.

Examples

Trl(λxx) = {(α, α);α ∈ |A|}.

 Trl(λxλy (x) y y) = ?

Another key example: (graphs of) rigid embeddings are linear
traces.

(
linear implication, lollypop

Linear implication

Recall that. . .
Traces of stable functions A → B form a coherence space with
web Afin × |B| and such that (a, β) ¨A→B (a′, β′) iff:

I a ∪ a′ ∈ A implies β ¨B β′
I if moreover a 6= a′, then β ˝B β′.

Linear functions actually form a coherence space by themselves:

Definition
Let A(B be the coherence space with web |A| × |B|, and such
that: (α, β) ¨A(B (α′, β′) iff:

Linear implication

Recall that. . .
Traces of stable functions A → B form a coherence space with
web Afin × |B| and such that (a, β) ¨A→B (a′, β′) iff:

I a ∪ a′ ∈ A implies β ¨B β′
I if moreover a 6= a′, then β ˝B β′.

Linear functions actually form a coherence space by themselves:

Definition
Let A(B be the coherence space with web |A| × |B|, and such
that: (α, β) ¨A(B (α′, β′) iff:

I α ¨A α′ implies β ¨B β′
I if moreover a 6= a′, then β ˝B β′.

Linear implication

Recall that. . .
Traces of stable functions A → B form a coherence space with
web Afin × |B| and such that (a, β) ¨A→B (a′, β′) iff:

I a ∪ a′ ∈ A implies β ¨B β′
I if moreover a 6= a′, then β ˝B β′.

Linear functions actually form a coherence space by themselves:

Definition
Let A(B be the coherence space with web |A| × |B|, and such
that: (α, β) ¨A(B (α′, β′) iff:

I α ¨A α′ implies β ¨B β′
I if moreover a 6= a′, then β ˝B β′.

Linear implication

Recall that. . .
Traces of stable functions A → B form a coherence space with
web Afin × |B| and such that (a, β) ¨A→B (a′, β′) iff:

I a ∪ a′ ∈ A implies β ¨B β′
I if moreover a 6= a′, then β ˝B β′.

Linear functions actually form a coherence space by themselves:

Definition
Let A(B be the coherence space with web |A| × |B|, and such
that: (α, β) ¨A(B (α′, β′) iff:

I α ¨A α′ implies β ¨B β′
I α ˝A α′ implies β ˝B β′.

Linear implication

Recall that. . .
Traces of stable functions A → B form a coherence space with
web Afin × |B| and such that (a, β) ¨A→B (a′, β′) iff:

I a ∪ a′ ∈ A implies β ¨B β′
I if moreover a 6= a′, then β ˝B β′.

Linear functions actually form a coherence space by themselves:

Definition
Let A(B be the coherence space with web |A| × |B|, and such
that: (α, β) ¨A(B (α′, β′) iff:

I α ¨A α′ implies β ¨B β′
I β ˚B β′ implies α ˚B α′.

!
“of course”, bang

Linearization of stable maps
The similarity between the conditions for (:

I α ¨A α′ implies β ¨B β′
I α ˝A α′ implies β ˝B β′.

and those for →:

I a ∪ a′ ∈ A implies β ¨B β′
I if moreover a 6= a′, then β ˝B β′.

suggests the introduction of a space of finite cliques !A:

Definition
The space !A has web Afin and coherence:

a ¨!A a
′ ⇐⇒ a ∪ a′ ∈ A.

Then A → B = !A(B, and stable functions from A → B
“are” linear functions from !A to B.

 Describe the bijection extensionally.

Linearization of stable maps
The similarity between the conditions for (:

I α ¨A α′ implies β ¨B β′
I α ˝A α′ implies β ˝B β′.

and those for →:

I a ∪ a′ ∈ A implies β ¨B β′
I if moreover a 6= a′, then β ˝B β′.

suggests the introduction of a space of finite cliques !A:

Definition
The space !A has web Afin and coherence:

a ¨!A a
′ ⇐⇒ a ∪ a′ ∈ A.

Then A → B = !A(B, and stable functions from A → B
“are” linear functions from !A to B.

 Describe the bijection extensionally.

(·)⊥
linear negation, dual, polar, orthogonal

Linear negation
The symmetry of conditions:
I α ¨A α′ implies β ¨B β′
I β ˚B β′ implies α ˚B α′

suggests the introduction of linear negation:

Definition
The dual space of A, denoted A⊥, has web |A| and coherence:

α ¨A⊥ α′ ⇐⇒ α ˚A α′

Transposition

Clearly A⊥⊥ = A and there is a linear involution from A(B
to B⊥(A⊥.

(we could even write A(B = A⊥› B⊥)

 Find the (linear) trace of this involution. . .

(hint in the paragraph title)

Linear negation
The symmetry of conditions:
I α ¨A α′ implies β ¨B β′
I β ˚B β′ implies α ˚B α′

suggests the introduction of linear negation:

Definition
The dual space of A, denoted A⊥, has web |A| and coherence:

α ¨A⊥ α′ ⇐⇒ α ˚A α′

Transposition

Clearly A⊥⊥ = A and there is a linear involution from A(B
to B⊥(A⊥.

(we could even write A(B = A⊥› B⊥)

 Find the (linear) trace of this involution. . .
(hint in the paragraph title)

Linear logic?

The story so far

I logic: λ-calculus, system F , . . .

I semantics: stable functions between coherence spaces

I decomposition of implication semantically

Is there a logical system behind that refinement, based on linear
implication?

Linear logic?

The story so far

I logic: λ-calculus, system F , . . .

I semantics: stable functions between coherence spaces

I decomposition of implication semantically

Is there a logical system behind that refinement, based on linear
implication?

Linear logic?

The story so far

I logic: λ-calculus, system F , . . .

I semantics: stable functions between coherence spaces

I decomposition of implication semantically

Is there a logical system behind that refinement, based on linear
implication?

Linear logic?

The story so far

I logic: λ-calculus, system F , . . .

I semantics: stable functions between coherence spaces

I decomposition of implication semantically

Is there a logical system behind that refinement, based on linear
implication?

Linear category of coherence spaces

Linear functions compose

More precisely, coherence spaces and linear functions between
them form a category Cohl.

Product
The direct product & is still a categorical product (pairing)

but not properly related with (:
A& B(C is not the type of bilinear functions.

 Do you see why?

Linear category of coherence spaces

Linear functions compose

More precisely, coherence spaces and linear functions between
them form a category Cohl.

Product
The direct product & is still a categorical product (pairing)
but not properly related with (:
A& B(C is not the type of bilinear functions.

 Do you see why?

Linear category of coherence spaces

Linear functions compose

More precisely, coherence spaces and linear functions between
them form a category Cohl.

Product
The direct product & is still a categorical product (pairing)
but not properly related with (:
A& B(C is not the type of bilinear functions.

 Do you see why?

⊗
tensor

Tensor product

Definition
The tensor product of A and B, denoted A⊗ B has web
|A| × |B|, and coherence:

(α, β) ¨A⊗B (α′, β′) ⇐⇒ (α ¨A α′ ∧ β ¨B β′)

Then A((B(C) is isomorphic to (A⊗ B)(C.

 Write down the isomorphism.

This product is associative and symmetric (A⊗ B ∼= B ⊗A),
and has a unit:

Definition
Let 1 be the only coherence space with web {∅}.

Tensor product

Definition
The tensor product of A and B, denoted A⊗ B has web
|A| × |B|, and coherence:

(α, β) ¨A⊗B (α′, β′) ⇐⇒ (α ¨A α′ ∧ β ¨B β′)

Then A((B(C) is isomorphic to (A⊗ B)(C.

 Write down the isomorphism.

This product is associative and symmetric (A⊗ B ∼= B ⊗A),
and has a unit:

Definition
Let 1 be the only coherence space with web {∅}.

Tensor product

Definition
The tensor product of A and B, denoted A⊗ B has web
|A| × |B|, and coherence:

(α, β) ¨A⊗B (α′, β′) ⇐⇒ (α ¨A α′ ∧ β ¨B β′)

Then A((B(C) is isomorphic to (A⊗ B)(C.

 Write down the isomorphism.

This product is associative and symmetric (A⊗ B ∼= B ⊗A),
and has a unit:

Definition
Let 1 be the only coherence space with web {∅}.

O
par

p̀ar

Multiplicatives
By de Morgan, we obtain the connective ` as dual to ⊗:

A` B = (A⊥ ⊗ B⊥)⊥

and then
A(B = A⊥ ` B

 Write down an explicit definition of coherence for `

We thus have three connectives based on set theoretical
product, aka. multiplicatives:

I linear implication: (;

I the associated conjunction: ⊗;

I the associated disjunction: `.

The unit of ` is ⊥ = 1⊥.

A (minor) degeneracy in this case: ⊥ = 1

Multiplicatives
By de Morgan, we obtain the connective ` as dual to ⊗:

A` B = (A⊥ ⊗ B⊥)⊥

and then
A(B = A⊥ ` B

 Write down an explicit definition of coherence for `
We thus have three connectives based on set theoretical
product, aka. multiplicatives:

I linear implication: (;

I the associated conjunction: ⊗;

I the associated disjunction: `.

The unit of ` is ⊥ = 1⊥.

A (minor) degeneracy in this case: ⊥ = 1

Multiplicatives
By de Morgan, we obtain the connective ` as dual to ⊗:

A` B = (A⊥ ⊗ B⊥)⊥

and then
A(B = A⊥ ` B

 Write down an explicit definition of coherence for `
We thus have three connectives based on set theoretical
product, aka. multiplicatives:

I linear implication: (;

I the associated conjunction: ⊗;

I the associated disjunction: `.

The unit of ` is ⊥ = 1⊥.

A (minor) degeneracy in this case: ⊥ = 1

Sequents

Linear negation is classical (because it is involutive).

The framework of choice is thus that of sequents: a proof of

A1, . . . ,An ` B1, . . . ,Bp

denotes a linear map

A1 ⊗ . . .⊗An(B1 ` . . .` Bp
and negation swaps sides

(A ` B) ∼= (B⊥ ` A⊥)

so we can freely move things around.

Sequents

Linear negation is classical (because it is involutive).

The framework of choice is thus that of sequents: a proof of

A1, . . . ,An ` B1, . . . ,Bp

denotes a linear map

A1 ⊗ . . .⊗An(B1 ` . . .` Bp
and negation swaps sides

(A ` B) ∼= (B⊥ ` A⊥)

so we can freely move things around.

Linear sequents

Recall that. . .
The product & is not adjoint to (. Hence, in the process of
proving, we can’t:

I duplicate hypotheses (there is no diagonal for ⊗)

I discard hypotheses (the terminal object is not 1)

In other words, the structural rules of contraction and
weakening do not hold.

Multiplicative linear logic

identity (axiom) A ` A

composition (cut) Γ ` A A ` ∆
Γ ` ∆

tensor Γ ` A ∆ ` B
Γ,∆ ` A⊗B

unit ` 1

par
Γ ` A,B

Γ ` A`B

bottom Γ `
Γ ` ⊥

&
direct product, with

Product

Recall that. . .
The direct product A1 &A2 has web |A1|+ |A2| and coherence:

(i, α) ¨A1&A2 (j, α′) ⇐⇒ (i = j ⇒ α ¨Ai α
′)

I It is the type of pairs:
a clique in A1 &A2 can be uniquely written as a1 + a2.

I Its unit is >: the only space with empty web.

pairing (with) Γ ` A Γ ` B
Γ ` A&B

terminal object (top) Γ ` >

Product

Recall that. . .
The direct product A1 &A2 has web |A1|+ |A2| and coherence:

(i, α) ¨A1&A2 (j, α′) ⇐⇒ (i = j ⇒ α ¨Ai α
′)

I It is the type of pairs:
a clique in A1 &A2 can be uniquely written as a1 + a2.

I Its unit is >: the only space with empty web.

pairing (with) Γ ` A Γ ` B
Γ ` A&B

terminal object (top) Γ ` >

⊕
direct sum, plus

Sums

The category Cohl also has coproducts (or sums), dual to &:

Definition
The direct sum A1 ⊕A2 has web |A1|+ |A2| and coherence:

(i, α) ¨A1⊕A2 (j, α′) ⇐⇒ (i = j ∧ α ¨Ai α
′)

The unit is 0 = >⊥.

Again: 0 = >

injections (plus) Γ ` B
Γ ` A⊕B

Γ ` A
Γ ` A⊕B

By contrast, there was no sum type in the stable semantics!

Sums

The category Cohl also has coproducts (or sums), dual to &:

Definition
The direct sum A1 ⊕A2 has web |A1|+ |A2| and coherence:

(i, α) ¨A1⊕A2 (j, α′) ⇐⇒ (i = j ∧ α ¨Ai α
′)

The unit is 0 = >⊥.

Again: 0 = >

injections (plus) Γ ` B
Γ ` A⊕B

Γ ` A
Γ ` A⊕B

By contrast, there was no sum type in the stable semantics!

Sums

The category Cohl also has coproducts (or sums), dual to &:

Definition
The direct sum A1 ⊕A2 has web |A1|+ |A2| and coherence:

(i, α) ¨A1⊕A2 (j, α′) ⇐⇒ (i = j ∧ α ¨Ai α
′)

The unit is 0 = >⊥.

Again: 0 = >

injections (plus) Γ ` B
Γ ` A⊕B

Γ ` A
Γ ` A⊕B

By contrast, there was no sum type in the stable semantics!

Additives

Together & and ⊕ are the additive connectives of linear logic.
Moreover:

A⊗ (B ⊕ C) ∼= (A⊗ B)⊕ (A⊗ C)

(and dually for ` and &).

!?
“of course” and “why not”: the exponentials

Exponentials

Recall that. . .
The space !A has web Afin and coherence:

a ¨!A a
′ ⇐⇒ a ∪ a′ ∈ A.

Its de Morgan dual is denoted ?A = (!A⊥)⊥.

Structural rules hold on exponentials

contraction

a :

!A,

a′ :

!A ` ∆

a ∪ a′ :

!A ` ∆

weakening
` ∆

∅ :

!A ` ∆

Exponentials

Recall that. . .
The space !A has web Afin and coherence:

a ¨!A a
′ ⇐⇒ a ∪ a′ ∈ A.

Its de Morgan dual is denoted ?A = (!A⊥)⊥.

Structural rules hold on exponentials

contraction
a : !A, a′ : !A ` ∆

a ∪ a′ : !A ` ∆

weakening
` ∆

∅ : !A ` ∆

Introduction rules for exponentials: dereliction

Linearization of the (stable) identity λxx : A → A gives

{({α} , α); α ∈ |A|} ∈ !A(A

Hence the rule

A ` ∆
!A ` ∆

or equivalently
` A,∆
` ?A,∆

Introduction rules for exponentials: promotion

Exponentials are functors

If f : A(B, define !f : !A(!B by its trace

{({α1, . . . , αn} , {β1, . . . , βn}) ∈ Afin × Bfin; ∀i, (αi, βi) ∈ f}

So we could have a rule

Γ ` A
!Γ ` !A

Introduction rules for exponentials: promotion

Exponentials are (co-)monads

We only miss the “multiplication” !A(!!A, given by
 n⋃
j=1

aj , {a1, . . . , an}

 ∈ Afin × !Afin

which would give a rule

!!A ` ∆
!A ` ∆

called digging.

Introduction rules for exponentials: promotion

The previous two are subsumed by the promotion rule:

!Γ ` A
!Γ ` !A

Introduction rules for exponentials: promotion

The previous two are subsumed by the promotion rule:

(!Γj ` αj : A)kj=1⋃k
j=1!Γj ` {α1, . . . , αk} : !A

Cut elimination

I Next talk!

I Reflects properties of the things we used (properties of
functors, products, sums, . . .).

I Makes the system logically relevant.

I Refines β-reduction. . .

Cut elimination

I Next talk!

I Reflects properties of the things we used (properties of
functors, products, sums, . . .).

I Makes the system logically relevant.

I Refines β-reduction. . .

Lambda-calculus in LL

Principle

The decomposition A→ B = !A(B leads to translate a typed
term Γ ` s : A as a proof of !Γ ` A.

Variable

∆∅, x{α} : A ` xα : A

becomes

α : A ` α : A (der)
{α} : !A ` α : A

(weak)∗
∅ : !∆, {α} : !A ` α : A

Lambda-calculus in LL

Abstraction

Γ, xa : A ` sβ : B

Γ ` λx s(a,β) : A→ B

becomes

!Γ, a : !A ` β : B
(()

!Γ ` (a, β) : !A(B

Lambda-calculus in LL

Application

Γ0 ` s({α1,...,αk},β) : A→ B (Γj ` tαj : A)kj=1⋃k
j=0Γj ` (s) tβ : B

becomes

!Γ0 ` ({α1, . . . , αk} , β) : !A(B

...

...

...

(!Γj ` αj : A)kj=1
(prom)⋃k

j=1!Γj ` {α1, . . . , αk} : !A
(ax)

β : B ` β : B
((l)⋃k

j=1!Γj , ({α1, . . . , αk} , β) : !A(B ` β : B
(cut)

Γ0,
⋃k

j=1!Γj ` β : B
(cont)∗⋃k

j=0Γj ` β : B

Digression 1: Orthogonality

Coherence spaces: a third definition

I If a, a′ ⊆ A, write a ⊥ a′ iff a ∩ a′ is at most a singleton.

I If A ⊆ P(A), write A⊥ = {a′ ⊂ A; ∀a ∈ A, a ⊥ a′}.
I Coherence spaces of web A are those A such that A = A⊥⊥.

Then a relation f ⊆ |A| × |B| is a linear trace iff

∀a ∈ A, ∀b′ ∈ B⊥, f · a ⊥ b′ ∧ a ⊥ f⊥ · b′

Such orthogonality constructions are very common in the design
of LL models.

Digression 2: Quantitative semantics

Why do we use such linear algebraic vocabulary, notations and
concepts? Historically:
coh. spaces ⇐\ qualitative domains ⇐ \ quantitative semantics

Rough intuition

Interpret terms as a linear combinations: s =
∑

α∈s sαα
so that application is given by a power series:

((s) t)β =
∑

(a,β)∈s

s(a,β)t
a

where t[α1,...,αk] = tα1 · · · tαk
.

Taken litterally, it is only meaningful if we can ensure a form of
convergence.

Digression 2: Quantitative semantics

Why do we use such linear algebraic vocabulary, notations and
concepts? Historically:
coh. spaces ⇐\ qualitative domains ⇐ \ quantitative semantics

Rough intuition

Interpret terms as a linear combinations: s =
∑

α∈s sαα
so that application is given by a power series:

((s) t)β =
∑

(a,β)∈s

s(a,β)t
a

where t[α1,...,αk] = tα1 · · · tαk
.

Taken litterally, it is only meaningful if we can ensure a form of
convergence.

Digression 2: Quantitative semantics

Why do we use such linear algebraic vocabulary, notations and
concepts? Historically:
coh. spaces ⇐\ qualitative domains ⇐ \ quantitative semantics

Rough intuition

Interpret terms as a linear combinations: s =
∑

α∈s sαα
so that application is given by a power series:

((s) t)β =
∑

(a,β)∈s

s(a,β)t
a

where t[α1,...,αk] = tα1 · · · tαk
.

Taken litterally, it is only meaningful if we can ensure a form of
convergence.

The end

Thanks.

Questions?

Next talk, Emmanuel Beffara:
sequent calculus, polarities, focalization, phase semantics

The end

Thanks.
Questions?

Next talk, Emmanuel Beffara:
sequent calculus, polarities, focalization, phase semantics

The end

Thanks.
Questions?

Next talk, Emmanuel Beffara:
sequent calculus, polarities, focalization, phase semantics

