
Di�erential Linear Logic and Polarization

Lionel Vaux ∗

Laboratoire de Mathématiques de l'Université de Savoie,

UMR 5127 CNRS 73376 Le Bourget-du-Lac Cedex, France

lionel.vaux@univ-savoie.fr

Last modi�ed: 2009-05-06

Abstract

We extend Ehrhard�Regnier's di�erential linear logic along the lines of Laurent's

polarization. We provide a denotational semantics of this new system in the well-known

relational model of linear logic, extending canonically the semantics of both di�erential

and polarized linear logics: this justi�es our choice of cut elimination rules. Then we

show this polarized di�erential linear logic re�nes the recently introduced convolution

λ̄µ-calculus, the same as linear logic decomposes λ-calculus.

1 Introduction

Di�erential Linear Logic. Di�erential interaction nets (DIN) were introduced by Ehrhard
and Regnier in [1] to provide a notion of proof nets for the �nitary fragment of their di�er-
ential λ-calculus [2]. Both DIN and di�erential λ-calculus originate in the study of models of
linear logic designed after Girard's quantitative semantics of λ-calculus [3], such as Ehrhard's
�niteness spaces [4]. The distinctive attribute of these models is that intuitionistic proofs,
hence typed λ-terms, are interpreted by power series in particular vector spaces; thus it
makes sense to de�ne di�erentiation on these.

The di�erential λ-calculus embodies this notion of di�erentiation, in close correspondence
with the linear logic approach to resources of computation: a functional program is linear
when uses its argument exactly once. The same as the derivative of a smooth function can
be thought of as its best linear approximation, the derivative of an abstraction D(λx s) · t
reduces to an abstraction λx

(
∂ s
∂ x
· t
)
where ∂ s

∂ x
· t is obtained by substituting t for exactly

one linear occurrence of x in s, where �linear occurrence� means an occurrence which is used
exactly once in the head reduction of s. There can be many such occurrences in a term,
hence one actually considers the sum of all such terms, which is similar to the well known
rule for the derivative of a product: (f × g)′ = f ′ × g + f × g′.

Such a di�erential extension can be reproduced in linear logic: it boils down to the intro-
duction of costructural rules, dual to linear logic structural rules, and a codereliction rule,
dual to dereliction. Costructural rules re�ect an algebraic structure on exponentials, with a
convolution product m : !A⊗ !A(!A and its unit u : 1(!A. The basis of di�erentiation in

∗Supported by French ANR project CHoCo

1

these models is that morphisms f : !A(B are power series: then codereliction ∂ : A(!A
is such that f ◦ ∂ : A (B is the linear part of f , i.e. its derivative at point 0; together
with the convolution product, this de�nes the derivative at any point. The cut elimination
procedure then re�ects valid equations in the model.

The system of DIN presented in [1] is not exactly an extension of linear logic: the pro-
motion rule is missing. It is however possible to reintroduce it, together with appropriate
cut elimination rules derived from the semantics in �niteness spaces: this de�nes di�erential
nets (DN), which depart from the interaction net paradigm (see, e.g. [5]). One can naturally
introduce a sequent calculus associated with DN, where cut elimination is guided by the
reduction of nets: call di�erential linear logic (DiLL) this system.

Polarization. The notion of polarities in linear logic was made prominent by Andreoli's
work on focusing proofs [6] and Girard's deterministic system for classical logic [7]. The
latter led to the de�nition of polarized linear logic (LLP) by Laurent [8]: in the polarized
fragment of linear logic, the structural rules can be extended to all negative formulas rather
than ?-formulas only. It is well known that the transition from an intuitionistic system to
a classical one can be performed by allowing deductions with multiple conclusion formulas.
Since negative formulas are the target language of Girard's translation of implicative formulas
into linear logic, we understand that LLP corresponds to such a relaxation.

The computational counterpart of classical logic is well established: classical truths type
control operators. It is moreover possible to extend the Curry�Howard correspondence to
a classical logic setting, while retaining the intuition of proofs with multiple conclusions.
For instance, Parigot's λµ-calculus and Herbelin's λ̄µ-calculus can be considered as calculi
of programs with multiple outputs, controlled by term constructions re�ecting polarized
structural rules. These enjoy decompositions into LLP, similar to the translation of λ-calculus
into linear logic proof nets studied by Danos and Regnier [9, 10].

From a semantical point of view, the idea that polarization canonically extends the struc-
ture of exponentials to polarized formulas is also valid. For instance Girard's correlation
spaces [7] are coherence spaces equiped with a `-monoid structure and provide a semantics
of LLP [8]: the interpretation of costructural rules on polarized formulas is built from that
on their subformulas (basically variables and exponentials). Work by Laurent and Regnier
[11] later showed that this construction generalizes: the `-monoids of a Lafont category [12]
form a model of LLP.

Polarized Costructural Rules. In short, DiLL introduces a symmetry on exponential
types, with costructural rules, and provides a di�erential analysis of proofs through a com-
putational notion of derivatives. On the other hand, LLP extends the linear decomposition
of intuitionistic logic to classical logic, by relaxing structural rules, i.e. by canonically ex-
tending the structure of exponentials to polarized formulas. This motivates the study of the
relations entertained by both of these extensions of the Curry�Howard correspondence and
its analysis by linear logic.

A �rst result was provided in [13]: the author introduces a di�erential λµ-calculus which is
a conservative extension of both λµ-calculus and di�erential λ-calculus, enjoying con�uence
and strong normalization of typed terms: the de�nability of such a system witnesses a
compatibility between both extensions, and does not involve any new logical interaction.
Indeed, although this is not done in [13], one can consider the system obtained as the union
of rules of DiLL and LLP, then check that any kind of cut in this system is already covered by

2

the cut elimination rules of DiLL or LLP: this is the target of a translation of di�erential λµ-
calculus extending naturally that of di�erential λ-calculus in DiLL and that of λµ-calculus
in LLP.

In the present paper we rather investigate the e�ect of polarization on DN: we consider
the system obtained by relaxing not only structural rules to negative formulas but also
costructural rules to positive formulas. Again the idea is that polarization should also extend
the algebraic structure of exponentials to polarized formulas. In particular, this preserves
the symmetry between structural and costructural rules introduced in DiLL.

There are two main guiding lines when designing cut elimination in this system: symmetry
and semantics. We consider a model of linear logic which can be extended to both DiLL
and LLP: both correlation spaces and �niteness spaces are re�nements of the relational
model which underlies Girard's coherence semantics. More: in the relational interpretation
of linear logic proofs, duality boils down to reversing the orientation of relations. This allows
to deduce, in a very natural way, the semantics of polarized costructural rules from that of
polarized structural rules: just reverse the corresponding relations.

The re�exive object introduced in [14] is well suited for this study: it allows to interpret
both DiLL and LLP in a pure (i.e. untyped) setting, so that exponential structural and
costructural rules are exchanged by symmetry, and polarized structural rules are given by a
`-monoid structure on the object. It is then easy to derive the computational behaviour of
polarized costructural rules from this semantics. The system presented in the current paper
can be seen as the end result of this course of thought.

In [15], the author introduced convolution λ̄µ-calculus based on similar ideas: interpret
Herbelin's λ̄µ-calculus into the object of [14] through LLP, then investigate the computational
counterpart of the monoid operation modelling polarized costructural rules, when applied to
the denotations of contexts, which are dual to terms.

Organization of the paper. In section 2, we introduce the system of polarized di�erential
nets (PDN), together with typing and reduction rules. Then, in section 3, we validate this
new system by providing a denotational semantics on a particular object of the relational
model of linear logic. This canonically extends the relational semantics of both DN and LLP.
Section 4 brie�y reviews sequentialization of PDN. Last, section 5 explicits the translation
of the convolution λ̄µ-calculus in PDN, as hinted in [15]. The end of the paper proposes a
quick glimpse at how to bring di�erentiation back into that setting.

2 Polarized Di�erential Nets

Polarized di�erential nets (PDN) are formal �nite sums of simple nets, which are particular
multiport interaction nets, such as studied by Mazza [16] following Lafont [17]. The cells of
simple PDN are actually those of DN, i.e. DIN plus promotion boxes. Mainly, PDN di�er
from DN when considering typing, which is relaxed by polarization, and cut elimination,
which involves new rules. An example simple PDN is given in Figure 1, with a pure typ-
ing: this is the translation of convolution λ̄µ-calculus closed term λxµα 〈x , (x · α) ∗ α〉 (see
below).

Nets. We call signature a set Σ of symbols, where each symbol α ∈ Σ is given an arity
a(α) ∈ N. A simple net on signature Σ is a circuit built up from a �nite number of cells,

3

!o
o

d

!o od

!o

c

!o
!o !

o
m

⊗ o

o

o

c
o`

Figure 1: An example of simple net

each given a symbol in Σ, which are connected by �nitely many wires, so that every cell c
is connected to a(αc) + 1 wires, where αc is the symbol of c. We allow wires with dangling
ends, and also loop wires. The ends of wires are called ports (a loop is a wire whose ports
are equal). Hence each port is either a cell port, or a loop port, or a free port (of a dangling
wire). The placement of connexion points matters: cell ports are not interchangeable. If c is
a cell, we write c0, . . . , ca(αc) for its ports. Port c0, which is always present, is the principal
port of c; the possible other ones are called auxiliary ports. In general, cells are depicted by
triangles, with their respective principal port put on the tip of the triangle, and the auxiliary
ones on the opposite edge.

The interface of a simple net is the set of its free ports. A net µ is a multiset [µ1, . . . , µn]
of simple nets sharing the same interface, which we also consider to be the interface of µ. If
µ and µ′ are nets with the same interface, we denote additively their multiset union µ+ µ′.
We also denote by 0 the empty multiset of simple nets, whatever the underlying interface.
This should not be confused with the empty simple net ε, the interface of which is empty.

We will consider cells of a special kind: a box is a cell with symbol µ!, where µ is a net
whose interface matches the ports of the box-cell. A box µ! is depicted as a rectangle con-
taining µ, where we distinguish the principal port by a circled exclamation mark. Let Σ be a
signature. We de�ne the signature Σ! by induction on the depth of boxes: Σ! =

⋃
Σ(n), where

Σ(0) = Σ, and if Σ(n) is de�ned, we set Σ(n+1) = Σ(n)∪{µ!; µ! is a box symbol with µ a net on Σ(n)}.
Notice that boxes may contain sums, since box symbols are not necessarily simple nets.

De�nition 2.1 The signature ∆0 of PDN of depth 0 is that of Ehrhard�Regnier's DIN
[1]: binary symbols tensor ⊗, par `, contraction c and cocontraction m; unary symbols
dereliction d and codereliction ∂; and nullary symbols weakening w and coweakening u. Then
the signature of all PDN is ∆ = ∆!

0.

Typing. The polarized formulas of multiplicative exponential linear logic are given by the
following mutually inductive grammars:

negative: M,N ::= X |M `N | ?P
positive: P,Q ::= X⊥ | P ⊗Q | !N

with negation de�ned by De Morgan duality: X⊥⊥ = X, (M ` N)⊥ = N⊥ ⊗ M⊥ and
(?P)⊥ = !P⊥. Recall that the linear logic formulas used in the decomposition of minimal
implicative natural deduction (i.e. simply typed λ-calculus) through Girard's translation
A⇒ B = !A(B are the intuitionistic and exponential ones, organized as follows:

negative: A,B ::= X | ?A⊥ `B why-not: ?A⊥

positive: A⊥, B⊥ ::= X⊥ | A⊥ ⊗ !B of-course: !A

4

P ⊗Q

P Q

⊗
M `N

M N

`
?P

P

d

!N

N

∂

N

N N
c

N

w

P

P P
m

P

u

Figure 2: Typing of the cells of simple PDN

These are special cases of polarized formulas. Pure types were introduced by Danos [9]
and Regnier [10] in order to interpret pure λ-calculus in linear logic. They are variable
free intuitionistic and exponential formulas obtained from an additional constant o, subject
to the equation o = o ⇒ o, which allows to type all pure λ-terms. This translates to
o = !o(o = ?o⊥ ` o. We obtain four possible formulas: o itself (the type of terms), i = o⊥

(its dual, the type of contexts), !o (the type of arguments) and ?i (the type of free variables).
In a pure setting, o (resp. i, !o, ?i) is the only negative (resp. positive, of-course, why-not)
formula: it can be considered as the archetypal one.

De�nition 2.2 A typing of a simple PDN is the assignment of a type to each oriented
wire, such that reversing the orientation of the wire negates the type, and respecting some
typing constraints on symbols. The typing rules for the cells of simple PDN of depth 0
are given in Figure 2, where types are polarized formulas. If I = p1, . . . , pk is an ordered
interface of simple net µ, i.e. a list of its free ports, and if Γ = γ1, . . . , γk is a list of types,
then we write µ `I Γ if there is a typing of µ such that the outgoing type at port pi is γi.
We extend typing to all PDN, by the following rules for sums and boxes: if µ =

∑m
j=1 µj

is a net with ordered interface I, then µ `I Γ as soon as, for all j, µj `I Γ; if moreover
I = {0, . . . , n}, Γ = N,N1, . . . , Nn and µ `I Γ, then for a box b of symbol µ!, we have
b `b0,...,bn !N,N1, . . . , Nn (this is the promotion rule of LLP).

Notice the four polarized typing rules for structural and costructural cells. From this
polarized typing, one straightforwardly deduces an intuitionistic (resp. pure) type system
for PDN.

Cut elimination. Among the ports of each cell, some are called active: these correspond
to active formulas in the associated deduction rule. The only active port of a non-box cell
is the principal one; by contrast, all the ports of a box are active. A cut in a net is a wire
between active ports of distinct cells: a redex is the data of two cells c, d and indices of active
ports i of c and j of d, such that

[
ci, dj

]
is a wire. We denote such a redex by

〈
ci , dj

〉
. For

each typable redex
〈
ci , dj

〉
, Figure 3 gives a reduced net which depends only on the symbols

αc and αd, and the port indices i and j, so that the free ports of the reduced net are assigned
to the free ports of the redex, i.e. the ports of c and d minus ci and dj .

De�nition 2.3 We �rst de�ne reduction at depth 0. If µ is a simple net,
〈
ci , dj

〉
is a redex

of µ and
∑n
k=1 νk is the reduct of

〈
ci , dj

〉
given in Figure 3, then we write µ→0

∑n
k=1 µ

′
k,

where each µ′k is the simple net obtained by removing wire
[
ci, dj

]
and cells c and d from

µ, then plugging νk instead. This is extended to sums as follows: µ →0 µ′ as soon as
µ =

∑n
i=0 µi and µ

′ =
∑n
i=0 µ

′
i, where each µi is simple, µ0 →0 µ

′
0 and, for i ∈ {1, . . . , n},

µi →0 µ
′
i or µ

′
i = µi.

We now de�ne reduction at any depth. Assume →n is de�ned. Then if µ is a simple net,
µ →n+1 µ

′ if µ →0 µ
′, or if there are nets ν and ν′ such that ν →n ν

′ and µ′ is obtained

5

by replacing a box with symbol ν! in µ with a box of symbol ν′!. We extend →n+1 on sums
similarly to →0. We �nally set µ→ µ′ if µ→n µ

′ for some n.

We provided annotations for the reduction rules of Figure 3, organized as follows. Groups
m and e are the cut elimination rules for multiplicative exponential linear logic. Groups m
and r correspond to the reduction of DIN in [1]; if we add d, we obtain the reduction rules of
DN, suitable to encode di�erential λ-calculus. Groups m, e and p de�ne the cut elimination
procedure of LLP. This is actually a local version of the reduction presented in [8]: group p
and rules e2,3,4 decompose in many steps the reductions of positive trees versus structural
rules and auxiliary ports of boxes. The only new reduction rules in PDN are those of group
p′.

It is easily checked that the left part of Figure 3, i.e. groups m, r, p′ and p except p3,
de�ne a con�uent and terminating system. As �rst noticed by Tranquilli [5], however, even
local con�uence of the system including d1 is only veri�ed up-to some structural reductions
(similar to the structural equivalence to be introduced in De�nition 5.3): this is because
rule d1 forces which passive port of the convolution product m receives the linear argument
provided by ∂.

A full study of the proof theoretic properties of PDN (including con�uence and strong
normalization) is left for future work: although similar questions for DN receive a partial
answer in [5], much remains to be settled. In the following, we concentrate on a semantical
justi�cation of our choice of cut-elimination (section 3), remarks on sequentialization prop-
erties (section 4) and the computational expressivity of polarized costructural rules (section
5).

3 Relational Semantics

Following [14], we construct an object in the usual multiset based relational model of linear
logic (the category of sets and relations, where multiplicatives are interpreted by cartesian
products, and exponential modalities by the free commutative monoid construction, i.e. �nite
multisets) which is an extensional re�exive object in the co-Kleisli category associated with
the ! modality.

If X is a set, denote byM�n (X) the set of all �nite multisets of elements in X, and by
M�n (X)(ω) the set of all sequences ξ = (ξ(i))i∈ω of multisets inM�n (X) such that ξ(i) = []
for almost all i ∈ ω. We de�ne an increasing family (Dn)n∈N of sets by induction on n:
D0 = ∅ and Dn+1 =M�n (Dn)(ω). Then we set D =

⋃
n∈NDn.

If a ∈ M�n (D) and α ∈ D, write a ::α for the sequence β such that β(0) = a and
β(i + 1) = α(i) for all i ∈ ω. We denote by ι the constant sequence such that ι(i) = [] for
all i ∈ ω. For instance, D1 = {ι}. The mapping (a, α) 7→ a ::α is clearly a bijection from
M�n (D) × D to D, and satis�es ι = [] :: ι. This bijection makes D an extensional re�exive
object in the cartesian closed category de�ned by the co-Kleisli construction on !, hence an
extensional model of pure λ-calculus. It also provides a model of pure DiLL: the �nitary
semantics of [4] is easily reproduced with base types interpreted by D, pruning the �niteness
structure.

We show how this object provides a model of the reduction of pure PDN, �rst by de�ning
a commutative monoid structure on D, with unit ι: for all i ∈ ω, set (α?β)(i) = α(i) +β(i).
Following [11], we obtain a model of pure LLP; we show that this actually extends to a model
of PDN. We call relational type any couple (γ, i), where i is an orientation bit 0 or 1, and

6

⊗ ` m→

∂ d
r1→

u w
r2→ ε

m w
r3→

w

w

u c
r4→

u

u

m c
r5→

c

c

m

m

u d
r6→ 0

∂ w
r7→ 0

m d
r8→

w

d

w

d

+

∂ c
r9→

u

∂

u

∂

+

⊗ w
p1→

w

w

⊗ c
p2→

c

c

⊗

⊗

u ` p′
1→

u

u

m ` p′
2→

`
`

m

m

···
··· µ ! d

e1→

··· µ

···
··· µ ! w

e2→
w···

w

···
··· µ ! c

e3→
c···

c

···
··· µ !

···
··· µ !

···
··· µ !

···

···

µ′ !
e4→

···
··· µ !

···

µ′

···
···

!

∂

···

··· µ !
d1→

··· !

··· µ

··· µ

∂ ∂

m

u

c···

c

m

···

··· µ !
d2→ ··· µ

m

··· !

u

···
··· µ !

d3→ ··· µ

u

··· !

⊗

···

··· µ !
p3→ ··· µ

⊗

··· !

Figure 3: Reduction rules of PDN

7

a ::α

α a

⊗
a ::α

a α

`
a+ b

a b
c

[α]

α

d

[]

w

a+ b

a b
m

[α]

α

∂

[]

u

α?β

α β

c

ι

w

α?β

α β

m

ι

u

Figure 4: Relational typing of the non-box cells of PDN

⊗ : ⊗· · ·

µ1

· · ·

µ2

` : ` · · ·

µ1

d:
d · · ·

µ1

w: w

· · ·

µ1
u:

u

m:
m· · ·

µ1

· · ·

µ2

c:
c · · ·

µ1

∂: ∂ · · ·

µ1

cut: · · ·
µ1

· · ·
µ2

ax:

Figure 5: Sequentiality of PDN.

γ ∈M�n (D)∪D. We set the duality on types to negate the orientation bit. By convention,
when depicting the relational typing of a PDN, we �x the orientation of wires so that the
orientation bit is always the same (say 0): on these oriented wires, we only give the value α
or a of the type.

De�nition 3.1 The rules of relational typing of simple PDN of depth 0 are given in Figure
4. This is extended to all PDN of depth 0 as follows: if µ =

∑n
i=1 µi is a sum of simple

nets with ordered interface I, then µ `I Γ as soon as µi `I Γ for some i (not necessar-
ily all). It remains to de�ne the typing of boxes. We write µ : (γ1, . . . , γl `I γ′1, . . . , γ′m)
if µ `I (γ′1, 0), . . . , (γ′m, 0), (γ1, 1), . . . , (γl, 1). Assume I = 0, . . . , l + m and there are typ-
ings µ : (ai1, . . . , a

i
l `I αi, β

i
1, . . . , β

i
m) for i ∈ {1, . . . , n}. Then for all box b of symbol

µ!, we have b : (a1, . . . , al `I [α1, . . . , αn] , β1, . . . , βm), where aj =
∑n
i=1 a

i
j and βk =∏n

i=1 β
i
k. The relational semantics of a PDN is then the set of its input-output typings:

JµKI = {((γ1, . . . , γl), (γ′1, . . . , γ
′
m)); µ : (γ1, . . . , γl `I γ′1, . . . , γ′m)}.

Theorem 3.2 The relational semantics of PDN is preserved under reduction.

Proof One simply inspects the reduction rules and checks that they preserve all possible
typings. Then one concludes by contextuality. �

4 Sequentiality

De�nition 4.1 A PDN is sequential if it is a sum of simple nets obtained by the rules of
Figure 5, plus the formation of boxes, where simple nets µ1 and µ2, and nets inside boxes are
inductively supposed to be sequential. It is said to be weakly sequential when one moreover
allows the formation of the empty PDN ε and the juxtaposition (i.e. disjoint union) of simple
nets as inductive cases.

A �rst sequentiality criterion is provided by the well-know Danos-Regnier switching con-
dition.

De�nition 4.2 Let µ be a simple PDN. A switching of µ is a graph G with vertices the
ports of µ and with edges as follows: every wire of µ is an edge in G; for each cell c in µ,

8

with symbol ` or c, there is an edge between c0 and exactly one of the ports ci, i > 0; for
each cell d in µ, with symbol other than ` or c, there is an edge between d0 and every port
dj, j > 0. A PDN ν is correct if every switching of every simple net ν in µ is acyclic and,
inductively, every PDN inside a box cell of ν is correct.

Of course, the set of correct PDN is stable under cut elimination.

Theorem 4.3 A PDN is weakly sequential i� it is correct.

Proof One adapts easily the proof by Danos in [9] for MELL proof structures to the case
of PDN. Indeed, this proof is only about the geometry of nets: here m is handled like ⊗, ∂
is handled like d and u is handled like a tensor unit.1 �

One consequence of the polarization property in linear logic, as described by Laurent
in [8], is that one can characterize exactly sequential proof structures, based on a simple
criterion on so-called correctness graphs. This no longer applies here: the typing rule of
codereliction breaks the constraining character of polarization. In particular, we can no
longer claim that every typed and sequential net has at most one positive conclusion: this
was an essential property of polarization in [10] and [8] (pure or intuitionistic PDN retain
this property, however, as �rst noted by Tranquilli for intuitionistic DN [5]).

5 Convolution λ̄µ-calculus

We now recall the de�nition of the convolution λ̄µ-calculus of [15]. Like Herbelin's λ̄µ-
calculus, it involves three distinct syntactic categories: terms (proofs with an active con-
clusion), contexts (proofs with an active hypothesis) and commands (cuts between active
conclusions of terms and active hypotheses of contexts). It moreover introduces a binary
operation on contexts, which is meant to provide a computational counterpart to the polar-
ized costructural rules of PDN. It turns out the obtained reduction rules closely resemble
the de�nition of the convolution product of distributions [18].

5.1 Syntax

Basic Syntax. Fix two denumerably in�nite sets V (set of variables, denoted by x, y, z)
and N (set of names, denoted by α, β, γ).

De�nition 5.1 De�ne terms, contexts and commands by:

s ::= x | λx s | µα c (simple terms)
σ ::= α | S · e (stacks)
e ::= 1 | σ ∗ e (simple contexts)
c ::= 〈s , e〉 (simple commands)

S ::= 0 | s+ S (terms)
E ::= 0 | e+ E (contexts)
C ::= 0 | c+ C (commands) .

We consider terms, commands and contexts up to permutativity of sum in the sense that,
e.g., s + (s′ + S) = s′ + (s + S). Also, we consider simple contexts up to permutativity of
convolution product: e.g., α ∗ ((S · e) ∗ e′) = (S · e) ∗ (α ∗ e′). Notice that these identities
preserve free and bound variables and names: hence they are compatible with α-conversion.

1Although this is not done in the present paper, one can introduce multiplicative units: 1 is positive and
⊥ is negative. Then, by the polarized typing rules of PDN, 1 (resp. ⊥) can be seen as a special case of u
(resp. w).

9

Notations. We call simple object any simple term, simple context or simple command,
and object any term, context or command. We allow formation of arbitrary �nite sums of
objects of the same kind, with the obvious meaning. Thus sum + becomes an associative and
commutative binary operation on terms, contexts and commands respectively, and object 0
is neutral. Similarly, we allow arbitrary �nite convolution products of simple contexts, with
unit 1. We can then extend our syntactic constructs by linearity:

λx (
∑n
i=1 si) =

∑n
i=1 λx si

µα (
∑r
l=1 cl) =

∑r
l=1 µα cl

S · (
∑p
j=1 ej) =

∑p
j=1 S · ej

(
∑p
j=1 ej) ∗ (

∑q
k=1 fk) =

∑p
j=1

∑q
k=1 ej ∗ fk〈∑n

i=1 si ,
∑p
j=1 ej

〉
=

∑n
i=1

∑p
j=1 〈si , ej〉 .

Notice that the cons S · E of term S and context E is not linear in the term: this is
the analogue of application not being linear in the argument, in ordinary λ-calculus. This
de�nition introduces some overlap of notations: e.g., λx s denotes both a simple term in our
basic syntax, and the value of λx (s+ 0) in the above de�nition. This is however harmless
since both writings denote the same term.

Hence the set of terms (resp. contexts, commands) is endowed with a structure of com-
mutative monoid. The set of contexts is moreover endowed with a structure of commutative
rig (i.e. a commutative ring, without the condition that every element admits an opposite),
with addition + and multiplication ∗. Also, λ- and µ-abstractions are linear, cons is linear
in the context, and cut is bilinear. Thanks to the notations we have just introduced, the
capture avoiding substitution of a term for a variable (resp. of a context for a name) in an
object is de�ned as usual, by induction on objects.

5.2 Translation and reduction

Translation. Before we recall the reduction of convolution λ̄µ-calculus from [15], we make
explicit the intended translation into PDN, �rst in a typed setting.

De�nition 5.2 The typing rules for the simple objects of convolution λ̄µ-calculus are given
in Figure 6, together with their translation in PDN: to each derivation of Γ ` s : A | ∆ (resp.
Γ | e : A ` ∆, c : (Γ ` ∆)), where Γ = x1 : A1, . . . , xn : An and ∆ = α1 : B1, . . . , αp : Bp, we
associate an intutionistic sequential PDN

A

B1
α1

··
·

Bp
αp!A1x1 ···

!An

xn

s

resp.
B1

α1

··
·

Bp
αp

A

!A1x1 ···

!An

xn

e ,
B1

α1

··
·

Bn αp
!Anxn ···

!A1
x1

c

 .

For sums of simple objects, we moreover have the following three typing rules:

{Γ ` si : A | ∆}i=1,...,n

Γ `
∑n
i=1 si : A | ∆

{Γ | ei : A ` ∆}i=1,...,n

Γ |
∑n
i=1 ei : A ` ∆

{ci : (Γ ` ∆)}i=1,...,n∑n
i=1 ci : (Γ ` ∆)

and the translation of a sum is the sum of the translations. In particular, the object 0 lives
in all types and is translated by PDN 0 with corresponding interface.

From this de�nition, one easily derives a translation of pure convolution λ̄µ-calculus into pure
typed sequential PDN. Like the translation of λ-calculus into linear logic, this translation of
convolution λ̄µ-calculus is meant up-to a structural equivalence on PDN.

10

Γ, x : A ` x : A | ∆

w···!Γ

w

w

··
·

∆

w

!A
x

A
d

Γ, x : A ` s : B | ∆
Γ ` λx s : A⇒ B | ∆ B

··
·

∆

···!Γ

!A x

s

?A⊥ ` B`

Γ | α : A ` α : A,∆
w···!Γ

w

w

··
·

∆

w

A
α

c : (Γ ` α : A,∆)
Γ ` µα c : A | ∆

A

α

··
·

∆···!Γ c

Γ ` s : A | ∆ Γ | e : B ` ∆
Γ | s · e : A⇒ B ` ∆

··
·

B

··· e

!A

··
····

A

··
···· s

!

c

··
·

∆

c

c···!Γ

c

?A
⊥ ` B

⊗

Γ ` s : A | ∆ Γ | e : A ` ∆
〈s , e〉 : (Γ ` ∆)

A

··
···· s

··
···· e

c

··
·

∆

c

c···!Γ

c

Γ | 1 : A ` ∆
w···!Γ

w

w

··
·

∆

w

A
u

Γ | σ : A ` ∆ Γ | e : A ` ∆
Γ | σ ∗ e : A⇒ B ` ∆

··
···· σ

··
···· e

c

··
·

∆

c

c···!Γ

c

A
m

Figure 6: Typing of convolution λ̄µ-calculus objects and translation in PDN.

11

c

w

∼= m

u

∼= · · ·
µw

· · · !

∼=
· · ·
· · ·

µ

!

w

c ∼= c m ∼= m

· · ·
µ

· · · !

∼=
· · ·
· · ·
µ

!

c

c

∼=
c

c

m

m

∼=
m

m

· · ·

µ

c

· · · !

∼=
· · ·

· · ·
µ

!

c

Figure 7: Structural equivalence of PDN

De�nition 5.3 We de�ne the structural equivalence ∼= of PDN, as the re�exive, symmetric,
transitive and contextual closure of the equations of Figure 7.

Convolution Reduction. We call contextual relation any triple r of binary relations re-
spectively on terms, contexts and commands, each also denoted by r, which are closed under
the constructions of De�nition 5.1: let • denote a single occurrence of simple object θ in
object Θ, then θ r Θ′ implies Θ r Θ [Θ′/•].

De�nition 5.4 Reduction → is the least contextual relation such that:

〈µα c , e〉 → c [e/α] (1)

〈λx s , (S · e) ∗ f〉 → 〈λy µα 〈s [y + S/x] , α ∗ e〉 , f〉 (2)

〈λx s , 1〉 → 〈s [0/x] , 1〉 (3)

with y a fresh variable and α a fresh name in (2).

In [15], it is proved that this notion of reduction is con�uent. It also is proved in [19]
that the simply typed objects of convolution λ̄µ-calculus are all strongly normalizing: one
adapts the proof by Polonowski in [20] for λ̄µµ̃-calculus. We now prove it corresponds with
cut elimination in PDN.

Lemma 5.1 The PDN represented in sub�gures (a), (b), (c) and (d) of Figure 8 reduce
to PDN structurally equal to the translation of respectively c [e/α], c [0/x], c [y + z/x] and
c [T/x], where: c : (Γ ` α : A,∆) and Γ | e : A ` ∆ in case (a); c : (Γ, x : A ` ∆) in cases
(b), (c) and (d); y and z are distinct fresh variables in case (c); Γ ` T : A | ∆ in case (d).

Theorem 5.5 The cut elimination procedure of PDN up-to structural equivalence simu-
lates the reduction of convolution λ̄µ-calculus.

Proof By context closure, it is su�cient to consider the case of redexes. For 〈µα c , e〉 →
c [e/α], case (a) of Lemma 5.1 applies directly. For 〈λx s , 1〉 → 〈s [0/x] , 1〉, reduce the cut
〈u ,`〉, then apply case (b). For 〈λx s , (S · e) ∗ f〉 → 〈λy µα 〈s [T + y/x] , e ∗ α〉 , f〉, reduce
the cut 〈m ,`〉 followed by 〈⊗ ,`〉; then apply case (c) with fresh variables y and z, followed
by case (d) to obtain the PDN associated with 〈λy µα 〈s [y + z/x] [T/z] , e ∗ α〉 , f〉. �

12

A α

··
···· c

··
···· e

c

··
·

∆

c

c···!Γ

c

(a)
··

·

∆

···!Γ

!A

x

c

u

··
·

∆

···!Γ

!A

x

c

!A
y

!A
z

m

(b) (c)

··
·

···

c

!A

x

··
····

A

··
···· T

!

c

··
·

∆

c

c···!Γ

c

(d)

Figure 8: PDN simulating the substitution operations of the convolution λ̄µ-calculus

Recall from [15] that the relational model described in section 3 provides a denotational
semantics of convolution λ̄µ-calculus. The reader will easily check that this semantics can
be decomposed as the translation of pure convolution λ̄µ-calculus in PDN, followed by the
semantics of pure typed PDN in D.

5.3 Towards a di�erential λ̄µ-calculus

Notice that 〈λx s , (T · e) ∗ (U · f)〉 →∗ 〈s [T + U/x] , e ∗ f〉. In some sense, context (T · e) ∗
(U · f) simulates (T +U) · (e ∗ f), as is re�ected by the fact that these contexts are identi�ed
in the relational semantics (see [15]). This suggests to introduce notations S! = S · 1 and
↑e = 0 · e so that S! ∗ ↑e simulates S · e: from now on, we consider a syntax where stacks
are restricted to those two shapes. Reduction rule (2) boils down to the elementary rules〈
λx s , T ! ∗ f

〉
→ 〈λx s [x+ T/x] , f〉 and 〈λx s , ↑e ∗ f〉 → 〈λxµα 〈s , e ∗ α〉 , f〉. In this new

syntax, all causality information in stacks is lost, and one only retains a minimal form of
sequentiality: contexts of type A ⇒ B become bags of arguments of type A and future
contexts of type B.

So far, we only focused on the computational content of costructural rules. It turns out the
breaking down of contexts we have just performed makes the introduction of di�erentiation
in the sense of [2] very natural in this setting. Introduce a new stack construction [s] with
typing rule and associated net:

Γ ` s : A | ∆
Γ | [s] : A⇒ B ` ∆

and ··
·

∆···!Γ s

u?A⊥ ` B
B

⊗

!A A
∂

.

One then de�nes a linear variant of substitution ∂ θ
∂ x
· t following [2] so that 〈λx s , [t] ∗ e〉 →〈

λx ∂ s
∂ x
· t , e

〉
, in adequation with cut-elimination in PDN.

One has to pay attention to the fact that case (a) of Lemma 5.1 no longer holds: stacks
containing linear arguments can no longer be duplicated nor erased freely. Hence one has to
introduce a notion of named cut : let θ be any simple object with free name α of type A and e
be a simple context of type A, we must de�ne object 〈θ , e〉α so that the PDN interpretation
of 〈µα c , e〉 reduces (up to ∼=) to that of 〈θ , e〉α. This can be done by induction on e,
inspecting the possible PDN reductions, and involves a construction similar to the named

13

derivative of [13]. One then proves that the reduction relation of the obtained pure calculus is
con�uent and appropriately simulated by cut-elimination in PDN; simply typed objects are
moreover strongly normalizing. These results are detailed in [19, Chapter 8]. The obtained
system can be seen as a classical sequent calculus version of di�erential λ-calculus.

Current investigations include: establishing a precise relationship between this calculus
and Boudol's resource λ-calculus as studied in [5]; studying the �equation� S! =

∑n
i=1

1
n! [S]n,

w.r.t. both denotational and operational semantics, following [21, 22]; relating the convo-
lution product with parallel composition as known in concurrency theory; more generally,
revealing the expressivity of di�erential λ̄µ-calculus w.r.t. concurrent computing, following
recent advances [23] on simulating Milner's π-calculus [24] in DN.

References

[1] Ehrhard, T., Regnier, L.: Di�erential interaction nets. Theor. Comput. Sci. 364 (2006)
166�195

[2] Ehrhard, T., Regnier, L.: The di�erential lambda-calculus. Theor. Comput. Sci. 309
(2003) 1�41

[3] Girard, J.Y.: Normal functors, power series and lambda-calculus. Annals of Pure and
Applied Logic 37(2) (1988) 129�177

[4] Ehrhard, T.: Finiteness spaces. Math. Struct. Comput. Sci. 15(4) (2005) 615�646

[5] Tranquilli, P.: Intuitionistic di�erential nets and lambda-calculus. To appear in Theor.
Comput. Sci (2008)

[6] Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation 2 (1992) 297�347

[7] Girard, J.Y.: A new constructive logic: Classical Logic. Mathematical Structures in
Computer Science 1(3) (1991) 255�296

[8] Laurent, O.: Étude de la polarisation en logique. PhD thesis, Université Aix-Marseille 2
(2002)

[9] Danos, V.: Une application de la logique linéaire à l'étude des processus de normalisation
(principalement du λ-calcul). PhD thesis, Université Paris 7 (1990)

[10] Regnier, L.: Lambda-calcul et réseaux. PhD thesis, Université Paris 7 (1992)

[11] Laurent, O., Regnier, L.: About translations of classical logic into polarized linear
logic. In: Proceedings of the eighteenth annual IEEE symposium on Logic In Computer
Science, IEEE Computer Society Press (June 2003) 11�20

[12] Bierman, G.M.: What is a categorical model of intuitionistic linear logic? In Dezani,
M., ed.: Proceedings of Conference on Typed lambda calculus and Applications. Volume
902 of Lecture Notes in Computer Science., Springer-Verlag (1995)

[13] Vaux, L.: The di�erential λµ-calculus. Theor. Comput. Sci. 379(1-2) (2007) 166�209

14

[14] Bucciarelli, A., Ehrhard, T., Manzonetto, G.: Not enough points is enough. In: Com-
puter Science Logic. Volume 4646 of Lecture Notes in Computer Science., Springer
Berlin (2007) 298�312

[15] Vaux, L.: Convolution λ̄µ-calculus. In Rocca, S.R.D., ed.: TLCA. Volume 4583 of
Lecture Notes in Computer Science., Springer (2007) 381�395

[16] Mazza, D.: Interaction Nets: Semantics and Concurrent Extensions. PhD thesis,
Université Aix�Marseille 2, Università degli Studi Roma Tre (2006)

[17] Lafont, Y.: From proof nets to interaction nets. In Girard, J.Y., Lafont, Y., Regnier,
L., eds.: Advances in Linear Logic, Cambridge University Press (1995) 225�247

[18] Schwartz, L.: Théorie des distributions. Hermann (1966)

[19] Vaux, L.: λ-calcul di�érentiel et logique classique: interactions calculatoires. PhD
thesis, Université Aix-Marseille 2 (2007)

[20] Polonowski, E.: Substitutions explicites, logique et normalisation. PhD thesis, Univer-
sité Paris 7 (2004)

[21] Ehrhard, T., Regnier, L.: Uniformity and the Taylor expansion of ordinary lambda-
terms. Theor. Comput. Sci. 403 (2008) 347�372

[22] Ehrhard, T., Regnier, L.: Böhm trees, Krivine's machine and the Taylor expansion of
lambda-terms. In Beckmann, A., Berger, U., Löwe, B., Tucker, J.V., eds.: CiE. Volume
3988 of Lecture Notes in Computer Science., Springer (2006) 186�197

[23] Ehrhard, T., Laurent, O.: Interpreting a �nitary pi-calculus in di�erential interaction
nets. In Caires, L., Vasconcelos, V.T., eds.: Concurrency Theory (CONCUR '07).
Volume 4703 of Lecture Notes in Computer Science., Springer (September 2007) 333�
348

[24] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i. Inf. Comput.
100(1) (1992) 1�40

15

