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Typed λ-calculi

Terms
s, t ::= x | a | λx s | s t

Typing

(Var)
∆, x : A ` x : A

a ∈ CA (Const)
∆ ` a : A

∆, x : A ` s : B (Abs)
∆ ` λx s : A→ B

∆ ` s : A→ B ∆ ` t : A (App)
∆ ` s t : B

Conversions
(λx s) t→ s [x := t], . . .

We could add products and unit type with the corresponding term

constructions and conversions.

L. Vaux A Non-Uniform Finitary Relational Semanticsof System T



The relational model
System T

Finiteness spaces
Motivations and Perspectives

The cartesian closed category of sets and relations
The relational model of typed λ-calculi
Features

A category of sets and multi-relations

De�nition (The category Rel)

Objects: Sets

Morphisms: Rel(A,B) = P
(
A! × B

)
(A! ::=M�n (A))

Identities: idA = {([α] , α); α ∈ A}
Composition: If f ∈ Rel(A,B) and g ∈ Rel(B,C),

g ◦ f =

{(
n∑
i=1

αi, γ

)
; ∃([β1, . . . , βn] , γ) ∈ g∧ ∀i, (αi, βi) ∈ f

}

Intuition: resources
([α1, . . . , αn] , β) ∈ f means:

f can produce result β consuming data α1, . . . , αn.
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A category of sets and multi-relations

De�nition (The category Rel)

Objects: Sets

Morphisms: Rel(A,B) = P
(
A! × B

)
(A! ::=M�n (A))

Identities: idA = {([α] , α); α ∈ A}
Composition: If f ∈ Rel(A,B) and g ∈ Rel(B,C),

g ◦ f =

{(
n∑
i=1

αi, γ

)
; ∃([β1, . . . , βn] , γ) ∈ g∧ ∀i, (αi, βi) ∈ f

}

Folklore
Rel is cartesian closed (with product the disjoint sum of sets).

Rel can be constructed as the co-Kleisly of the co-monad −! in the

category Rel0 of sets and relations, which is a model of linear logic.
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The relational model of typed λ-calculi

On types

Fix JXK any set. Then JA→ BK = JAK! × JBK.

On terms
If x1 : A1, . . . , xn : An ` s : A we (will soon) de�ne

JsK ⊆ A1! × · · · ×An! ×A.

Notation
Write xα11 : A1, . . . , x

αn
n : An ` sα : A for (α1, . . . , αn, α) ∈ JsK so

that

JsK =
{
(α1, . . . , αn, α); x

α1
1 : A1, . . . , x

αn
n : An ` sα : A

}
Cf. experiments in linear logic proof nets.
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Computing points in the relational model

JVarK
∆[], x[α] : A ` xα : A

a ∈ CA α ∈ JaK
JConstK

∆[] ` aα : A

Γ, xα : A ` sβ : B JAbsK
Γ ` λx s(α,β) : A→ B

Γ0 ` s([α1,...,αk],β) : A→ B Γ1 ` tα1 : A · · · Γk ` tαk : A JAppK∑k
j=0 Γj ` s tβ : B

Notations

∆[] = x
[]
1 : A1, . . . , x

[]
n : An

Γ + Γ ′ = x
α1+α

′
1

1 : A1, . . . , x
αn+α

′
n

n : An
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Computing points in the relational model

JVarK
∆[], x[α] : A ` xα : A

a ∈ CA α ∈ JaK
JConstK

∆[] ` aα : A

Γ, xα : A ` sβ : B JAbsK
Γ ` λx s(α,β) : A→ B

Γ0 ` s([α1,...,αk],β) : A→ B Γ1 ` tα1 : A · · · Γk ` tαk : A JAppK∑k
j=0 Γj ` s tβ : B

Examples

r
λxA x

z
= idA = {([α] , α); α ∈ A}

r
λxA λyB x

z
= {([α] , [] , α); α ∈ A}
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Computing points in the relational model

JVarK
∆[], x[α] : A ` xα : A

a ∈ CA α ∈ JaK
JConstK

∆[] ` aα : A

Γ, xα : A ` sβ : B JAbsK
Γ ` λx s(α,β) : A→ B

Γ0 ` s([α1,...,αk],β) : A→ B Γ1 ` tα1 : A · · · Γk ` tαk : A JAppK∑k
j=0 Γj ` s tβ : B

Examplesr
λxA→A λyA (x (xy))

z

=

{(
[([α1, . . . , αn] , α) , (α1, α1), . . . , (αn, αn)] ,

n∑
i=1

αi, α

)
; . . .

}
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Computing points in the relational model

JVarK
∆[], x[α] : A ` xα : A

a ∈ CA α ∈ JaK
JConstK

∆[] ` aα : A

Γ, xα : A ` sβ : B JAbsK
Γ ` λx s(α,β) : A→ B

Γ0 ` s([α1,...,αk],β) : A→ B Γ1 ` tα1 : A · · · Γk ` tαk : A JAppK∑k
j=0 Γj ` s tβ : B

Invariance

If s→ t then JsK = JtK.
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Features

Fixpoints

Straightforward: µf =
⋃
k≥0 f

k · ∅!.
Least �xpoint operator: FixA =

⋃
k≥0Fix

(k)
A , where Fix(0)A = ∅

and Fix(k+1)A =
r
λf
(
f
(
Fix(k)A f

))z
={

([([α1, . . . , αn] , α)] +
∑n
i=1ϕi, α) ; ∀i, (ϕi, αi) ∈ Fix

(k)
A

}
.

Re�exive objects

Fix D0 and take D =
⋃
nDn with Dn+1 = Dn ∪ (Dn! ×Dn).

Extensional variant:
{(
δi
)
i∈N ∈ D

N
n ; δi = [] for almost all i

}
.

Non uniformity

Models some form of intrinsic non-determinism: introduce term

constructs 0 and s+ t and J0K = ∅ and Js+ tK = JsK ∪ JtK.
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Resource
Models Ehrhard�Regnier's di�erential λ-calculus with

JDs · tK = {(α,β); (α+ [α ′] , β) ∈ JsK ∧ α ′ ∈ JtK}.

Implicit complexity

The size of the semantics is related with execution time in abstract

machines (Carvalho, 2007).

An ubiquitous concept

Underlies all web based denotational semantics: coherence,

correllation, probabilistic coherence, �niteness. . .

Very similar to intersection type systems (Carvalho, 2007).

Related with domains à la Scott via an extensional collapse (Ehrhard, 2009).
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What about data types ?
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System T
Add a base type Nat, with O : Nat, S : Nat→ Nat, and one of:

Iterator
IA : Nat→ (A→ A)→ A→ A with conversions

I (O)uv→ v I (S t)uv→ u (I t u v)

Or the tail-recursive variant.

Recursor
RA of type Nat→ (Nat→ A→ A)→ A→ A with conversions

R (O)uv→ v R (S t)uv→ u t (R t u v)

Notice I ' λx λyλz (R x (λx ′ y) z).

Using products, one can recover R from I, but only by values.
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A naive interpretation
We are tempted to set:

JNatK = N JOK = {0} JSK = {([n] , n+ 1); n ∈ N}

But this would fail: because the successor is linear,
q
I (S x)

(
λy ′ y

)
z
y
x:Nat,y:A,z:A

= JyKx:Nat,y:A,z:A
= {([] , [α] , [] , α); α ∈ A}

enforces:

JIK ⊇ {([] , [([] , α)] , [] , α); α ∈ A}
hence:

JI OK ⊇ {([([] , α)] , [] , α); α ∈ A}
which would contradict:

JI OK = Jλy λz zK = {([] , [α] , α); α ∈ |JAK|}
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Lazy integers

The successor cannot be strict: without looking at x, we should

know S x is greater than O.

Greater than. . .
Take a new copy of Nat: Nat> = {n>; n ∈ Nat}.
n> stands for an undetermined integer, greater than n.

Interpretation

Let

JNatK = N ∪N>

JOK = {0}

JSK = {([] , 0>)} ∪
{
([ν] , ν+); ν ∈ JNatK

}
with n+ = n+ 1 and (n>)+ = (n+ 1)>.
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Pattern matching lazy natural numbers

Syntax

A new constant C : Nat→ (Nat→ A)→ A→ A

with conversions

CO t u→ u and C (S s) t u→ t s

Idea:

C s t u = match s with

{
O 7→ u

S s ′ 7→ t s ′

Semantics

JC K = {([0] , [] , [α] , α); α ∈ |A|}
∪ {([0>] + ν+, [(ν, α)] , [] , α); ν ∈ JNatK ∧ α ∈ A}
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Interpretation of system T

Recursor
Recall: R (O)uv→ v R (S t)uv→ u t (R t u v)
Then set:

JRK = Fix
r
λf λxNat λyNat→A→A λzA (C x(λx ′A (yx ′ (f x ′ y z))) z)z

Iterator
Take:

JIK =
r
λxNat λyNat→A→A λzA (R x (λx ′ y) z)z

Theorem
Rel is a model of system T .
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A uniformity property of iteration

De�nition
If k ∈ N, k ::= Skl O = {l>; l < k} ∪ {k} ∈ F (Nl).
Say n ∈ F (Nl) is uniform if n ⊆ k for some k.

Lemma
JIK =

⋃
k≥0 I(k), where I(0) = {([0] , [] , [α] , α); α ∈ |A|} and

I(k+1) = I(0) ∪{ (
[0>] +

∑n
i=0 ν

+
i , [([α1, . . . , αn] , α)] +

∑n
i=1ϕi,

∑n
i=1 αi, α

)
;

∀i, (νi, ϕi, αi, αi) ∈ I(k)b

}

Theorem
If (ν,ϕ, α, α) ∈ I(k) \ I(k−1) (I(−1) = ∅) then Supp(ν) ⊆ k.
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Polar construction: coherence spaces

For a, a ′ ⊆ A, write a⊥a ′ when # (a ∩ a ′) ≤ 1

Polar
If F ⊆ P(A), let F⊥ = {a ′ ⊆ A; ∀a ∈ F, a⊥a ′}
For all F ⊆ P(A):

I F ⊆ F⊥⊥;

I if G ⊆ F, F⊥ ⊆ G⊥;

I F⊥ = F⊥⊥⊥.

A coherence on A is F such that F⊥⊥ = F.

De�nition
A coherence space is a pair A = (|A| ,F (A))
where F (A) is a coherence on |A|.
The elements of F (A) are called the cliques of A.
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Polar construction

For a, a ′ ⊆ A, write a⊥a ′ when . . .

Polar
If F ⊆ P(A), let F⊥ = {a ′ ⊆ A; ∀a ∈ F, a⊥a ′}
For all F ⊆ P(A):

I F ⊆ F⊥⊥;

I if G ⊆ F, F⊥ ⊆ G⊥;

I F⊥ = F⊥⊥⊥.

A . . . on A is F such that F⊥⊥ = F.

De�nition
A . . . is a pair A = (|A| ,F (A))
where F (A) is a . . . on |A|.
The elements of F (A) are called the . . . of A.
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Polar construction: sets

For a, a ′ ⊆ A, write a⊥a ′ always

Polar
If F ⊆ P(A), let F⊥ = {a ′ ⊆ A; ∀a ∈ F, a⊥a ′}
For all F ⊆ P(A):

I F ⊆ F⊥⊥;

I if G ⊆ F, F⊥ ⊆ G⊥;

I F⊥ = F⊥⊥⊥.

The powerset of A is the only F such that F⊥⊥ = F.

De�nition
A set is a pair A = (|A| ,F (A))
where F (A) is the powerset of |A|.
The elements of F (A) are called the subsets of A.
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Polar construction: �niteness spaces

For a, a ′ ⊆ A, write a⊥a ′ when a ∩ a ′ is �nite

Polar
If F ⊆ P(A), let F⊥ = {a ′ ⊆ A; ∀a ∈ F, a⊥a ′}
For all F ⊆ P(A):

I F ⊆ F⊥⊥;

I if G ⊆ F, F⊥ ⊆ G⊥;

I F⊥ = F⊥⊥⊥.

A �niteness structure on A is F such that F⊥⊥ = F.

De�nition
A �niteness space is a pair A = (|A| ,F (A))
where F (A) is �niteness structure on |A|.
The elements of F (A) are called the �nitary subsets of A.
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A category of �niteness spaces

Finitary multi-relations

If A and B are �niteness spaces, de�ne A⇒ B by

|A⇒ B| = |A|! × |B| and f ∈ F (A⇒ B) i�
∀a ∈ F (A), f · a! ∈ F (B)

and ∀β ∈ |B|, (f⊥ · {β}) ∩ a! is �nite

Theorem
Finitary multi-relations compose and id|A| ∈ F (A⇒A). Hence we

can de�ne the category Fin of �niteness spaces and �nitary

multi-relations.
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A �niteness property of the relational model

Theorem
Fin is cartesian closed, with the same constructions as Rel, with
product A× B such that |A× B| = |A| ] |B| and
F (A× B) = {a ] b; a ∈ F (A)∧ b ∈ F (B)}.
Fin is also the co-Kleisly of a co-monad ! in the category Fin0 of �niteness spaces and �nitary relations:

f ∈ Fin0(A,B) i� ∀a ∈ F (A), f · a ∈ F (B) and ∀b ∈ F
(
B⊥

)
, f⊥ · b ∈ F

(
A⊥

)
;

|!A| = |A|! and F (!A) =
{
u; ∃a ∈ F (A) , u ⊆ a!

}
.

Interpretation of pure typed λ-calculus

For all base type A, �x F (A) a �niteness structure on JAK. Then
set F (A→ B) = (JAK ,F (A))⇒ (JBK ,F (B)).

Theorem
Assume, for all a ∈ CA, a ∈ F (A). If x1 : A1, . . . , xn : An ` s : A
then JsK ∈ F (A1 → · · ·→ An → A).
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Finiteness of system T

Finitary lazy integers

Let n ∈ F (Nat) i� n is �nite.

Then JOK = {0} ∈ F (Nat) and
JSK = {([] , 0>)} ∪ {([ν] , ν+); ν ∈ JNatK} ∈ F (Nat→ Nat).

Theorem
We also have: JIK ∈ F (Nat→ (A→ A)→ A→ A) and
JRK ∈ F (Nat→ (Nat→ A→ A)→ A→ A).

Not immediate because, in general, Fix|A| is not �nitary in

(A⇒A)⇒A. For instance FixJNatK JSK = Nat>.
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Proof (i) the image of a �nitary subset is �nitary

Notation
Write JRK =

⋃
k≥0R(k), where R(0) = {([0] , [] , [α] , α); α ∈ JAK}

and R(k) = Φk
(
R(0)

)
with Φ = . . .

For all k, R(k) ∈ F (Nat→ (Nat→ A→ A)→ A→ A).

Lemma
For all γ = (ν,ϕ, α, α) ∈ JRK, γ ∈ R(max(ν)).

Corollary

If n ∈ F (Nat), then JRK · n! ⊆ R(max(n)) · n! which is �nitary.
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Proof (ii) the preimage of a singleton is anti�nitary

Notation
# ([α1, . . . , αk]) ::= k
## ([(ν1, α1, α1), . . . , (νk, αk, αk)]) ::=

∑k
j=1# (νj).

Lemma
For all γ = (ν,ϕ, α, α) ∈ JRK, # (ν) = # (α) +# (ϕ) +## (ϕ).

Corollary

For all n ∈ F (JNatK), and all δ = (ϕ,α, α),(
JRK⊥ · {δ}

)
∩ n! =

{
ν ∈ n!; # (ν) = # (α) +# (ϕ) +## (ϕ)

}
is �nite.
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Quantitative semantics

Idea
Interpret s by a linear combination: LsM =

∑
α∈JsKLsMαα

so that application is given by:

Ls tM =
∑

(α,β)∈JsK

LsM(α,β)LtMαβ

where LtM[α1,...,αk] ::= LtMα1 · · · LtMαk .
We need some notion of convergence !

In �niteness spaces

Because JsK ∈ F (A⇒ B) and JtK ∈ F (A), we have: for all

β ∈ JBK, there are �nitely many α ∈ JtK! such that (α,β) ∈ JsK.
Such a model grounded the introduction of di�erential λ-calculus.
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Towards a quantitative semantics of system T

Roadmap

I Find a correct quantitative semantics of C (easy).

I See that it de�nes a quantitative semantics of R and I (this is
not automatic, because �xpoints are not �nitary).

A di�erential system T

What's the point ?

Maybe interesting expressivity results.

Think of a language where you can de�ne

λxNat→Nat λyNat λzNat (Dx · y) z.
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Type �xpoints in �niteness spaces

Ongoing work with Christine Tasson (PPS, Paris).

Data types

The �nitary relational interpretation should be feasible for arbitrary

datatype, at least when expressed as �xpoints of positive functors.

This is not trivial, because we must generalize laziness.

Idea: use µXF(1 & X) rather than µXF(X).

Good tempered morphisms

An interesting problem: characterize those �nitary morphisms

which admit �nitary �xpoints (all of them, or at least a large class).

Recursors for arbitrary data types should belong there.
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The end.
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