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Everything is in the title

(∀M ∈ Λ+) M ∈ SN ⇐⇒ T (M) ∈ F

We characterize the strong normalizability (SN)

of (non-deterministic) λ-terms (Λ+)

as a �niteness structure (F)

via Taylor expansion (T ).
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Quantitative semantics

A prime aged idea (Girard, '80s, before LL)
λ-terms = analytic functions = power series
Originally: for the λ-calculus, in an abstract categorical setting
(coe�cients are sets)

Finitness spaces (Ehrhard, early 2000's)
Reformulate q.s. in a linear logic setting using standard algebra:

I types  particular topological vector spaces:

JAK ⊆ k|A| + some additional structure

I function terms  power series

Di�erentiation of λ-terms (Ehrhard-Regnier 2003-2004)
So we can di�erentiate λ-terms, and compute their Taylor expansion!
And one can mimick that in the syntax:

I di�erential λ-calculus

I a �nitary fragment: resource λ-calculus
= the target of Taylor expansion
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Resource λ-calculus

Resource terms

∆ 3 s, t, . . . ::= x | λx.s | 〈s〉 t
∆! 3 s, t, . . . ::= [s1, . . . , sn]

Meaning: 〈s〉 [s1, . . . , sn] = (Ds)0 · (s1, . . . , sn)

Resource reduction

〈λx.s〉 t→ρ ∂xs · t (anywhere)

∂xs · t =

{ ∑
f∈Sn s

[
tf(1), . . . , tf(n)/x1, . . . , xn

]
if degx(s) = #t = n

0 otherwise

linearity: λx.0 = 0, 〈s〉 [t1 + t2, u] = 〈s〉 [t1, u] + 〈s〉 [t2, u], . . .

I Resource reduction preserves free variables, is size-decreasing,
strongly con�uent and normalizing.
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Taylor expansion of λ-terms

Semantically, (M)N =
∑
n∈N

1
n! 〈M〉 N

n where Nn = [N, . . . , N ].

Taylor expansion: ~T (M) ∈ Q+∆

~T ((M)N) =
∑
n∈N

1

n!

〈
~T (M)

〉
~T (N)

n

~T (x) = x ~T (λx.M) = λx.~T (M)

Theorem (Ehrhard-Regnier, CiE 2006)
If M ∈ Λ, then ~T (M) normalizes to ~T (BT (M)).

Moral
In the ordinary λ-calculus BT (M) ' NF(~T (M)).
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Normalizing Taylor expansions

: uniformity to the rescue!

But how can ~T (M) even normalize?
We want to set

NF
(
~T (M)

)
=
∑
s∈∆

~T (M)s .NF (s)

 in�nite sums (and in general we might consider all kinds of coe�cients)

 convergence?

Theorem (Ehrhard-Regnier 2004, published in TCS in 2008)
Write T (M) =

∣∣∣~T (M)
∣∣∣. Then for all t ∈ ∆, there is at most one

s ∈ T (M) such that NF (s)t 6= 0.

Proof.
λ-terms are uniform: their �nitary approximants are pairwise coherent.

This fails in general
NF
(∑

n∈N 〈λx.x〉
n

[y]
)

= ? 〈λx.x〉n [y] = 〈λx.x〉 [〈λx.x〉 [· · · [y] · · · ]]
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A minimalistic non-uniform calculus

Λ+ 3M,N, . . . ::= x | λx.M | (M)N |M +N

(λx.M)N →β M [N/x]

(M +N)P = (M)P + (N)P

Example
Let δM = λx. (M + (x)x) and ∞M = (δM ) δM : ∞M →∗β M +∞M .

Taylor expansion in a non uniform setting

~T (M +N) = ~T (M) + ~T (N)

Then NF
(
~T (∞M )

)
= ?
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Finiteness structures to the rescue

The main artifact of Ehrhard's �niteness spaces:

De�nition

I If a, a′ ⊆ A, write a ⊥ a′ i� a ∩ a′ is �nite.
I If S ⊆ P (A), let S⊥ := {a′ ⊆ A; ∀a ∈ S, a ⊥ a′}.
I A �niteness structure is any F = S⊥ .

When is ~T (M) normalizable?

I Write s ≥ t if s→∗ρ t+ · · · .
I Let ↑t = {s ∈ ∆; s ≥ t}.
I ~T (M) is normalizable i� for all normal t ∈ ∆, T (M) ⊥ ↑t .
I {↑t ; t normal ∈ ∆}⊥ is the �niteness structure of (supports of)

normalizable vectors.
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Typed terms have a �nitary Taylor expansion

Let system F+ be system F plus
Γ `M : A Γ ` N : A

Γ `M +N : A
.

Theorem (Ehrhard, LICS 2010)
If M ∈ Λ+ is typable in system F+, then T (M) ∈ {↑t ; t ∈ ∆}⊥ .

Proof.
Manage sets of resource terms as if they were λ-terms, and follow the
usual reducibility technique, associating a �niteness structure
Fin (A) ⊆ {↑t ; t ∈ ∆}⊥ with each type A.
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Our results

I Typability in F can be relaxed to strong normalizability.

I Then the implication

M ∈ SN⇒ T (M) ∈ {↑t ; t ∈ ∆}⊥

can be reversed. . .

I provided the �niteness {↑t ; t ∈ ∆}⊥ is re�ned to a tighter one.
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M ∈ SN⇒ T (M) ∈ {↑t ; t ∈ ∆}⊥

In the ordinary λ-calculus:

I SN = typability in system D (simple types + ∩)
I �any� proof by reducibility for simple types is valid for D

So we:

I introduce a system D+ of intersection types for non uniform
terms (this needs some care)

I prove that M ∈ SN implies Γ `M : A in D+

I adapt Ehrhard's proof to D+
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T (M) ∈ {↑t ; t ∈ ∆}⊥ ⇒M ∈ SN
Finiteness prevents loops. . .
Consider δn = λx. 〈x〉 [xn]; then for all n ∈ N,
T (Ω) 3 〈δn〉 [δ0, δ0, δ1 . . . , δn−1] ≥ 〈δ0〉 []→ρ 0. Hence

T (Ω) 6∈ {↑t ; t ∈ ∆}⊥ .

. . . but not divergence
Let ∆3 := λx. (x)xx and Ω3 := (∆3) ∆3, then T (Ω3) ⊥ ↑s for all s.

However, writing ` (M) for the only linear term ∈ T (M):

T (Ω3) 6⊥
⋃

Ω3→∗
βM

x` (M)

Fix: add more tests

I Consider a structure S ⊆ P (∆) and let FS = {↑a ; a ∈ S}⊥
with ↑a =

⋃
s∈a ↑s .

I Idea: S is a set of tests: M passes the test a ∈ S if T (M) ⊥ ↑a .
I Ehrhard's �niteness is FPf (∆): we need to consider in�nite tests.

I Of course, not all S are acceptable, otherwise we reject too many
terms (consider S = P (∆)).
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Glueing everything together
I We can adapt the reducibility proof and show that
M ∈ SN⇒ T (M) ∈ FS provided S satis�es:

I for all n ∈ N, for all a ∈ S, {s ∈ a; height(s) = n} is �nite.
I + some additional, purely technical conditions.

I T (M) ∈ FS ⇒M ∈ SN as soon as S contains all sets of linear
resource terms

I We want {s} ∈ S for all s ∈ ∆ (or at least those in normal form)

so that T (M) ∈ FS ⇒ NF
(
~T (M)

)
is de�ned.

Example
B = {a ⊆ ∆; # (a) is bounded} where # (a) = {# (s) ; s ∈ a} and
# (s) is the maximum size of a bag of arguments in s.

Theorem (Pagani-Tasson-V.)
The following are equivalent:

I M ∈ SN;

I T (M) ∈ FB.

Moreover, in this case, ~T (M) is normalizable.
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Conclusion

We are happy.
We have established a nice and novel characterization of SN.

Are we?
The really useful bit is that:

the Taylor expansion of a strongly normalizable term is normalizable

which is a bit frustrating (why �strongly�?).

Yes we are: plenty of future work!

I Our machinery is modular enough that it can be adapted to
weak- and head-normalizability (WIP with Pagani and Tasson).

I That ~T (NF (M)) = NF(~T (M)) follows from the fact that we can
track β-reduction through Taylor expansion (WIP).

I Towards a semantically founded notion of Böhm trees for various
non uniform settings (quantitative non-determinism, probabilistic
stu�, etc.).
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The end

Thanks for your attention.

Questions?
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