On the transport of finiteness structures

Lionel Vaux mainly based on joint work with Christine Tasson: Transport of finiteness structures and applications, MSCS, 2011

Institut de Mathématiques de Luminy, Marseille, France

TACL 2011, Marseille July 26-30 2011

Sets and relations

Definition

The category Rel of sets and relations has sets as objects and relations as morphisms: $f \in \text{Rel}(A, B) \iff f \subseteq A \times B$. Relational composition is given by:

$$(\alpha,\gamma)\in g\circ f\iff \exists\beta,\ (\alpha,\beta)\in f\wedge(\beta,\gamma)\in g.$$

$\operatorname{\mathbf{Rel}}$ as a model of linear logic

- compact closed: $\otimes = \times$ and $f^{\perp} = {}^{t}f$;
- ► cartesian and cocartesian: 🕂 is a biproduct;
- exponential structure: given by the comonad $! = \mathfrak{M}_{f}$.

Apply the co-Kliesli construction $\mathbf{Rel}^!(A, B) = \mathbf{Rel}(!A, B)$ with composition given by:

$$g \circ f = \left\{ \left(\sum_{i=1}^{n} \overline{\alpha}_{i}, \gamma \right); \exists ([\beta_{1}, \dots, \beta_{n}], \gamma) \in g \land \forall i, (\overline{\alpha}_{i}, \beta_{i}) \in f \right\}$$

Apply the co-Kliesli construction $\mathbf{Rel}^!(A, B) = \mathbf{Rel}(!A, B)$ with composition given by:

$$g \circ f = \left\{ \left(\sum_{i=1}^{n} \overline{\alpha}_{i}, \gamma \right); \ \exists ([\beta_{1}, \dots, \beta_{n}], \gamma) \in g \land \forall i, \ (\overline{\alpha}_{i}, \beta_{i}) \in f \right\}$$

 $\mathbf{Rel}^!$ is cartesian closed with product \uplus .

Moreover it is cpo-enriched (for set inclusion).

Apply the co-Kliesli construction $\mathbf{Rel}^!(A, B) = \mathbf{Rel}(!A, B)$ with composition given by:

$$g \circ f = \left\{ \left(\sum_{i=1}^{n} \overline{\alpha}_{i}, \gamma \right); \exists ([\beta_{1}, \dots, \beta_{n}], \gamma) \in g \land \forall i, (\overline{\alpha}_{i}, \beta_{i}) \in f \right\}$$

 $\mathbf{Rel}^!$ is cartesian closed with product $\boxplus.$

Moreover it is cpo-enriched (for set inclusion).

Apply the co-Kliesli construction $\mathbf{Rel}^!(A, B) = \mathbf{Rel}(!A, B)$ with composition given by:

$$g \circ f = \left\{ \left(\sum_{i=1}^{n} \overline{\alpha}_{i}, \gamma \right); \exists ([\beta_{1}, \dots, \beta_{n}], \gamma) \in g \land \forall i, (\overline{\alpha}_{i}, \beta_{i}) \in f \right\}$$

 $\mathbf{Rel}^!$ is cartesian closed with product $\boxplus.$

Moreover it is cpo-enriched (for set inclusion).

Apply the co-Kliesli construction $\mathbf{Rel}^!(A, B) = \mathbf{Rel}(!A, B)$ with composition given by:

$$g \circ f = \left\{ \left(\sum_{i=1}^{n} \overline{\alpha}_{i}, \gamma \right); \ \exists ([\beta_{1}, \dots, \beta_{n}], \gamma) \in g \land \forall i, \ (\overline{\alpha}_{i}, \beta_{i}) \in f \right\}$$

 $\mathbf{Rel}^!$ is cartesian closed with product $\boxplus.$

Moreover it is cpo-enriched (for set inclusion).

Apply the co-Kliesli construction $\mathbf{Rel}^!(A, B) = \mathbf{Rel}(!A, B)$ with composition given by:

$$g \circ f = \left\{ \left(\sum_{i=1}^{n} \overline{\alpha}_{i}, \gamma \right); \ \exists ([\beta_{1}, \dots, \beta_{n}], \gamma) \in g \land \forall i, \ (\overline{\alpha}_{i}, \beta_{i}) \in f \right\}$$

 $\mathbf{Rel}^!$ is cartesian closed with product $\boxplus.$

Moreover it is cpo-enriched (for set inclusion).

Apply the co-Kliesli construction $\mathbf{Rel}^!(A, B) = \mathbf{Rel}(!A, B)$ with composition given by:

$$g \circ f = \left\{ \left(\sum_{i=1}^{n} \overline{\alpha}_{i}, \gamma \right); \ \exists ([\beta_{1}, \dots, \beta_{n}], \gamma) \in g \land \forall i, \ (\overline{\alpha}_{i}, \beta_{i}) \in f \right\}$$

 $\mathbf{Rel}^!$ is cartesian closed with product $\boxplus.$

Moreover it is cpo-enriched (for set inclusion).

Apply the co-Kliesli construction $\mathbf{Rel}^!(A, B) = \mathbf{Rel}(!A, B)$ with composition given by:

$$g \circ f = \left\{ \left(\sum_{i=1}^{n} \overline{\alpha}_{i}, \gamma \right); \exists ([\beta_{1}, \dots, \beta_{n}], \gamma) \in g \land \forall i, (\overline{\alpha}_{i}, \beta_{i}) \in f \right\}$$

 $\mathbf{Rel}^!$ is cartesian closed with product \uplus .

Moreover it is cpo-enriched (for set inclusion).

A key intuition

Morphisms in $\mathbf{Rel}^!$ are the support of power series.

Idea (Girard, pre-LL)

Interpret a term s as a linear combination: $(s) = \sum_{\alpha \in [s]} (s)_{\alpha} \alpha$ so that application is given by:

$$(\!(s\,t)\!)_{\beta} = \sum_{(\overline{\alpha},\beta) \in [\![s]\!]} (\!(s)\!)_{(\overline{\alpha},\beta)} (\!(t)\!)^{\overline{\alpha}}$$

where $(t)^{[\alpha_1,\ldots,\alpha_k]} = (t)_{\alpha_1} \cdots (t)_{\alpha_k}$.

Idea (Girard, pre-LL)

Interpret a term s as a linear combination: $(s) = \sum_{\alpha \in [s]} (s)_{\alpha} \alpha$ so that application is given by:

$$(\!(s\,t)\!)_{\beta} = \sum_{(\overline{\alpha},\beta) \in [\![s]\!]} (\!(s)\!)_{(\overline{\alpha},\beta)} (\!(t)\!)^{\overline{\alpha}}$$

where $(t)^{[\alpha_1,...,\alpha_k]} = (t)_{\alpha_1} \cdots (t)_{\alpha_k}$. We need some notion of convergence!

Idea (Girard, pre-LL)

Interpret a term s as a linear combination: $(s) = \sum_{\alpha \in [s]} (s)_{\alpha} \alpha$ so that application is given by:

$$(\!(s\,t)\!)_{\beta} = \sum_{(\overline{\alpha},\beta) \in [\![s]\!]} (\!(s)\!)_{(\overline{\alpha},\beta)} (\!(t)\!)^{\overline{\alpha}}$$

where $(t)^{[\alpha_1,\ldots,\alpha_k]} = (t)_{\alpha_1} \cdots (t)_{\alpha_k}$.

We need some notion of convergence!

Such intuitions were at the core of the invention of linear logic.

Idea (Girard, pre-LL)

Interpret a term s as a linear combination: $(s) = \sum_{\alpha \in [s]} (s)_{\alpha} \alpha$ so that application is given by:

$$(\!(s\,t)\!)_{\beta} = \sum_{(\overline{\alpha},\beta) \in [\![s]\!]} (\!(s)\!)_{(\overline{\alpha},\beta)} (\!(t)\!)^{\overline{\alpha}}$$

where $(t)^{[\alpha_1,\ldots,\alpha_k]} = (t)_{\alpha_1} \cdots (t)_{\alpha_k}$.

We need some notion of convergence!

Such intuitions were at the core of the invention of linear logic.

Finiteness spaces (Ehrhard, 2000's)

In a typed setting, the sum is always finite.

Led to the introduction of the differential λ -calculus (Ehrhard–Regnier, 2004): differentiation as a natural transformation $A \otimes !A \multimap !A$.

Finiteness spaces

Short version

The category **Fin** of finiteness spaces is the tight orthogonality category (in the sense of Hyland–Schalk, 2003) obtained from **Rel** by setting:

$$a \perp_A a' \iff a \cap a' \in \mathfrak{P}_{\mathbf{f}}(A)$$

Finiteness spaces

Short version

The category **Fin** of finiteness spaces is the tight orthogonality category (in the sense of Hyland–Schalk, 2003) obtained from **Rel** by setting:

$$a \perp_A a' \iff a \cap a' \in \mathfrak{P}_{\mathrm{f}}(A)$$

More explicitly

- ▶ A finiteness space is a pair $(|\mathcal{A}|, \mathfrak{F}(\mathcal{A}))$ s.t. $|\mathcal{A}|$ is a set and $\mathfrak{F}(\mathcal{A}) = \mathfrak{F}(\mathcal{A})^{\perp \perp} \subseteq \mathfrak{P}(|\mathcal{A}|).$
- A finitary relation $f \in \mathbf{Fin}(\mathcal{A}, \mathcal{B})$ is a relation $f \in \mathbf{Fol}(\mathcal{A}, \mathcal{B})$ is a relation
 - $f \in \mathbf{Rel}(|\mathcal{A}|, |\mathcal{B}|)$ s.t.:
 - $a \in \mathfrak{F}(\mathcal{A})$ implies $f \cdot a \in \mathfrak{F}(\mathcal{B})$;
 - $b' \in \mathfrak{F}(\mathcal{B}^{\perp})$ implies ${}^{t}f \cdot b' \in \mathfrak{F}(\mathcal{A}^{\perp})$.

Finiteness spaces as a model of linear logic

Short version

All the constructions for multiplicative, additive and exponential structure work out as described by Hyland and Schalk.

Moreover, all this structure is preserved by the forgetful functor $|-|:\mathbf{Fin}\to\mathbf{Rel}.$

Finiteness spaces as a model of linear logic

Short version

All the constructions for multiplicative, additive and exponential structure work out as described by Hyland and Schalk.

Moreover, all this structure is preserved by the forgetful functor $|-|: \mathbf{Fin} \to \mathbf{Rel}.$

In other words

The relational interpretation of linear logic (or typed $\lambda\text{-calculus})$ is always finitary.

Finiteness spaces as a model of linear logic

Short version

All the constructions for multiplicative, additive and exponential structure work out as described by Hyland and Schalk.

Moreover, all this structure is preserved by the forgetful functor $|-|:\mathbf{Fin}\to\mathbf{Rel}.$

In other words

The relational interpretation of linear logic (or typed $\lambda\text{-calculus})$ is always finitary.

But...

One must prove that these constructions do provide the necessary structure "by hand".

For instance, the associativity of \otimes follows from the fact that

 $\left\{a \times b; \ a \in \mathfrak{F}(\mathcal{A}), b \in \mathfrak{F}(\mathcal{B})\right\}^{\perp \perp} = \left\{c \subseteq |\mathcal{A} \otimes \mathcal{B}|; \ c_1 \in \mathfrak{F}(\mathcal{A}), c_2 \in \mathfrak{F}(\mathcal{B})\right\}.$

 $f \cdot \alpha \in \mathfrak{F}(\mathcal{B})$ for all $\alpha \in A$.

Then

$$\mathfrak{F} = \{ a \subseteq A; \ f \cdot a \in \mathfrak{F}(\mathcal{B}) \}$$

is a finiteness structure on A.

 $f \cdot \alpha \in \mathfrak{F}(\mathcal{B})$ for all $\alpha \in A$.

Then

$$\mathfrak{F} = \{ a \subseteq A; \ f \cdot a \in \mathfrak{F}(\mathcal{B}) \}$$

is a finiteness structure on A.

Remark

This means f maps finite subsets to finitary subsets, which is necessary for \mathfrak{F} to contain all finite subsets of A.

 $f \cdot \alpha \in \mathfrak{F}(\mathcal{B})$ for all $\alpha \in A$.

Then

$$\mathfrak{F} = \{ a \subseteq A; \ f \cdot a \in \mathfrak{F}(\mathcal{B}) \}$$

is a finiteness structure on A.

More precisely:

 $\mathfrak{F} = \{f \setminus b; \ b \in \mathfrak{F}(\mathcal{B})\}^{\perp \perp}.$

 $f \cdot \alpha \in \mathfrak{F}(\mathcal{B})$ for all $\alpha \in A$.

Then

$$\mathfrak{F} = \{ a \subseteq A; \ f \cdot a \in \mathfrak{F}(\mathcal{B}) \}$$

is a finiteness structure on A.

More precisely:

$$\mathfrak{F} = \{ f \setminus b; \ b \in \mathfrak{F}(\mathcal{B}) \}^{\perp \perp}.$$

Definition

$$f \setminus b = \bigcup \{ a \subseteq A; \ f \cdot a \subseteq b \}$$

 $f \cdot \alpha \in \mathfrak{F}(\mathcal{B})$ for all $\alpha \in A$.

Then

$$\mathfrak{F} = \{ a \subseteq A; \ f \cdot a \in \mathfrak{F}(\mathcal{B}) \}$$

is a finiteness structure on A.

More precisely:

$$\mathfrak{F} = \{f \setminus b; \ b \in \mathfrak{F}(\mathcal{B})\}^{\perp \perp}.$$

Example

Consider the set $\mathfrak{M}_{\mathrm{f}}(|\mathcal{B}|)$ and the support relation σ . Then $\sigma \cdot \overline{b} = supp(\overline{b})$, $f \setminus b = b^! = \mathfrak{M}_{\mathrm{f}}(b)$ and

$$\mathfrak{F}\left(!\mathcal{B}\right) = \left\{b^{!}; \ b \in \mathfrak{F}\left(\mathcal{B}\right)\right\}^{\perp \perp} = \left\{\overline{b} \subseteq |!B|; \ supp\left(\overline{b}\right) \in \mathfrak{F}\left(\mathcal{B}\right)\right\}.$$

 $f \cdot \alpha \in \mathfrak{F}(\mathcal{B})$ for all $\alpha \in A$.

Then

$$\mathfrak{F} = \{ a \subseteq A; \ f \cdot a \in \mathfrak{F}(\mathcal{B}) \}$$

is a finiteness structure on A.

More precisely:

$$\mathfrak{F} = \{f \setminus b; \ b \in \mathfrak{F}(\mathcal{B})\}^{\perp \perp}.$$

Sketch of proof.

Take $a \in \{f \setminus b; b \in \mathfrak{F}(\mathcal{B})\}^{\perp \perp}$ and $b' \in \mathfrak{F}(\mathcal{B}^{\perp})$, and find (using AC) $a' \subseteq_{\mathrm{f}} A$ s.t. $f \cdot a \cap b' \subseteq f \cdot a'$.

(Very similar to the characterization of !A in Ehrhard's paper.)

 $f_i \cdot \alpha \in \mathfrak{F}(\mathcal{B}_i)$ for all $\alpha \in A$.

Then

$$\mathfrak{F} = \{ a \subseteq A; \ f_i \cdot a \in \mathfrak{F}(\mathcal{B}_i), \ \forall i \in I \}$$

is a finiteness structure on A.

More precisely:

$$\mathfrak{F} = \left\{ \bigcap_{i \in I} f \setminus b_i; \ b_i \in \mathfrak{F}(\mathcal{B}_i), \ \forall i \in I \right\}^{\perp \perp}$$

 $f_i \cdot \alpha \in \mathfrak{F}(\mathcal{B}_i)$ for all $\alpha \in A$.

Then

$$\mathfrak{F} = \{ a \subseteq A; \ f_i \cdot a \in \mathfrak{F}(\mathcal{B}_i), \ \forall i \in I \}$$

is a finiteness structure on A.

More precisely:

$$\mathfrak{F} = \left\{ \bigcap_{i \in I} f \setminus b_i; \ b_i \in \mathfrak{F}(\mathcal{B}_i), \ \forall i \in I \right\}^{\perp \perp}$$

Example

Consider the set $|\mathcal{A}| \times |\mathcal{B}|$ and the projection relations. Then $\{a \times b; a \in \mathfrak{F}(\mathcal{A}), b \in \mathfrak{F}(\mathcal{B})\}^{\perp \perp} = \{c \subseteq |\mathcal{A} \otimes \mathcal{B}|; c_1 \in \mathfrak{F}(\mathcal{A}), c_2 \in \mathfrak{F}(\mathcal{B})\}.$

Theorem (Transport functors [Tasson–V. 2011]) Assume $T : \mathbf{Rel} \to \mathbf{Rel}$ is a functor on relations, and $\phi : T \Rightarrow 1_{\mathbf{Rel}}$ is an almost-functional lax natural transformation.

Then the following defines a functor $\mathcal{T} : \mathbf{Fin} \to \mathbf{Fin}$ with web T:

- ▶ for all $A \in Fin$, |TA| = T |A| and $\mathfrak{F}(TA)$ is transported from $\mathfrak{F}(A)$ along $\phi_{|A|}$;
- for all $f \in \mathbf{Fin}(\mathcal{A}, \mathcal{B})$, $\mathcal{T}f = Tf$.

Theorem (Transport functors [Tasson–V. 2011]) Assume $T : \mathbf{Rel} \to \mathbf{Rel}$ is a functor on relations, and $\phi : T \Rightarrow 1_{\mathbf{Rel}}$ is an almost-functional lax natural transformation.

Then the following defines a functor $\mathcal{T} : \mathbf{Fin} \to \mathbf{Fin}$ with web T:

▶ for all $A \in Fin$, |TA| = T |A| and $\mathfrak{F}(TA)$ is transported from $\mathfrak{F}(A)$ along $\phi_{|A|}$;

• for all
$$f \in \mathbf{Fin}(\mathcal{A}, \mathcal{B})$$
, $\mathcal{T}f = Tf$.

Definition

 $\phi:T\Rightarrow U$ is lax natural if $\phi_B\circ Tf\subseteq Uf\circ \phi_A$

Example

The support relation $\sigma: \mathfrak{M}_{f} \Rightarrow 1_{\mathbf{Rel}}$.

Theorem (Transport functors [Tasson–V. 2011]) Assume $T : \mathbf{Rel} \to \mathbf{Rel}$ is a functor on relations, and $\phi : T \Rightarrow 1_{\mathbf{Rel}}$ is an almost-functional lax natural transformation.

Then the following defines a functor $\mathcal{T} : \mathbf{Fin} \to \mathbf{Fin}$ with web T:

▶ for all $A \in Fin$, |TA| = T |A| and $\mathfrak{F}(TA)$ is transported from $\mathfrak{F}(A)$ along $\phi_{|A|}$;

• for all
$$f \in \mathbf{Fin}(\mathcal{A}, \mathcal{B})$$
, $\mathcal{T}f = Tf$.

Definition

 $f: A \to B$ is almost-functional if $\alpha \cdot \in \mathfrak{P}_{f}(B)$ for all $\alpha \in A$. In other words: f preserves finite sets.

Remark

This ensures the transport theorem always applies.

Theorem (Transport functors [Tasson–V. 2011]) Assume $T : \mathbf{Rel} \to \mathbf{Rel}$ is a functor on relations, and $\phi : T \Rightarrow 1_{\mathbf{Rel}}$ is an almost-functional lax natural transformation.

Then the following defines a functor $\mathcal{T} : \mathbf{Fin} \to \mathbf{Fin}$ with web T:

▶ for all $A \in Fin$, |TA| = T |A| and $\mathfrak{F}(TA)$ is transported from $\mathfrak{F}(A)$ along $\phi_{|A|}$;

• for all
$$f \in \mathbf{Fin}(\mathcal{A}, \mathcal{B})$$
, $\mathcal{T}f = Tf$.

Remark

Preservation of identities and composition is trivially deduced from that of $T. \label{eq:composition}$

Theorem (Transport functors [Tasson–V. 2011]) Assume $T : \mathbf{Rel} \to \mathbf{Rel}$ is a functor on relations, and $\phi : T \Rightarrow 1_{\mathbf{Rel}}$ is an almost-functional lax natural transformation.

Then the following defines a functor $\mathcal{T} : \mathbf{Fin} \to \mathbf{Fin}$ with web T:

▶ for all $A \in Fin$, |TA| = T |A| and $\mathfrak{F}(TA)$ is transported from $\mathfrak{F}(A)$ along $\phi_{|A|}$;

• for all
$$f \in \mathbf{Fin}(\mathcal{A}, \mathcal{B})$$
, $\mathcal{T}f = Tf$.

Sketch of proof.

It only remains to prove $Tf \in \mathbf{Fin}(\mathcal{TA}, \mathcal{TB})$, i.e.:

- $\overline{a} \in \mathfrak{F}(\mathcal{TA})$ implies $Tf \cdot \overline{a} \in \mathfrak{F}(\mathcal{TB})$: by lax naturality;
- $\overline{b} \in \mathfrak{F}(\mathcal{TB})^{\perp}$ implies ${}^{t}(Tf) \cdot \overline{b} \in \mathfrak{F}(\mathcal{TA})^{\perp}$:

Theorem (Transport functors [Tasson–V. 2011]) Assume $T : \mathbf{Rel} \to \mathbf{Rel}$ is a functor on relations, and $\phi : T \Rightarrow 1_{\mathbf{Rel}}$ is an almost-functional lax natural transformation.

Then the following defines a functor $\mathcal{T} : \mathbf{Fin} \to \mathbf{Fin}$ with web T:

▶ for all $A \in Fin$, |TA| = T |A| and $\mathfrak{F}(TA)$ is transported from $\mathfrak{F}(A)$ along $\phi_{|A|}$;

• for all
$$f \in \mathbf{Fin}(\mathcal{A}, \mathcal{B})$$
, $\mathcal{T}f = Tf$.

Sketch of proof.

It only remains to prove $Tf \in \mathbf{Fin}(\mathcal{TA}, \mathcal{TB})$, i.e.:

- $\overline{a} \in \mathfrak{F}(\mathcal{TA})$ implies $Tf \cdot \overline{a} \in \mathfrak{F}(\mathcal{TB})$: by lax naturality;
- $\overline{b} \in \mathfrak{F}(\mathcal{TB})^{\perp}$ implies ${}^{t}(Tf) \cdot \overline{b} \in \mathfrak{F}(\mathcal{TA})^{\perp}$: ???

Theorem (Transport functors [Tasson–V. 2011]) Assume $T : \mathbf{Rel} \to \mathbf{Rel}$ is a functor on relations, and $\phi : T \Rightarrow 1_{\mathbf{Rel}}$ is an almost-functional lax natural transformation.

Then the following defines a functor $\mathcal{T} : \mathbf{Fin} \to \mathbf{Fin}$ with web T:

▶ for all $A \in Fin$, |TA| = T |A| and $\mathfrak{F}(TA)$ is transported from $\mathfrak{F}(A)$ along $\phi_{|A|}$;

• for all
$$f \in \mathbf{Fin}(\mathcal{A}, \mathcal{B})$$
, $\mathcal{T}f = Tf$.

Counter-example The functor $-^{\infty}$ of streams, equipped with the obvious support relation, does not preserve finitary relations!

E.g. the total endorelation is finitary on 2, but not on 2^{∞} .

Transport is functorial (when it contains finite data)

Theorem (Transport functors [Tasson–V. 2011]) Assume $T : \mathbf{Rel} \to \mathbf{Rel}$ is a symmetric functor on relations, and $\phi : T \Rightarrow 1_{\mathbf{Rel}}$ is an almost-functional lax natural transformation. Assume moreover that there exists a shape relation on (T, ϕ) . Then the following defines a functor $\mathcal{T} : \mathbf{Fin} \to \mathbf{Fin}$ with web T:

▶ for all $A \in Fin$, |TA| = T |A| and $\mathfrak{F}(TA)$ is transported from $\mathfrak{F}(A)$ along $\phi_{|A|}$;

• for all
$$f \in \mathbf{Fin}(\mathcal{A}, \mathcal{B})$$
, $\mathcal{T}f = Tf$.

Definition

A shape relation on (T,ϕ) is an almost-functional lax natural transformation μ from T to a constant functor Z such that:

for all $\overline{a} \subseteq TA$, \overline{a} is finite as soon as $\phi_A \cdot \overline{a}$ and $\mu_A \cdot \overline{a}$ are.

T is symmetric if $T^t f = {}^t T f$.

Constructing finiteness spaces

e.g., the finiteness space of binary trees with nodes in $|\mathcal{A}|$ and leaves in $|\mathcal{B}|$, with finitess structure given by bounded height, finitary \mathcal{A} -support and finitary \mathcal{B} -support.

Constructing finiteness spaces

e.g., the finiteness space of binary trees with nodes in $|\mathcal{A}|$ and leaves in $|\mathcal{B}|$, with finitess structure given by bounded height, finitary \mathcal{A} -support and finitary \mathcal{B} -support.

... functorially

i.e. datatypes.

Constructing finiteness spaces

e.g., the finiteness space of binary trees with nodes in $|\mathcal{A}|$ and leaves in $|\mathcal{B}|$, with finitess structure given by bounded height, finitary \mathcal{A} -support and finitary \mathcal{B} -support.

... functorially

i.e. datatypes.

Characterize the least fixpoints of a large class of functors among which those for algebraic datatypes.

Constructing finiteness spaces

e.g., the finiteness space of binary trees with nodes in $|\mathcal{A}|$ and leaves in $|\mathcal{B}|$, with finitess structure given by bounded height, finitary \mathcal{A} -support and finitary \mathcal{B} -support.

... functorially

i.e. datatypes.

Characterize the least fixpoints of a large class of functors among which those for algebraic datatypes. Provided a finitary semantics of typed recursion [Tasson–V., 2011]

Constructing finiteness spaces

e.g., the finiteness space of binary trees with nodes in $|\mathcal{A}|$ and leaves in $|\mathcal{B}|$, with finitess structure given by bounded height, finitary \mathcal{A} -support and finitary \mathcal{B} -support.

... functorially

i.e. datatypes.

Characterize the least fixpoints of a large class of functors among which those for algebraic datatypes. Provided a finitary semantics of typed recursion [Tasson–V., 2011]

Higher order linear logic ?

Transport of other structures

Coherence spaces

Let f be a relation from A to $|\mathcal{B}|$ such that $f \cdot \alpha \in \mathfrak{C}(\mathcal{B})$ for all $\alpha \in A$. Then

$$\mathfrak{C} = \{ a \subseteq A; \ f \cdot a \in \mathfrak{C}(\mathcal{B}) \}$$

is a coherence on A.

More precisely: $\mathfrak{C} = \{f \setminus b; b \in \mathcal{C}(\mathcal{B})\}^{\perp \perp}$.

Transport of other structures

Coherence spaces

Let f be a relation from A to $|\mathcal{B}|$ such that $f \cdot \alpha \in \mathfrak{C}(\mathcal{B})$ for all $\alpha \in A$. Then

$$\mathfrak{C} = \{ a \subseteq A; \ f \cdot a \in \mathfrak{C}(\mathcal{B}) \}$$

is a coherence on A.

More precisely: $\mathfrak{C} = \{f \setminus b; b \in \mathcal{C}(\mathcal{B})\}^{\perp \perp}$. Very easy.

Transport of other structures

Coherence spaces

Let f be a relation from A to $|\mathcal{B}|$ such that $f \cdot \alpha \in \mathfrak{C}(\mathcal{B})$ for all $\alpha \in A$. Then

$$\mathfrak{C} = \{ a \subseteq A; \ f \cdot a \in \mathfrak{C}(\mathcal{B}) \}$$

is a coherence on A.

More precisely: $\mathfrak{C} = \{f \setminus b; b \in \mathcal{C}(\mathcal{B})\}^{\perp \perp}$. Very easy.

Totality spaces Fail ???

Transport and orthogonality

They play complementary roles:

- orthogonality provides the generic structure and axioms;
- transport provides a simple characterization and allows to prove the axioms.

Transport and orthogonality

They play complementary roles:

- orthogonality provides the generic structure and axioms;
- transport provides a simple characterization and allows to prove the axioms.

Towards a more general notion of transport?

- on top of orthogonality;
- restricted to webbed models (Rel) or in an enriched setting.

Fin