
On the transport of finiteness structures

Lionel Vaux
mainly based on joint work with Christine Tasson:

Transport of finiteness structures and applications, MSCS, 2011

Institut de Mathématiques de Luminy, Marseille, France

TACL 2011, Marseille
July 26-30 2011

Sets and relations

Definition
The category Rel of sets and relations has sets as objects and
relations as morphisms: f ∈ Rel(A,B) ⇐⇒ f ⊆ A×B.
Relational composition is given by:

(α, γ) ∈ g ◦ f ⇐⇒ ∃β, (α, β) ∈ f ∧ (β, γ) ∈ g.

Rel as a model of linear logic

I compact closed: ⊗ = × and f⊥ = tf ;
I cartesian and cocartesian:

⊎
is a biproduct;

I exponential structure: given by the comonad ! = Mf .

The relational model of the λ-calculus

Apply the co-Kliesli construction
Rel!(A,B) = Rel(!A,B) with composition given by:

g ◦! f =

{(
n∑
i=1

αi, γ

)
; ∃([β1, . . . , βn] , γ) ∈ g ∧ ∀i, (αi, βi) ∈ f

}

Rel! is cartesian closed with product].

Moreover it is cpo-enriched (for set inclusion).

A key intuition
Morphisms in Rel! are the support of power series.

The relational model of the λ-calculus

Apply the co-Kliesli construction
Rel!(A,B) = Rel(!A,B) with composition given by:

g ◦! f =

{(
n∑
i=1

αi, γ

)
; ∃([β1, . . . , βn] , γ) ∈ g ∧ ∀i, (αi, βi) ∈ f

}

Rel! is cartesian closed with product].

Moreover it is cpo-enriched (for set inclusion).

A key intuition
Morphisms in Rel! are the support of power series.

The relational model of the λ-calculus

Apply the co-Kliesli construction
Rel!(A,B) = Rel(!A,B) with composition given by:

g ◦! f =

{(
n∑
i=1

αi, γ

)
; ∃([β1, . . . , βn] , γ) ∈ g ∧ ∀i, (αi, βi) ∈ f

}

Rel! is cartesian closed with product].

Moreover it is cpo-enriched (for set inclusion).

A key intuition

Morphisms in Rel! are the support of power series.

The relational model of the λ-calculus

Apply the co-Kliesli construction
Rel!(A,B) = Rel(!A,B) with composition given by:

g ◦! f =

{(
n∑
i=1

αi, γ

)
; ∃([β1, . . . , βn] , γ) ∈ g ∧ ∀i, (αi, βi) ∈ f

}

Rel! is cartesian closed with product].

Moreover it is cpo-enriched (for set inclusion).

A key intuition

Morphisms in Rel! are the support of power series.

The relational model of the λ-calculus

Apply the co-Kliesli construction
Rel!(A,B) = Rel(!A,B) with composition given by:

g ◦! f =

{(
n∑
i=1

αi, γ

)
; ∃([β1, . . . , βn] , γ) ∈ g ∧ ∀i, (αi, βi) ∈ f

}

Rel! is cartesian closed with product].

Moreover it is cpo-enriched (for set inclusion).

A key intuition

Morphisms in Rel! are the support of power series.

The relational model of the λ-calculus

Apply the co-Kliesli construction
Rel!(A,B) = Rel(!A,B) with composition given by:

g ◦! f =

{(
n∑
i=1

αi, γ

)
; ∃([β1, . . . , βn] , γ) ∈ g ∧ ∀i, (αi, βi) ∈ f

}

Rel! is cartesian closed with product].

Moreover it is cpo-enriched (for set inclusion).

A key intuition

Morphisms in Rel! are the support of power series.

The relational model of the λ-calculus

Apply the co-Kliesli construction
Rel!(A,B) = Rel(!A,B) with composition given by:

g ◦! f =

{(
n∑
i=1

αi, γ

)
; ∃([β1, . . . , βn] , γ) ∈ g ∧ ∀i, (αi, βi) ∈ f

}

Rel! is cartesian closed with product].

Moreover it is cpo-enriched (for set inclusion).

A key intuition

Morphisms in Rel! are the support of power series.

The relational model of the λ-calculus

Apply the co-Kliesli construction
Rel!(A,B) = Rel(!A,B) with composition given by:

g ◦! f =

{(
n∑
i=1

αi, γ

)
; ∃([β1, . . . , βn] , γ) ∈ g ∧ ∀i, (αi, βi) ∈ f

}

Rel! is cartesian closed with product].

Moreover it is cpo-enriched (for set inclusion).

A key intuition
Morphisms in Rel! are the support of power series.

Quantitative semantics

Idea (Girard, pre-LL)
Interpret a term s as a linear combination: LsM =

∑
α∈JsKLsMαα

so that application is given by:

Ls tMβ =
∑

(α,β)∈JsK

LsM(α,β)LtMα

where LtM[α1,...,αk] = LtMα1 · · · LtMαk
.

We need some notion of convergence!
Such intuitions were at the core of the invention of linear logic.

Finiteness spaces (Ehrhard, 2000’s)
In a typed setting, the sum is always finite.

Led to the introduction of the differential λ-calculus
(Ehrhard–Regnier, 2004):
differentiation as a natural transformation A⊗ !A(!A.

Quantitative semantics

Idea (Girard, pre-LL)
Interpret a term s as a linear combination: LsM =

∑
α∈JsKLsMαα

so that application is given by:

Ls tMβ =
∑

(α,β)∈JsK

LsM(α,β)LtMα

where LtM[α1,...,αk] = LtMα1 · · · LtMαk
.

We need some notion of convergence!

Such intuitions were at the core of the invention of linear logic.

Finiteness spaces (Ehrhard, 2000’s)
In a typed setting, the sum is always finite.

Led to the introduction of the differential λ-calculus
(Ehrhard–Regnier, 2004):
differentiation as a natural transformation A⊗ !A(!A.

Quantitative semantics

Idea (Girard, pre-LL)
Interpret a term s as a linear combination: LsM =

∑
α∈JsKLsMαα

so that application is given by:

Ls tMβ =
∑

(α,β)∈JsK

LsM(α,β)LtMα

where LtM[α1,...,αk] = LtMα1 · · · LtMαk
.

We need some notion of convergence!
Such intuitions were at the core of the invention of linear logic.

Finiteness spaces (Ehrhard, 2000’s)
In a typed setting, the sum is always finite.

Led to the introduction of the differential λ-calculus
(Ehrhard–Regnier, 2004):
differentiation as a natural transformation A⊗ !A(!A.

Quantitative semantics

Idea (Girard, pre-LL)
Interpret a term s as a linear combination: LsM =

∑
α∈JsKLsMαα

so that application is given by:

Ls tMβ =
∑

(α,β)∈JsK

LsM(α,β)LtMα

where LtM[α1,...,αk] = LtMα1 · · · LtMαk
.

We need some notion of convergence!
Such intuitions were at the core of the invention of linear logic.

Finiteness spaces (Ehrhard, 2000’s)
In a typed setting, the sum is always finite.

Led to the introduction of the differential λ-calculus
(Ehrhard–Regnier, 2004):
differentiation as a natural transformation A⊗ !A(!A.

Finiteness spaces

Short version
The category Fin of finiteness spaces is the tight orthogonality
category (in the sense of Hyland–Schalk, 2003) obtained from Rel
by setting:

a ⊥A a′ ⇐⇒ a ∩ a′ ∈ Pf (A)

More explicitly

I A finiteness space is a pair (|A| ,F (A)) s.t. |A| is a set and
F (A) = F (A)⊥⊥ ⊆ P (|A|).

I A finitary relation f ∈ Fin(A,B) is a relation
f ∈ Rel(|A| , |B|) s.t.:

I a ∈ F (A) implies f · a ∈ F (B);
I b′ ∈ F

(
B⊥
)
implies tf · b′ ∈ F

(
A⊥).

Finiteness spaces

Short version
The category Fin of finiteness spaces is the tight orthogonality
category (in the sense of Hyland–Schalk, 2003) obtained from Rel
by setting:

a ⊥A a′ ⇐⇒ a ∩ a′ ∈ Pf (A)

More explicitly

I A finiteness space is a pair (|A| ,F (A)) s.t. |A| is a set and
F (A) = F (A)⊥⊥ ⊆ P (|A|).

I A finitary relation f ∈ Fin(A,B) is a relation
f ∈ Rel(|A| , |B|) s.t.:

I a ∈ F (A) implies f · a ∈ F (B);
I b′ ∈ F

(
B⊥
)
implies tf · b′ ∈ F

(
A⊥).

Finiteness spaces as a model of linear logic

Short version
All the constructions for multiplicative, additive and exponential
structure work out as described by Hyland and Schalk.

Moreover, all this structure is preserved by the forgetful functor
|−| : Fin→ Rel.

In other words
The relational interpretation of linear logic (or typed λ-calculus) is
always finitary.

But. . .
One must prove that these constructions do provide the necessary
structure “by hand”.

For instance, the associativity of ⊗ follows from the fact that

{a× b; a ∈ F (A) , b ∈ F (B)}⊥⊥ = {c ⊆ |A ⊗ B| ; c1 ∈ F (A) , c2 ∈ F (B)} .

Finiteness spaces as a model of linear logic

Short version
All the constructions for multiplicative, additive and exponential
structure work out as described by Hyland and Schalk.

Moreover, all this structure is preserved by the forgetful functor
|−| : Fin→ Rel.

In other words
The relational interpretation of linear logic (or typed λ-calculus) is
always finitary.

But. . .
One must prove that these constructions do provide the necessary
structure “by hand”.

For instance, the associativity of ⊗ follows from the fact that

{a× b; a ∈ F (A) , b ∈ F (B)}⊥⊥ = {c ⊆ |A ⊗ B| ; c1 ∈ F (A) , c2 ∈ F (B)} .

Finiteness spaces as a model of linear logic

Short version
All the constructions for multiplicative, additive and exponential
structure work out as described by Hyland and Schalk.

Moreover, all this structure is preserved by the forgetful functor
|−| : Fin→ Rel.

In other words
The relational interpretation of linear logic (or typed λ-calculus) is
always finitary.

But. . .
One must prove that these constructions do provide the necessary
structure “by hand”.

For instance, the associativity of ⊗ follows from the fact that

{a× b; a ∈ F (A) , b ∈ F (B)}⊥⊥ = {c ⊆ |A ⊗ B| ; c1 ∈ F (A) , c2 ∈ F (B)} .

Transporting a finiteness structure
Theorem (Transport [Tasson–V. 2011])
Let f be a relation from A to |B| such that

f · α ∈ F (B) for all α ∈ A.

Then
F = {a ⊆ A; f · a ∈ F (B) }

is a finiteness structure on A.

More precisely:
F = {f \ b; b ∈ F (B) }⊥⊥ .

Transporting a finiteness structure
Theorem (Transport [Tasson–V. 2011])
Let f be a relation from A to |B| such that

f · α ∈ F (B) for all α ∈ A.

Then
F = {a ⊆ A; f · a ∈ F (B) }

is a finiteness structure on A.

More precisely:
F = {f \ b; b ∈ F (B) }⊥⊥ .

Remark
This means f maps finite subsets to finitary subsets, which is
necessary for F to contain all finite subsets of A.

Transporting a finiteness structure
Theorem (Transport [Tasson–V. 2011])
Let f be a relation from A to |B| such that

f · α ∈ F (B) for all α ∈ A.

Then
F = {a ⊆ A; f · a ∈ F (B) }

is a finiteness structure on A.

More precisely:
F = {f \ b; b ∈ F (B) }⊥⊥ .

Transporting a finiteness structure
Theorem (Transport [Tasson–V. 2011])
Let f be a relation from A to |B| such that

f · α ∈ F (B) for all α ∈ A.

Then
F = {a ⊆ A; f · a ∈ F (B) }

is a finiteness structure on A.

More precisely:
F = {f \ b; b ∈ F (B) }⊥⊥ .

Definition

f \ b =
⋃
{a ⊆ A; f · a ⊆ b}

Transporting a finiteness structure
Theorem (Transport [Tasson–V. 2011])
Let f be a relation from A to |B| such that

f · α ∈ F (B) for all α ∈ A.

Then
F = {a ⊆ A; f · a ∈ F (B) }

is a finiteness structure on A.

More precisely:
F = {f \ b; b ∈ F (B) }⊥⊥ .

Example
Consider the set Mf (|B|) and the support relation σ.
Then σ · b = supp

(
b
)
, f \ b = b! = Mf (b) and

F (!B) =
{
b!; b ∈ F (B)

}⊥⊥
=
{
b ⊆ |!B| ; supp

(
b
)
∈ F (B)

}
.

Transporting a finiteness structure
Theorem (Transport [Tasson–V. 2011])
Let f be a relation from A to |B| such that

f · α ∈ F (B) for all α ∈ A.

Then
F = {a ⊆ A; f · a ∈ F (B) }

is a finiteness structure on A.

More precisely:
F = {f \ b; b ∈ F (B) }⊥⊥ .

Sketch of proof.
Take a ∈ {f \ b; b ∈ F (B)}⊥⊥ and b′ ∈ F

(
B⊥
)
,

and find (using AC) a′ ⊆f A s.t. f · a ∩ b′ ⊆ f · a′.

(Very similar to the characterization of !A in Ehrhard’s paper.)

Transporting a finiteness structure
Theorem (Transport [Tasson–V. 2011])
Let f i be a relation from A to |Bi| such that

f i · α ∈ F (Bi) for all α ∈ A.

Then
F = {a ⊆ A; f i · a ∈ F (Bi) , ∀i ∈ I}

is a finiteness structure on A.

More precisely:

F =
{⋂

i∈I f \ bi; bi ∈ F (Bi) , ∀i ∈ I
}⊥⊥

.

Transporting a finiteness structure
Theorem (Transport [Tasson–V. 2011])
Let f i be a relation from A to |Bi| such that

f i · α ∈ F (Bi) for all α ∈ A.

Then
F = {a ⊆ A; f i · a ∈ F (Bi) , ∀i ∈ I}

is a finiteness structure on A.

More precisely:

F =
{⋂

i∈I f \ bi; bi ∈ F (Bi) , ∀i ∈ I
}⊥⊥

.

Example
Consider the set |A| × |B| and the projection relations. Then

{a× b; a ∈ F (A) , b ∈ F (B)}⊥⊥ = {c ⊆ |A ⊗ B| ; c1 ∈ F (A) , c2 ∈ F (B)} .

Transport is functorial

(when it contains finite data)

Theorem (Transport functors [Tasson–V. 2011])
Assume T : Rel→ Rel is a functor on relations, and
φ : T ⇒ 1Rel is an almost-functional lax natural transformation.

Assume moreover that there exists a shape relation on (T, φ).

Then the following defines a functor T : Fin→ Fin with web T :
I for all A ∈ Fin, |T A| = T |A| and F (T A) is transported

from F (A) along φ|A|;
I for all f ∈ Fin(A,B), T f = Tf .

Transport is functorial

(when it contains finite data)

Theorem (Transport functors [Tasson–V. 2011])
Assume T : Rel→ Rel is a functor on relations, and
φ : T ⇒ 1Rel is an almost-functional lax natural transformation.

Assume moreover that there exists a shape relation on (T, φ).

Then the following defines a functor T : Fin→ Fin with web T :
I for all A ∈ Fin, |T A| = T |A| and F (T A) is transported

from F (A) along φ|A|;
I for all f ∈ Fin(A,B), T f = Tf .

Definition
φ : T ⇒ U is lax natural if φB ◦ Tf ⊆ Uf ◦ φA

Example
The support relation σ : Mf ⇒ 1Rel.

Transport is functorial

(when it contains finite data)

Theorem (Transport functors [Tasson–V. 2011])
Assume T : Rel→ Rel is a functor on relations, and
φ : T ⇒ 1Rel is an almost-functional lax natural transformation.

Assume moreover that there exists a shape relation on (T, φ).

Then the following defines a functor T : Fin→ Fin with web T :
I for all A ∈ Fin, |T A| = T |A| and F (T A) is transported

from F (A) along φ|A|;
I for all f ∈ Fin(A,B), T f = Tf .

Definition
f : A→ B is almost-functional if α· ∈ Pf (B) for all α ∈ A.
In other words: f preserves finite sets.

Remark
This ensures the transport theorem always applies.

Transport is functorial

(when it contains finite data)

Theorem (Transport functors [Tasson–V. 2011])
Assume T : Rel→ Rel is a functor on relations, and
φ : T ⇒ 1Rel is an almost-functional lax natural transformation.

Assume moreover that there exists a shape relation on (T, φ).

Then the following defines a functor T : Fin→ Fin with web T :
I for all A ∈ Fin, |T A| = T |A| and F (T A) is transported

from F (A) along φ|A|;
I for all f ∈ Fin(A,B), T f = Tf .

Remark
Preservation of identities and composition is trivially deduced from
that of T .

Transport is functorial

(when it contains finite data)

Theorem (Transport functors [Tasson–V. 2011])
Assume T : Rel→ Rel is a functor on relations, and
φ : T ⇒ 1Rel is an almost-functional lax natural transformation.

Assume moreover that there exists a shape relation on (T, φ).

Then the following defines a functor T : Fin→ Fin with web T :
I for all A ∈ Fin, |T A| = T |A| and F (T A) is transported

from F (A) along φ|A|;
I for all f ∈ Fin(A,B), T f = Tf .

Sketch of proof.
It only remains to prove Tf ∈ Fin(T A, T B), i.e.:

I a ∈ F (T A) implies Tf · a ∈ F (T B): by lax naturality;
I b ∈ F (T B)⊥ implies t(Tf) · b ∈ F (T A)⊥:

Transport is functorial

(when it contains finite data)

Theorem (Transport functors [Tasson–V. 2011])
Assume T : Rel→ Rel is a functor on relations, and
φ : T ⇒ 1Rel is an almost-functional lax natural transformation.

Assume moreover that there exists a shape relation on (T, φ).

Then the following defines a functor T : Fin→ Fin with web T :
I for all A ∈ Fin, |T A| = T |A| and F (T A) is transported

from F (A) along φ|A|;
I for all f ∈ Fin(A,B), T f = Tf .

Sketch of proof.
It only remains to prove Tf ∈ Fin(T A, T B), i.e.:

I a ∈ F (T A) implies Tf · a ∈ F (T B): by lax naturality;
I b ∈ F (T B)⊥ implies t(Tf) · b ∈ F (T A)⊥: ???

Transport is functorial

(when it contains finite data)

Theorem (Transport functors [Tasson–V. 2011])
Assume T : Rel→ Rel is a functor on relations, and
φ : T ⇒ 1Rel is an almost-functional lax natural transformation.

Assume moreover that there exists a shape relation on (T, φ).

Then the following defines a functor T : Fin→ Fin with web T :
I for all A ∈ Fin, |T A| = T |A| and F (T A) is transported

from F (A) along φ|A|;
I for all f ∈ Fin(A,B), T f = Tf .

Counter-example The functor −∞ of streams, equipped with the
obvious support relation, does not preserve finitary relations!

E.g. the total endorelation is finitary on 2, but not on 2∞.

Transport is functorial (when it contains finite data)

Theorem (Transport functors [Tasson–V. 2011])
Assume T : Rel→ Rel is a symmetric functor on relations, and
φ : T ⇒ 1Rel is an almost-functional lax natural transformation.
Assume moreover that there exists a shape relation on (T, φ).
Then the following defines a functor T : Fin→ Fin with web T :

I for all A ∈ Fin, |T A| = T |A| and F (T A) is transported
from F (A) along φ|A|;

I for all f ∈ Fin(A,B), T f = Tf .

Definition
A shape relation on (T, φ) is an almost-functional lax natural
transformation µ from T to a constant functor Z such that:

for all a ⊆ TA, a is finite as soon as φA · a and µA · a are.

T is symmetric if T tf = tTf .

What is transport good for?

Constructing finiteness spaces
e.g., the finiteness space of binary trees with nodes in |A| and
leaves in |B|, with finitess structure given by bounded height,
finitary A-support and finitary B-support.

. . . functorially
i.e. datatypes.

Characterize the least fixpoints of a large class of functors
among which those for algebraic datatypes.
Provided a finitary semantics of typed recursion [Tasson–V., 2011]

Higher order linear logic ?

What is transport good for?

Constructing finiteness spaces
e.g., the finiteness space of binary trees with nodes in |A| and
leaves in |B|, with finitess structure given by bounded height,
finitary A-support and finitary B-support.

. . . functorially
i.e. datatypes.

Characterize the least fixpoints of a large class of functors
among which those for algebraic datatypes.
Provided a finitary semantics of typed recursion [Tasson–V., 2011]

Higher order linear logic ?

What is transport good for?

Constructing finiteness spaces
e.g., the finiteness space of binary trees with nodes in |A| and
leaves in |B|, with finitess structure given by bounded height,
finitary A-support and finitary B-support.

. . . functorially
i.e. datatypes.

Characterize the least fixpoints of a large class of functors
among which those for algebraic datatypes.

Provided a finitary semantics of typed recursion [Tasson–V., 2011]

Higher order linear logic ?

What is transport good for?

Constructing finiteness spaces
e.g., the finiteness space of binary trees with nodes in |A| and
leaves in |B|, with finitess structure given by bounded height,
finitary A-support and finitary B-support.

. . . functorially
i.e. datatypes.

Characterize the least fixpoints of a large class of functors
among which those for algebraic datatypes.
Provided a finitary semantics of typed recursion [Tasson–V., 2011]

Higher order linear logic ?

What is transport good for?

Constructing finiteness spaces
e.g., the finiteness space of binary trees with nodes in |A| and
leaves in |B|, with finitess structure given by bounded height,
finitary A-support and finitary B-support.

. . . functorially
i.e. datatypes.

Characterize the least fixpoints of a large class of functors
among which those for algebraic datatypes.
Provided a finitary semantics of typed recursion [Tasson–V., 2011]

Higher order linear logic ?

Transport of other structures

Coherence spaces
Let f be a relation from A to |B| such that f · α ∈ C(B) for all
α ∈ A. Then

C = {a ⊆ A; f · a ∈ C(B)}

is a coherence on A.

More precisely: C = {f \ b; b ∈ C(B)}⊥⊥ .

Very easy.

Totality spaces
Fail ???

Transport of other structures

Coherence spaces
Let f be a relation from A to |B| such that f · α ∈ C(B) for all
α ∈ A. Then

C = {a ⊆ A; f · a ∈ C(B)}

is a coherence on A.

More precisely: C = {f \ b; b ∈ C(B)}⊥⊥ .

Very easy.

Totality spaces
Fail ???

Transport of other structures

Coherence spaces
Let f be a relation from A to |B| such that f · α ∈ C(B) for all
α ∈ A. Then

C = {a ⊆ A; f · a ∈ C(B)}

is a coherence on A.

More precisely: C = {f \ b; b ∈ C(B)}⊥⊥ .

Very easy.

Totality spaces
Fail ???

Transport and orthogonality

They play complementary roles:
I orthogonality provides the generic structure and axioms;
I transport provides a simple characterization and allows to

prove the axioms.

Towards a more general notion of transport?

I on top of orthogonality;
I restricted to webbed models (Rel) or in an enriched setting.

Transport and orthogonality

They play complementary roles:
I orthogonality provides the generic structure and axioms;
I transport provides a simple characterization and allows to

prove the axioms.

Towards a more general notion of transport?

I on top of orthogonality;
I restricted to webbed models (Rel) or in an enriched setting.

Fin

	Finiteness spaces
	Sets and relations
	Quantitative semantics
	Finiteness spaces

	Transport
	Transport of finiteness structures
	Transport functors
	Remarks on transport

	Conclusion

