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Abstract

Finiteness spaces were introduced by Ehrhard as a model of linear logic, which relied
on a finitess property of the standard relational interpretation and allowed to reformulate
Girard’s quantitative semantics in a simple, linear algebraic setting.

We review recent results obtained in a joint work with Christine Tasson, providing a
very simple and generic construction of finiteness spaces: basically, one can transport a
finiteness structure along any relation mapping finite sets to finite sets. Moreover, this
construction is functorial under mild hypotheses, satisfied by the interpretations of all the
positive connectives of linear logic.

Recalling that the definition of finiteness spaces follows a standard orthogonality tech-
nique, fitting in the categorical framework established by Hyland and Schalk, the question
of the possible generalization of transport to a wider setting is quite natural. We argue
that the features of transport do not stand on the same level as the orthogonality category
construction; rather, they provide a simpler and more direct characterization of the obtained
structure, in a webbed setting.

1 Finiteness spaces and finitary relations

Sets and relations. We write P (A) for the powerset of A, Pf (A) for the set of all finite
subsets of A and !A for the set of all finite multisets of elements of A.

Let A and B be sets and f be a relation from A to B: f ⊆ A × B. We then write tf for
the transpose relation {(β, α) ∈ B ×A; (α, β) ∈ f}. For all subset a ⊆ A, we write f · a for the
direct image of a by f : f · a = {β ∈ B; ∃α ∈ a, (α, β) ∈ f}. If α ∈ A, we will also write f · α
for f · {α}. We say that a relation f is quasi-functional if f · α is finite for all α. If b ⊆ B, we
define the division of b by f as f \ b = {α ∈ A; f · α ⊆ b}. Notice that in general f · (f \ b) may
be a strict subset of b, and f \ (f · a) may be a strict superset of a.

We write Rel for the category of sets and relations. It is a very simple model of linear logic:
multiplicatives are given by the compact closed structure associated with cartesian products of
sets (linear negation is then the transposition of relations, which is also a dagger); additives are
modelled by disjoint union of sets, which gives a biproduct; the exponential modality is that of
finite multisets.

Let T and U be two endofunctors of Rel, and let f be the data of a relation fA (which we
may also write f) from TA to UA for all set A: we say f is a lax natural transformation from
T to U if, for all relation g from A to B, fB ◦ (Tg) ⊆ (Ug) ◦ fA. As an example, consider the
finite multiset functor !, and for all A, let σA be the only relation from !A to A such that for all
α ∈ !A, σA ·α is the support set of α. This defines a quasi-functional lax natural transformation
from ! to the identity functor: notice that in that case, the inclusion σ ◦ !g ⊆ g ◦σ may be strict.

Finiteness spaces. We briefly recall the basic definition of finiteness spaces as given by
Ehrhard [Ehr05]. Let A and B be sets, we write A ⊥f B if A ∩ B is finite. If A ⊆ P (A),
we define the predual of A on A as A⊥ = {a′ ⊆ A; ∀a ∈ A, a ⊥f a

′}. A finiteness structure on A
is a set A of subsets of A such that A⊥⊥ = A. A finiteness space is then a pair A = (|A| ,F (A))
where |A| is the underlying set, called the web of A, and F (A) is a finiteness structure on |A|.



We write A⊥ for the dual finiteness space:
∣∣A⊥∣∣ = |A| and F

(
A⊥) = F (A)⊥. The elements of

F (A) are called the finitary subsets of A. Standard arguments on closure operators defined by
orthogonality apply and in particular A⊥ = A⊥⊥⊥, for all A ⊆ P (A); hence finiteness structures
are exactly preduals. More specific to the orthogonality ⊥f , for all finiteness structure A on A,
we obtain:

(1) A is downwards closed for inclusion, i.e. a ⊆ a′ ∈ A implies a ∈ A;

(2) Pf (A) ⊆ A and A is closed under finite unions, i.e. a, a′ ∈ A implies a ∪ a′ ∈ A.

The first property is similar to the one for coherence spaces. The second one is distinctive of
finiteness spaces, and is a non-uniformity property: union of finitary subsets models some form of
computational non-determinism, which is crucial to interpret the differential λ-calculus [ER03].

Finitary relations. Let A and B be two finiteness spaces: we say a relation f from |A| to |B|
is finitary from A to B if: for all a ∈ F (A), f ·a ∈ F (B), and for all b′ ∈ F

(
B⊥
)
, tf · b′ ∈ F

(
A⊥).

The identity relation is finitary from A to itself, and finitary relations compose: this defines the
category Fin whose objects are finiteness spaces and morphisms are finitary relations.

Finitary relations form a finiteness structure: remark that f ⊆ |A| × |B| is finitary iff f ∈{
a× b′; a ∈ F (A) and b′ ∈ F

(
B⊥
)}⊥. This reflects the ∗-autonomous structure of Fin, with ten-

sor product given by |A ⊗ B| = |A| × |B| and F (A⊗ B) = {a× b; a ∈ F (A) and b ∈ F (B)}⊥⊥,
and ∗-functor given by duality on finiteness spaces and transposition on finitary relations:
f ∈ Fin(A,B) 7→ tf ∈ Fin(B⊥,A⊥).

2 Transport

Transport of finiteness structures In the following, we present the basic results obtained
in recent work with Tasson [TV11]. The starting point is the following lemma, which allows to
generate a finiteness structure on a set A, by transporting that of a finiteness space B along any
relation f from A to |B|, provided f maps finite subsets of A to finitary subsets of B.

Lemma 2.1 (Transport). Let A be a set, B a finiteness space and f a relation from A to |B|
such that f · α ∈ F (B) for all α ∈ A. Then F = {a ⊆ A; f · a ∈ F (B)} is a finiteness structure
on A and, more precisely, F = {f \ b; b ∈ F (B)}⊥⊥.

The proof of this transport lemma [TV11, Lemma 3.4] is very similar to that of the char-
acterization of the exponential modality, given in Ehrhard’s paper [Ehr05, Lemma 4]. Actu-
ally, we obtain this characterization as a straightforward application of transport, through the
support relation, which is quasi-functional: if A is a finiteness space, then for all α ∈ ! |A|,
σ · α ∈ Pf (A) ⊆ F (A); moreover, if a ⊆ |A|, then σ \ a = !a. We thus obtain a finiteness space
!A such that |!A| = ! |A| and F (!A) = {a ⊆ !|A|; σ · a ∈ F (A)} = {!a; a ∈ F (A)}⊥⊥ .

Corollary 2.2. Let A be a set, (Bi)i∈I a family of finiteness spaces and (fi)i∈I a family of rela-
tions such that, for all α ∈ A and all i ∈ I, fi·α ∈ F (Bi). Then F = {a ⊆ A; ∀i ∈ I, fi · a ∈ F (Bi)}
is a finiteness structure on A and, more precisely, F =

{⋂
i∈I (fi \ bi); ∀i ∈ I, bi ∈ F (Bi)

}⊥⊥.

Again, we obtain the following characterization of the tensor product, by applying this gen-
eralized transport lemma: denoting π1 and π2 the two obvious projection relations we obtain
F (A⊗ B) = {c ⊆ |A| × |B| ; π1 · c ∈ F (A) and π2 · c ∈ F (B)}. Similarly, the direct product of



an arbitrary family of finiteness spaces is given by
∣∣˘

i∈I Ai
∣∣ = ⊎i∈I |Ai| =

⋃
i∈I {i} × |A|i and

F
(˘

i∈I Ai
)
=
{⊎

i∈I ai; ∀i ∈ I, ai ∈ F (Ai)
}
: this is otained by transport through the restric-

tions ρi = {((i, α), α); α ∈ |Ai|}. It turns out that the transport lemma is very versatile: for
any sensible notion of datatype (lists, trees, graphs, etc.), it allows to form a finiteness spaces of
such objects, with finiteness given by that of the elements (or nodes), possibly with an additional
finiteness condition on the shape (e.g., bounded length).

Transport functors. We say an endofunctor T of Fin has a web if there exists an endofunctor
T of Rel, such that |T A| = T |A| for all finiteness space A, and T f = Tf for all f ∈ Fin (A,B) ⊆
Rel (|A| , |B|). We then say T is the web of T and write T = |T |. Notice that in that case, if
f ⊆ A×B, Tf must be finitary from T (A,A) to T (B,B) for all finiteness structures A and B
making f finitary from (A,A) to (B,B). We show that, under mild hypotheses, the transport
lemma allows to define such functors.

Let T be a functor in Rel. We call ownership relation on T the data of a quasi-functional lax
natural transformation ε from T to the identity functor. Given such an ownership relation, we
can transport the finiteness structure of any space A to the web T |A|: indeed, ε|A| then satisfies
the condition of Lemma 2.1 because it is quasi-functional and finite subsets are always finitary.
In such a situation, we write TεA for the finiteness space (T |A| , {ã ⊆ T |A| ; ε · ã ∈ F (A)}). If
f ∈ Rel(|A| , |B|), we also write Tεf = Tf : then Tε defines a functor on Fin (with web T ) iff Tf
is finitary from TεA to TεB as soon as f is finitary from A to B. In that case, we say Tε is the
transport functor deduced from the transport situation (T, ε).

We now provide sufficient conditions for a transport situation to give rise to a transport
functor. A shape relation on (T, ε) is the data of a fixed set M of shapes and a quasi-functional
lax natural transformation µ from T to the constant functor which sends every set to M and
every relation to the identity, subject to the following additional condition: for all ã ⊆ TA, if
µ · ã and ε · ã are both finite, then ã is finite.

Lemma 2.3. Let (T, ε) be a transport situation. If T is symmetric (i.e. t(Tf) = T tf for all f)
and there exists a shape relation on (T, ε), then Tε is an endofunctor in Fin.

The symmetry of T is essential in the proof, since it allows ε and µ to interact with tTf as
well as with Tf (the definition of finitary relations is related with both directions). Moreover, the
existence of a shape relation is also crucial, since some transport situations on symmetric functors
do not preserve finitary relations. This is in particular the case of a would-be infinitary tensor:
although we can apply the transport lemma to define

⊗
i∈I Ai for all family (Ai)i∈I of finiteness

spaces (consider the projections (πi)i∈I), the tensor of finitary relations is not necessarily finitary.
It is however important to note that the shape relation plays no rôle in the definition of Tε: its
existence is a mere side condition ensuring functoriality.

A direct consequence is the functoriality of the exponential !: the shape of a finite multiset is
its size. Lemma 2.3 is easily generalized to functors of arbitrary arity, such as the direct product
of finiteness spaces, given by disjoint union of webs and finitary subsets: the shape of an element
(j, α) ∈

⊎
i∈I |Ai| is the index j. The functoriality of binary tensor product also follows, this

time with no need of an additional shape relation: the binary cartesian product of finite sets is
always finite.

The properties of transport functors are further studied in [TV11]: we show that, under
additional hypotheses, transport functors are Scott-continuous, which allows to take fixed points
of such; this is put to use by giving an account of recursive algebraic datatypes in Fin.



3 On possible generalizations of transport

The orthogonality category of finiteness spaces. The category Fin is the tight orthog-
onality category associated with ⊥f on Rel, following the theory of Hyland and Schalk [HS03].
The transport lemma can be used to establish the self-stability of ⊥f easily. More generally, it
provides simple and concrete characterizations of the abstract structure generated by double-
glueing. In fact, the very merit of transport lies precisely in making the bidual closure typical of
the orthogonality construction almost trivial, since it simply amounts to the downwards closure
for inclusion.

This difference in approach shows in the formulation of transport. Key ingredients seem
to rely strongly on the fact that we consider a webbed model (interpretations of proofs are
particular subsets of their types), and in particular on the order enrichment of the category given
by inclusion of relations. We can only remark that the condition “f sends finite subsets to finitary
subsets” can be rephrased as f being negative from (A,P (A) ,Pf (A)) to (|B| ,F (B) ,F

(
B⊥
)
).

The possible generalization of transport to a wider setting is nonetheless an appealing perspective.
As a first step, we turn our attention to other models of linear logic related with the relational
model.

Transport in other webbed models. Recall that a coherence space A is the data of a set |A|
and a reflexive binary relation ¨A on |A| (its coherence). Equivalently, A can be characterized
by the set C (A) ⊆ P (|A|) of its cliques, i.e. sets of pairwise coherent elements. A relation
f ⊆ |A| × |B| is said to be linear if, for all a ∈ C (A), f · a ∈ C (B) and for all b′ ∈ C (B)⊥,
tf · b′ ∈ C (A)⊥, where C (A)⊥ denotes the dual for the partial orthogonality : a ⊥p a

′ iff a ∩ a′
has at most one element.

The transport lemma is easily adapted to coherence spaces: just replace “finiteness structure”
with “clique”, and observe that, if f · α is always a clique, then f · a is a clique iff f · {α, α′} is
a clique for all α, α′ ∈ a, which defines a new coherence. The technique we used to establish
the functoriality of transport, however, does not apply directly: if (T, ε) is a transport situation
and f ∈ C (A( B), then Tf sends cliques to cliques by lax-naturality of ε, but establishing the
reverse direction (inverse images of anticliques are anticliques) will require to tweak the notion
of shape relation to accomodate coherence rather than finiteness. This is the subject of ongoing
work.

Transport does not seem to be meaningful for the webbed model obtained from the total
orthogonality : a ⊥t a

′ iff a ∩ a′ is a singleton. This defines Loader’s totality spaces: intuitively,
total subsets represent maximal cliques. This maximality property is not compatible with the fact
that, by construction, the structures obtained by transport are downwards closed for inclusion.
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