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We characterize the strong normalizability (SN)
of non-deterministic A-terms (A )
as a finiteness structure (§)

via Taylor expansion (7).



The end

Thanks for your attention.



Quantitative semantics

An

>

oldish idea (Girard, '80s)

types ~ particular topological vector spaces:
[A] € kI + possibly some additional structure

terms ~~ analytic functions defined by power series:
|A—B| C |Al' x|B]|
(M)N)g = > M@pN®
(@.B)
where |A|' is the set of finite multisets over |A|, and for all
a=lay,....an] € |A]', N* =[T,ea N =T1I; Ne,

this was the origin of linear logic (via coherence spaces)

How to ensure the convergence of the series?
Originally, k = Sets.
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Finiteness structures

Definition
» Ifa,a’ C A, write a L o’ iff ana’ is finite.
» f S CP(A), let &+ :={ad' CA; Vae S, aldl.

» A finiteness structure is any § = &+.

Then you can build a denotational model of linear logic where
[A] = {a e kM, |a| € Fin (A)}

with Fin (A) a finiteness structure on |A| so that for all a € Fin (A),
B e |B| and all f € in (A — B),

{a; (@,B) € f} La.

Short version: the sum of the previous slide is always finite.
Motto: finiteness structures enforce finite interactions/reductions/cut
elimination.



M-terms as analytic functions

So we can differentiate (typed) A-terms, and compute their Taylor
expansion!
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M-terms as analytic functions

So we can differentiate (typed) A-terms, and compute their Taylor
expansion!
And one can mimick that in the syntax:

» differential A-calculus (Ehrhard-Regnier 2003)
> a finitary fragment: resource A-calculus (Ehrhard-Regnier 2004)

this is the target of Taylor expansion
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Resource M\-calculus

Resource terms

oo u= x| Axs|(s)t
n= [$1,...,8n]

)

4
t

® ®»

A >
A s

)

Resource reduction

<>\$S> t —p Oy S - t (anywhere)

Multilinear substitution

55 7o djes, S [tr1ys oo tpm) /1, an]  ifdegy(s) =#E=n
* 0 otherwise

So we have formal sums of resource terms: S, T,...:= > . ;.

Everything is linear, e.g.: Ax.0 =0, (s) [t1 4+ t2,u] = >, (s) [ti, u].

Theorem

Resource reduction is strongly confluent and terminating.



Taylor expansion of A-terms

Semantically, (M) N =Y . = (M) N™ where N" = [N,..., N].
Taylor expansion
T (M) € Q+* is given by

- 1 /= = n

TN =Y — (T () T (N)

and T (z) =z, T ©e.M) = Az.T (M).

Theorem (Ehrhard-Regnier 2004 (pub. TCS 2008))
If M € A has a normal form, then T (M) normalizes to T (NF (M)).

Theorem (Ehrhard-Regnier, CiE 2006)
T (M) normalizes to T (BT (M)).



Normalizing Taylor expansions: uniformity to the rescue

But how can 7 (M) even normalize? Take S € k®: we want to set

NF(S) = Si.NF(t)

teA

but this means infinite sums (and in general we might consider all
kinds of coefficients).
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Normalizing Taylor expansions: uniformity to the rescue
But how can 7 (M) even normalize? Take S € k®: we want to set
NF(S) = Si.NF(t)
teA

but this means infinite sums (and in general we might consider all
kinds of coefficients).

Theorem (Ehrhard-Regnier 2004)
Write T (M) = ‘f(M)‘ Then for all t € A, there is at most one
s € T (M) such that NF (s), # 0.

Proof.

A-terms are uniform (aka deterministic). O

This fails for arbitrary linear combinations: consider
Yonen (Az.z)" [y] where (Az.2)" [y] = (A\v.z) [(Az.z) [~ [y] - ]I.

What about non-deterministic A-calculi?
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A minimalistic non-uniform calculus

A, >5MN,...:=x| e M| (M)N|M+N
(AxM)N—)BM[N/x] (anywhere)
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A minimalistic non-uniform calculus

A, >5MN,...:=x| e M| (M)N|M+N
()\.’L'M)N—)BM[N/(E] (anywhere)

(M + N) P = (M) P —+ (N) P (implicitly call-by-name)

Example
Let 0pr = Ax. (M + (2) 2) and cops = (dar) Opr-
Then oop —j M + oop!

Taylor expansion in a non uniform setting

—

T(M+N)=T(M)+T(N)
We would like to set:

NF (7 (M) = 3" T (M) NF(s)

but of course, normalizing 7T (coy;) leads to infinite sums.

10 / 20



Finiteness structures to the rescue

—

When is NF(7 (M)) defined?

> WritesZtifs—)f,t—i—n-.
» Then let 1t = {s € A; s > t}.

» We want: for all normal t € A, T (M) L 1¢.
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Finiteness structures to the rescue
When is NF(7 (M)) defined?
> Writesztifs%:t—i—n-.
» Then let 1t = {s € A; s >t}
» We want: for all normal t € A, T (M) L 1¢.

'FM:A TEN:A
'FM+N:A

Let system F be system F' plus

Theorem (Ehrhard, LICS 2010)

If M € A is typable in system Fy, then T (M) € {1t ; t e A}J‘,
Proof.

Manage sets of resource terms as if they were A-terms, and follow the

usual reducibility technique, associating a finiteness structure
Fin (A) C {1t ; t € A}" with each type A.
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A remark

In the previous theorem, “tests” are not restricted to normal terms.
This rules out looping terms, e.g., @ = (A) A with A = A\z. (z) a:

» consider §,, = Az. (z) [x"];
» then for all n € N, (d,,) [d0,00,01...,0n-1] = (d0) [] =, O.
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Our results

» Typability in F' can be relaxed to strong normalizability.

» Then the implication
M eSN =T (M)e{ft; te A}

can be reversed. ..

» provided the finiteness {1t ; ¢t € A}J‘ is refined to a tighter one.



MeSN= T (M)e{tt; te A}

In the ordinary A-calculus:

» SN = typability in system D (simple types + N)

» “any” proof by reducibility for simple types is valid for D
So we:

» introduce a system D, of intersection types for non uniform
terms

» prove that M € SN implies ' M : A in D,
» adapt Ehrhard’s proof to D
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System D

System D uses the rules:

r-m:A TI'FM:B '-M:ANnB '-M:ANB

I'FM:ANnB '-M:A '-M:B

This is not sufficient here, due to constraints for typing sums:
» observe that (x +y)z=(x)z+ (y) z
»letI'=2:A—-BNB,y:A—BnNB",z2: A,
> then T (x+y)z: B
» but x + y is not typable in T.

We need (a limited amount of) subtyping:

» ANB<Aand ANB < B;
» (A-B)N(A—-C)<A—(BNnC);
» A+ B<A" - B assoonas A’ < Aand B<B'.

r-mM:A A=XB
I'-M:B

Then the proofs go almost as usual.



T(M)e {tt; te A} = M e SN

Fails!
Let As:= Az. (z) zx and Q3 := (A3) Ag, then T (Q3) L 1s for all s.

Why?

We ruled out loops, but the divergence of {23 is of another nature.
A diverging A-term either loops or reduces to terms of arbitrary
height.

Fix: add more tests

» Consider a structure & C P (A) and let § = {Ta; a € &}
with ta = (J ¢, T5.

» Of course, not all G are acceptable, otherwise we reject too many
terms (consider & = P (A)).

» We need to rule out unbounded height: it suffices to test against
linear terms.
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T (M) eFs = M €SN

. as soon as G contains all sets of linear terms and all singletons.



T (M) e Fs =M €SN

. as soon as G contains all sets of linear terms and all singletons.

We prove the contraposition: given an infinite reduction sequence
from M, we find @ € & such that 7 (M) £ Ta.

Lemma

If M =% N then for allt € T (N) there is s € T (M) such that s > t.

Proof that 7 (M) € §s = M € SN .

» if M reduces to terms of unbounded height:
» take M; any term of height > ¢ with M %z M;;
> take a = {s;; ¢ € N} with s; € T (M;) a linear resource term
» otherwise M (in fact 7 (M)) loops and we can follow a looping
reduction path backwards (with some care)



Glueing everything together

We can adapt the reducibility proof provided & satisfies:
» foralln € N, for all a € &, {s € a; h(s) <n} is finite.
» some additional, purely technical conditions.

One interesting example:
B ={a CA; #(a) is bounded}

where # (a) = {#(s); s € a} and # (s) is the maximum size of a bag
of arguments in s.
Clearly B contains all singletons and all sets of linear terms.
Theorem (Pagani-Tasson-V.)
The following three properties are equivalent:

» M € SN;

> M s typable in system D, ;

> T(M) €5n.



Conclusion
We are happy.

We have established a nice and novel characterization of SN.

19 /20



Conclusion
We are happy.

We have established a nice and novel characterization of SN.

Are we?
This is intellectually satisfying but the really useful bit is that:

the Taylor expansion of a strongly normalizable term is normalizable
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Conclusion
We are happy.

We have established a nice and novel characterization of SN.

Are we?
This is intellectually satisfying but the really useful bit is that:

the Taylor expansion of a strongly normalizable term is normalizable

which is a bit frustrating (why strongly?).
Yes we are: plenty of future work!

» Our machinery is modular enough that it can be adapted to weak
normalizability and head-reduction: just change the reduction
order > on resource terms.

> Normalizability of Taylor expansion is the difficult part: that
T (NF (M)) = NF(T (M)) follows easily.

» Paves the way for a semantically founded notion of Bohm trees
for various non uniform settings (quantitative non-determinism,

probabilistic stuff, etc.).
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