$\left(\forall M\in\Lambda_{+}\right)\,M\in\mathsf{SN}\iff\mathcal{T}\left(M\right)\in\mathfrak{F}$

Lionel Vaux^{*} joint work with Christine Tasson[°] and Michele Pagani[°]

 * I2M, Aix-Marseille $^\circ$ PPS \subset IRIF, Paris 7

Journées des GT Geocal, LAC et LTP Nancy, 12–14 octobre 2015

Everything is in the title:

$\left(\forall M\in\Lambda_{+}\right)\,M\in\mathsf{SN}\iff\mathcal{T}\left(M\right)\in\mathfrak{F}$

Outline

Everything is in the title:

$$\left(\forall M\in\Lambda_{+}\right)\,M\in\mathsf{SN}\iff\mathcal{T}\left(M\right)\in\mathfrak{F}$$

We characterize the strong normalizability (SN) of non-deterministic λ -terms (Λ_+) as a finiteness structure (\mathfrak{F}) via Taylor expansion (\mathcal{T}).

The end

Thanks for your attention.

Quantitative semantics

An oldish idea (Girard, '80s)

- ▶ types \rightsquigarrow particular topological vector spaces: $\llbracket A \rrbracket \subseteq \mathbf{k}^{|A|} + \text{possibly some additional structure}$
- \blacktriangleright terms \rightsquigarrow analytic functions defined by power series:

$$|A \to B| \subseteq |A|! \times |B|$$

$$((M) N)_{\beta} = \sum_{(\overline{\alpha},\beta)} M_{(\overline{\alpha},\beta)} N^{\overline{\alpha}}$$

where $|A|^{!}$ is the set of finite multisets over |A|, and for all $\overline{\alpha} = [\alpha_1, \ldots, \alpha_n] \in |A|^{!}, N^{\overline{\alpha}} = \prod_{\alpha \in |A|} N^{\overline{\alpha}(\alpha)}_{\alpha} = \prod_i N_{\alpha_i}$

▶ this was the origin of linear logic (via coherence spaces)

How to ensure the convergence of the series? Originally, $\mathbf{k} = \mathsf{Sets}$.

Finiteness structures

Definition

- If $a, a' \subseteq A$, write $a \perp a'$ iff $a \cap a'$ is finite.
- If $\mathfrak{S} \subseteq \mathfrak{P}(A)$, let $\mathfrak{S}^{\perp} := \{ a' \subseteq A; \forall a \in \mathfrak{S}, a \perp a' \}.$
- A finiteness structure is any $\mathfrak{F} = \mathfrak{S}^{\perp}$.

Then you can build a denotational model of linear logic where

$$[\![A]\!] = \left\{ a \in \mathbf{k}^{|A|}; \ |a| \in \mathfrak{Fin} \left(A\right) \right\}$$

with $\mathfrak{Fin}(A)$ a finiteness structure on |A| so that for all $a \in \mathfrak{Fin}(A)$, $\beta \in |B|$ and all $f \in \mathfrak{Fin}(A \to B)$,

$$\{\overline{\alpha}; \ (\overline{\alpha},\beta) \in f\} \perp a^!.$$

Short version: the sum of the previous slide is always finite. Motto: finiteness structures enforce finite interactions/reductions/cut elimination.

$\lambda\text{-terms}$ as analytic functions

So we can differentiate (typed) $\lambda\text{-terms},$ and compute their Taylor expansion!

$\lambda\text{-terms}$ as analytic functions

So we can *differentiate* (typed) λ -terms, and compute their Taylor expansion!

And one can mimick that in the syntax:

- differential λ -calculus (Ehrhard-Regnier 2003)
- ► a finitary fragment: resource λ-calculus (Ehrhard-Regnier 2004) this is the target of Taylor expansion

Resource λ -calculus

Resource terms

$$\begin{array}{rcl} \Delta & \ni & s, t, \dots & ::= & x \mid \lambda x.s \mid \langle s \rangle \ \overline{t} \\ \Delta^! & \ni & \overline{s}, \overline{t}, \dots & ::= & [s_1, \dots, s_n] \end{array}$$

Resource reduction

$$\langle \lambda x.s \rangle \ \overline{t} \to_{\rho} \partial_x s \cdot \overline{t} \quad \text{(anywhere)}$$

Multilinear substitution

$$\partial_x s \cdot \bar{t} = \begin{cases} \sum_{f \in \mathfrak{S}_n} s \left[t_{f(1)}, \dots, t_{f(n)} / x_1, \dots, x_n \right] & \text{ if } \deg_x(s) = \# \bar{t} = n \\ 0 & \text{ otherwise} \end{cases}$$

So we have formal sums of resource terms: $S, T, \ldots := \sum_{i=1}^{n} t_i$. Everything is linear, e.g.: $\lambda x.0 = 0$, $\langle s \rangle [t_1 + t_2, u] = \sum_i \langle s \rangle [t_i, u]$. Theorem Resource reduction is strongly confluent and terminating.

7 / 20

Taylor expansion of λ -terms

Semantically, $(M) N = \sum_{n \in \mathbb{N}} \frac{1}{n!} \langle M \rangle N^n$ where $N^n = [N, \dots, N]$. Taylor expansion $\vec{\mathcal{T}}(M) \in \mathbf{Q}^{+\Delta}$ is given by

$$\vec{\mathcal{T}}\left(\left(M\right)N\right) = \sum_{n \in \mathbf{N}} \frac{1}{n!} \left\langle \vec{\mathcal{T}}\left(M\right) \right\rangle \, \vec{\mathcal{T}}\left(N\right)^{n}$$

and
$$\vec{\mathcal{T}}(x) = x$$
, $\vec{\mathcal{T}}(\lambda x.M) = \lambda x.\vec{\mathcal{T}}(M)$.

Theorem (Ehrhard-Regnier 2004 (pub. TCS 2008)) If $M \in \Lambda$ has a normal form, then $\vec{\mathcal{T}}(M)$ normalizes to $\vec{\mathcal{T}}(\mathsf{NF}(M))$.

Theorem (Ehrhard-Regnier, CiE 2006) $\vec{\mathcal{T}}(M)$ normalizes to $\vec{\mathcal{T}}(\mathsf{BT}(M))$. Normalizing Taylor expansions: uniformity to the rescue

But how can $\vec{\mathcal{T}}(M)$ even normalize? Take $S \in \mathbf{k}^{\Delta}$: we want to set

$$\mathsf{NF}\left(S\right) = \sum_{t \in \Delta} S_t.\mathsf{NF}\left(t\right)$$

but this means infinite sums (and in general we might consider all kinds of coefficients).

Normalizing Taylor expansions: uniformity to the rescue

But how can $\vec{\mathcal{T}}(M)$ even normalize? Take $S \in \mathbf{k}^{\Delta}$: we want to set

$$\mathsf{NF}\left(S\right) = \sum_{t \in \Delta} S_t.\mathsf{NF}\left(t\right)$$

but this means infinite sums (and in general we might consider all kinds of coefficients).

Theorem (Ehrhard-Regnier 2004) Write $\mathcal{T}(M) = |\vec{\mathcal{T}}(M)|$. Then for all $t \in \Delta$, there is at most one $s \in \mathcal{T}(M)$ such that $\mathsf{NF}(s)_t \neq 0$.

Proof.

 λ -terms are uniform (aka deterministic).

Normalizing Taylor expansions: uniformity to the rescue

But how can $\vec{\mathcal{T}}(M)$ even normalize? Take $S \in \mathbf{k}^{\Delta}$: we want to set

$$\mathsf{NF}\left(S\right) = \sum_{t \in \Delta} S_t.\mathsf{NF}\left(t\right)$$

but this means infinite sums (and in general we might consider all kinds of coefficients).

Theorem (Ehrhard-Regnier 2004) Write $\mathcal{T}(M) = |\vec{\mathcal{T}}(M)|$. Then for all $t \in \Delta$, there is at most one $s \in \mathcal{T}(M)$ such that $\mathsf{NF}(s)_t \neq 0$.

Proof.

 $\lambda\text{-terms}$ are uniform (aka deterministic).

This fails for arbitrary linear combinations: consider $\sum_{n \in \mathbf{N}} \langle \lambda x.x \rangle^n [y] \text{ where } \langle \lambda x.x \rangle^n [y] = \langle \lambda x.x \rangle [\langle \lambda x.x \rangle [\cdots [y] \cdots]].$ What about non-deterministic λ -calculi?

$$\begin{split} \Lambda_+ &\ni M, N, \dots ::= x \mid \lambda x.M \mid (M) \ N \mid M + N \\ & (\lambda x.M) \ N \to_\beta M \left[N/x \right] \quad \text{(anywhere)} \end{split}$$

$$\begin{split} \Lambda_+ &\ni M, N, \dots ::= x \mid \lambda x.M \mid (M) \ N \mid M + N \\ & (\lambda x.M) \ N \to_\beta M \left[N/x \right] \quad \text{(anywhere)} \end{split}$$

 $\left(M+N\right)P=\left(M\right)P+\left(N\right)P\quad \text{(implicitly call-by-name)}$

$$\begin{split} \Lambda_+ &\ni M, N, \dots ::= x \mid \lambda x.M \mid (M) \ N \mid M + N \\ & (\lambda x.M) \ N \to_\beta M \left[N/x \right] \quad \text{(anywhere)} \end{split}$$

 $\left(M+N\right)P=\left(M\right)P+\left(N\right)P\quad \text{(implicitly call-by-name)}$

Example

Let $\delta_M = \lambda x. (M + (x) x)$ and $\infty_M = (\delta_M) \delta_M.$

$$\begin{split} \Lambda_+ &\ni M, N, \dots ::= x \mid \lambda x.M \mid (M) \ N \mid M + N \\ & (\lambda x.M) \ N \to_\beta M \left[N/x \right] \quad \text{(anywhere)} \end{split}$$

 $\left(M+N\right)P=\left(M\right)P+\left(N\right)P\quad \text{(implicitly call-by-name)}$

Example

Let $\delta_M = \lambda x. (M + (x) x)$ and $\infty_M = (\delta_M) \delta_M$. Then $\infty_M \to^*_{\beta} M + \infty_M!$

$$\begin{split} \Lambda_+ &\ni M, N, \dots ::= x \mid \lambda x.M \mid (M) \ N \mid M + N \\ & (\lambda x.M) \ N \to_\beta M \left[N/x \right] \quad \text{(anywhere)} \end{split}$$

 $\left(M+N\right)P=\left(M\right)P+\left(N\right)P\quad \text{(implicitly call-by-name)}$

Example

Let
$$\delta_M = \lambda x. (M + (x) x)$$
 and $\infty_M = (\delta_M) \delta_M$.
Then $\infty_M \to^*_{\beta} M + \infty_M!$

Taylor expansion in a non uniform setting

$$\vec{\mathcal{T}}\left(M+N\right) = \vec{\mathcal{T}}\left(M\right) + \vec{\mathcal{T}}\left(N\right)$$

We would like to set:

$$\mathsf{NF}\left(\vec{\mathcal{T}}\left(M\right)\right)_{t} = \sum_{s \in \Delta} \vec{\mathcal{T}}\left(M\right)_{s} \mathsf{NF}\left(s\right)$$

but of course, normalizing $\vec{\mathcal{T}}(\infty_M)$ leads to infinite sums.

Finiteness structures to the rescue

When is $\mathsf{NF}(\vec{\mathcal{T}}(M))$ defined?

- Write $s \ge t$ if $s \to_{\rho}^{*} t + \cdots$.
- Then let $\uparrow t = \{s \in \Delta; s \ge t\}.$
- We want: for all normal $t \in \Delta$, $\mathcal{T}(M) \perp \uparrow t$.

Finiteness structures to the rescue

When is $\mathsf{NF}(\vec{\mathcal{T}}(M))$ defined?

- Write $s \ge t$ if $s \to_{\rho}^{*} t + \cdots$.
- Then let $\uparrow t = \{s \in \Delta; s \ge t\}.$
- We want: for all normal $t \in \Delta$, $\mathcal{T}(M) \perp \uparrow t$.

Let system F_+ be system F plus

$$\frac{\Gamma \vdash M: A \quad \Gamma \vdash N: A}{\Gamma \vdash M + N: A}$$

Theorem (Ehrhard, LICS 2010)

If $M \in \Lambda_+$ is typable in system F_+ , then $\mathcal{T}(M) \in \{\uparrow t ; t \in \Delta\}^{\perp}$.

Proof.

Manage sets of resource terms as if they were λ -terms, and follow the usual reducibility technique, associating a finiteness structure $\mathfrak{Fin}(A) \subseteq \{\uparrow t \; ; \; t \in \Delta\}^{\perp}$ with each type A.

A remark

In the previous theorem, "tests" are not restricted to normal terms. This rules out looping terms, e.g., $\Omega = (\Delta) \Delta$ with $\Delta = \lambda x. (x) x$:

- consider $\delta_n = \lambda x. \langle x \rangle [x^n];$
- ▶ then for all $n \in \mathbf{N}$, $\langle \delta_n \rangle$ $[\delta_0, \delta_0, \delta_1, \dots, \delta_{n-1}] \ge \langle \delta_0 \rangle$ $[] \to_{\rho} 0.$

Our results

- \blacktriangleright Typability in F can be relaxed to strong normalizability.
- ▶ Then the implication

$$M \in \mathsf{SN} \Rightarrow \mathcal{T}(M) \in \{\uparrow t ; t \in \Delta\}^{\perp}$$

can be reversed...

▶ provided the finiteness $\{\uparrow t ; t \in \Delta\}^{\perp}$ is refined to a tighter one.

$M \in \mathsf{SN} \Rightarrow \mathcal{T}(M) \in \{\uparrow t \; ; \; t \in \Delta\}^{\perp}$

In the ordinary λ -calculus:

▶ SN = typability in system D (simple types + ∩)

 \blacktriangleright "any" proof by reducibility for simple types is valid for D So we:

- \blacktriangleright introduce a system D_+ of intersection types for non uniform terms
- prove that $M \in \mathsf{SN}$ implies $\Gamma \vdash M : A$ in D_+
- adapt Ehrhard's proof to D_+

System D_+

System D uses the rules:

$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash M : B}{\Gamma \vdash M : A \cap B} \qquad \frac{\Gamma \vdash M : A \cap B}{\Gamma \vdash M : A} \qquad \frac{\Gamma \vdash M : A \cap B}{\Gamma \vdash M : B}$$

This is not sufficient here, due to constraints for typing sums:

- observe that (x + y) z = (x) z + (y) z
- $\blacktriangleright \ \mathrm{let} \ \Gamma = x: A \to B \cap B', y: A \to B \cap B'', z: A,$

• then
$$\Gamma \vdash (x+y) z : B$$

• but x + y is not typable in Γ .

We need (a limited amount of) subtyping:

•
$$A \cap B \preceq A$$
 and $A \cap B \preceq B$;

$$\blacktriangleright (A \to B) \cap (A \to C) \preceq A \to (B \cap C) ;$$

• $A \to B \preceq A' \to B'$ as soon as $A' \preceq A$ and $B \preceq B'$.

$$\frac{\Gamma \vdash M : A \quad A \preceq B}{\Gamma \vdash M : B}$$

Then the proofs go *almost* as usual.

$\mathcal{T}(M) \in \{\uparrow t \; ; \; t \in \Delta\}^{\perp} \Rightarrow M \in \mathsf{SN}$

Fails!

Let $\Delta_3 := \lambda x.(x) x x$ and $\Omega_3 := (\Delta_3) \Delta_3$, then $\mathcal{T}(\Omega_3) \perp \uparrow s$ for all s.

Why?

We ruled out loops, but the divergence of Ω_3 is of another nature. A diverging λ -term either loops or reduces to terms of arbitrary height.

Fix: add more tests

- Consider a structure $\mathfrak{S} \subseteq \mathfrak{P}(\Delta)$ and let $\mathfrak{F}_{\mathfrak{S}} = \{\uparrow a ; a \in \mathfrak{S}\}^{\perp}$ with $\uparrow a = \bigcup_{s \in a} \uparrow s$.
- ▶ Of course, not all \mathfrak{S} are acceptable, otherwise we reject too many terms (consider $\mathfrak{S} = \mathfrak{P}(\Delta)$).
- ▶ We need to rule out unbounded height: it suffices to test against linear terms.

$\mathcal{T}\left(M\right)\in\mathfrak{F_{S}}\Rightarrow M\in\mathsf{SN}$

 $\ldots\,$ as soon as $\mathfrak S$ contains all sets of linear terms and all singletons.

$\mathcal{T}\left(M\right)\in\mathfrak{F}_{\mathfrak{S}}\Rightarrow M\in\mathsf{SN}$

 \dots as soon as \mathfrak{S} contains all sets of linear terms and all singletons.

We prove the contraposition: given an infinite reduction sequence from M, we find $a \in \mathfrak{S}$ such that $\mathcal{T}(M) \not\perp \uparrow a$.

Lemma

If $M \to_{\beta}^{*} N$ then for all $t \in \mathcal{T}(N)$ there is $s \in \mathcal{T}(M)$ such that $s \geq t$.

Proof that $\mathcal{T}(M) \in \mathfrak{F}_{\mathfrak{S}} \Rightarrow M \in \mathsf{SN}$.

 \blacktriangleright if *M* reduces to terms of unbounded height:

- take M_i any term of height $\geq i$ with $M \to_{\beta}^* M_i$;
- ▶ take $a = \{s_i; i \in \mathbf{N}\}$ with $s_i \in \mathcal{T}(M_i)$ a linear resource term
- otherwise M (in fact $\mathcal{T}(M)$) loops and we can follow a looping reduction path backwards (with some care)

Glueing everything together

We can adapt the reducibility proof provided \mathfrak{S} satisfies:

- ▶ for all $n \in \mathbf{N}$, for all $a \in \mathfrak{S}$, $\{s \in a; \mathbf{h}(s) \leq n\}$ is finite.
- ▶ some additional, purely technical conditions.

One interesting example:

 $\mathfrak{B} = \{a \subseteq \Delta; \#(a) \text{ is bounded}\}\$

where $\#(a) = \{\#(s); s \in a\}$ and #(s) is the maximum size of a bag of arguments in s.

Clearly \mathfrak{B} contains all singletons and all sets of linear terms.

Theorem (Pagani-Tasson-V.)

The following three properties are equivalent:

- ▶ $M \in SN;$
- M is typable in system D_+ ;
- $\blacktriangleright \mathcal{T}(M) \in \mathfrak{F}_{\mathfrak{B}}.$

Conclusion

We are happy.

We have established a nice and novel characterization of $\mathsf{SN}.$

Conclusion

We are happy.

We have established a nice and novel characterization of SN.

Are we?

This is intellectually satisfying but the really useful bit is that:

the Taylor expansion of a strongly normalizable term is normalizable which is a bit frustrating (why strongly?).

Conclusion

We are happy.

We have established a nice and novel characterization of SN.

Are we?

This is intellectually satisfying but the really useful bit is that:

 $the \ Taylor \ expansion \ of \ a \ strongly \ normalizable \ term \ is \ normalizable$

which is a bit frustrating (why strongly?).

Yes we are: plenty of future work!

- ► Our machinery is modular enough that it can be adapted to weak normalizability and head-reduction: just change the reduction order ≥ on resource terms.
- ► Normalizability of Taylor expansion is the difficult part: that $\vec{\mathcal{T}}(\mathsf{NF}(M)) = \mathsf{NF}(\vec{\mathcal{T}}(M))$ follows easily.
- ▶ Paves the way for a semantically founded notion of Böhm trees for various non uniform settings (quantitative non-determinism, probabilistic stuff, *etc.*).

The end

Thanks for your attention.

The end

Thanks for your attention. Questions?