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Outline

Everything is in the title:

(∀M ∈ Λ+) M ∈ SN ⇐⇒ T (M) ∈ F

We characterize the strong normalizability (SN)

of non-deterministic λ-terms (Λ+)

as a finiteness structure (F)

via Taylor expansion (T ).
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The end

Thanks for your attention.

Questions?
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Quantitative semantics

An oldish idea (Girard, ’80s)

I types  particular topological vector spaces:

JAK ⊆ k|A| + possibly some additional structure

I terms  analytic functions defined by power series:

|A→ B| ⊆ |A|! × |B|

((M)N)β =
∑
(α,β)

M(α,β)N
α

where |A|! is the set of finite multisets over |A|, and for all

α = [α1, . . . , αn] ∈ |A|!, Nα =
∏
α∈|A| N

α(a)
α =

∏
iNαi

I this was the origin of linear logic (via coherence spaces)

How to ensure the convergence of the series?
Originally, k = Sets.
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Finiteness structures

Definition

I If a, a′ ⊆ A, write a ⊥ a′ iff a ∩ a′ is finite.

I If S ⊆ P (A), let S⊥ := {a′ ⊆ A; ∀a ∈ S, a ⊥ a′}.
I A finiteness structure is any F = S⊥ .

Then you can build a denotational model of linear logic where

JAK =
{
a ∈ k|A| ; |a| ∈ Fin (A)

}
with Fin (A) a finiteness structure on |A| so that for all a ∈ Fin (A),
β ∈ |B| and all f ∈ Fin (A→ B),

{α; (α, β) ∈ f} ⊥ a!.

Short version: the sum of the previous slide is always finite.
Motto: finiteness structures enforce finite interactions/reductions/cut
elimination.
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λ-terms as analytic functions

So we can differentiate (typed) λ-terms, and compute their Taylor
expansion!

And one can mimick that in the syntax:

I differential λ-calculus (Ehrhard-Regnier 2003)

I a finitary fragment: resource λ-calculus (Ehrhard-Regnier 2004)

this is the target of Taylor expansion
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Resource λ-calculus
Resource terms

∆ 3 s, t, . . . ::= x | λx.s | 〈s〉 t
∆! 3 s, t, . . . ::= [s1, . . . , sn]

Resource reduction

〈λx.s〉 t→ρ ∂xs · t (anywhere)

Multilinear substitution

∂xs · t =

{ ∑
f∈Sn

s
[
tf(1), . . . , tf(n)/x1, . . . , xn

]
if degx(s) = #t = n

0 otherwise

So we have formal sums of resource terms: S, T, . . . :=
∑n
i=1 ti.

Everything is linear, e.g.: λx.0 = 0, 〈s〉 [t1 + t2, u] =
∑
i 〈s〉 [ti, u].

Theorem
Resource reduction is strongly confluent and terminating.
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Taylor expansion of λ-terms

Semantically, (M)N =
∑
n∈N

1
n! 〈M〉 N

n where Nn = [N, . . . , N ].

Taylor expansion
~T (M) ∈ Q+∆

is given by

~T ((M)N) =
∑
n∈N

1

n!

〈
~T (M)

〉
~T (N)

n

and ~T (x) = x, ~T (λx.M) = λx.~T (M).

Theorem (Ehrhard-Regnier 2004 (pub. TCS 2008))
If M ∈ Λ has a normal form, then ~T (M) normalizes to ~T (NF (M)).

Theorem (Ehrhard-Regnier, CiE 2006)
~T (M) normalizes to ~T (BT (M)).
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Normalizing Taylor expansions: uniformity to the rescue

But how can ~T (M) even normalize? Take S ∈ k∆ : we want to set

NF (S) =
∑
t∈∆

St.NF (t)

but this means infinite sums (and in general we might consider all
kinds of coefficients).

Theorem (Ehrhard-Regnier 2004)
Write T (M) =

∣∣∣~T (M)
∣∣∣. Then for all t ∈ ∆, there is at most one

s ∈ T (M) such that NF (s)t 6= 0.

Proof.
λ-terms are uniform (aka deterministic).

This fails for arbitrary linear combinations: consider∑
n∈N 〈λx.x〉

n
[y] where 〈λx.x〉n [y] = 〈λx.x〉 [〈λx.x〉 [· · · [y] · · · ]].

What about non-deterministic λ-calculi?
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A minimalistic non-uniform calculus

Λ+ 3M,N, . . . ::= x | λx.M | (M)N |M +N

(λx.M)N →β M [N/x] (anywhere)

(M +N)P = (M)P + (N)P (implicitly call-by-name)

Example
Let δM = λx. (M + (x)x) and ∞M = (δM ) δM .
Then ∞M →∗β M +∞M !

Taylor expansion in a non uniform setting

~T (M +N) = ~T (M) + ~T (N)

We would like to set:

NF
(
~T (M)

)
t

=
∑
s∈∆

~T (M)s NF (s)

but of course, normalizing ~T (∞M ) leads to infinite sums.
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Finiteness structures to the rescue

When is NF(~T (M)) defined?

I Write s ≥ t if s→∗ρ t+ · · · .
I Then let ↑t = {s ∈ ∆; s ≥ t}.
I We want: for all normal t ∈ ∆, T (M) ⊥ ↑t .

Let system F+ be system F plus
Γ `M : A Γ ` N : A

Γ `M +N : A
.

Theorem (Ehrhard, LICS 2010)
If M ∈ Λ+ is typable in system F+, then T (M) ∈ {↑t ; t ∈ ∆}⊥ .

Proof.
Manage sets of resource terms as if they were λ-terms, and follow the
usual reducibility technique, associating a finiteness structure
Fin (A) ⊆ {↑t ; t ∈ ∆}⊥ with each type A.
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A remark

In the previous theorem, “tests” are not restricted to normal terms.
This rules out looping terms, e.g., Ω = (∆) ∆ with ∆ = λx. (x)x:

I consider δn = λx. 〈x〉 [xn];

I then for all n ∈ N, 〈δn〉 [δ0, δ0, δ1 . . . , δn−1] ≥ 〈δ0〉 []→ρ 0.
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Our results

I Typability in F can be relaxed to strong normalizability.

I Then the implication

M ∈ SN⇒ T (M) ∈ {↑t ; t ∈ ∆}⊥

can be reversed. . .

I provided the finiteness {↑t ; t ∈ ∆}⊥ is refined to a tighter one.
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M ∈ SN⇒ T (M) ∈ {↑t ; t ∈ ∆}⊥

In the ordinary λ-calculus:

I SN = typability in system D (simple types + ∩)

I “any” proof by reducibility for simple types is valid for D

So we:

I introduce a system D+ of intersection types for non uniform
terms

I prove that M ∈ SN implies Γ `M : A in D+

I adapt Ehrhard’s proof to D+
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System D+
System D uses the rules:

Γ `M : A Γ `M : B

Γ `M : A ∩B
Γ `M : A ∩B

Γ `M : A

Γ `M : A ∩B
Γ `M : B

This is not sufficient here, due to constraints for typing sums:

I observe that (x+ y) z = (x) z + (y) z

I let Γ = x : A→ B ∩B′, y : A→ B ∩B′′, z : A,

I then Γ ` (x+ y) z : B

I but x+ y is not typable in Γ.

We need (a limited amount of) subtyping:

I A ∩B � A and A ∩B � B;

I (A→ B) ∩ (A→ C) � A→ (B ∩ C) ;

I A→ B � A′ → B′ as soon as A′ � A and B � B′.

Γ `M : A A � B
Γ `M : B

Then the proofs go almost as usual.
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T (M) ∈ {↑t ; t ∈ ∆}⊥ ⇒M ∈ SN

Fails!
Let ∆3 := λx. (x)xx and Ω3 := (∆3) ∆3, then T (Ω3) ⊥ ↑s for all s.

Why?
We ruled out loops, but the divergence of Ω3 is of another nature.
A diverging λ-term either loops or reduces to terms of arbitrary
height.

Fix: add more tests

I Consider a structure S ⊆ P (∆) and let FS = {↑a ; a ∈ S}⊥
with ↑a =

⋃
s∈a ↑s .

I Of course, not all S are acceptable, otherwise we reject too many
terms (consider S = P (∆)).

I We need to rule out unbounded height: it suffices to test against
linear terms.
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T (M) ∈ FS ⇒M ∈ SN

. . . as soon as S contains all sets of linear terms and all singletons.

We prove the contraposition: given an infinite reduction sequence
from M , we find a ∈ S such that T (M) 6⊥ ↑a .

Lemma
If M →∗β N then for all t ∈ T (N) there is s ∈ T (M) such that s ≥ t.

Proof that T (M) ∈ FS ⇒M ∈ SN .

I if M reduces to terms of unbounded height:
I take Mi any term of height ≥ i with M →∗

β Mi;
I take a = {si; i ∈ N} with si ∈ T (Mi) a linear resource term

I otherwise M (in fact T (M)) loops and we can follow a looping
reduction path backwards (with some care)
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Glueing everything together

We can adapt the reducibility proof provided S satisfies:

I for all n ∈ N, for all a ∈ S, {s ∈ a; h (s) ≤ n} is finite.

I some additional, purely technical conditions.

One interesting example:

B = {a ⊆ ∆; # (a) is bounded}

where # (a) = {# (s) ; s ∈ a} and # (s) is the maximum size of a bag
of arguments in s.
Clearly B contains all singletons and all sets of linear terms.

Theorem (Pagani-Tasson-V.)
The following three properties are equivalent:

I M ∈ SN;

I M is typable in system D+;

I T (M) ∈ FB.
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Conclusion

We are happy.
We have established a nice and novel characterization of SN.

Are we?
This is intellectually satisfying but the really useful bit is that:

the Taylor expansion of a strongly normalizable term is normalizable

which is a bit frustrating (why strongly?).

Yes we are: plenty of future work!

I Our machinery is modular enough that it can be adapted to weak
normalizability and head-reduction: just change the reduction
order ≥ on resource terms.

I Normalizability of Taylor expansion is the difficult part: that
~T (NF (M)) = NF(~T (M)) follows easily.

I Paves the way for a semantically founded notion of Böhm trees
for various non uniform settings (quantitative non-determinism,
probabilistic stuff, etc.).
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