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We show that the normal form of the Taylor expansion of a λ-term is isomorphic to its Böhm
tree, improving Ehrhard and Regnier’s original proof along three independent directions.

First, we simplify the final step of the proof by following the left reduction strategy
directly in the resource calculus, avoiding to introduce an abstract machine ad-hoc.

We also introduce a groupoid of permutations of copies of arguments in a rigid variant
of the resource calculus, and relate the coefficients of Taylor expansion with this structure,
while Ehrhard and Regnier worked with groups of permutations of occurrences of variables.

Finally, we extend all the results to a non-deterministic setting: by contrast with previous
attempts, we show that the uniformity property that was crucial in Ehrhard and Regnier’s
approach can be preserved in this setting.

1 Introduction

The field of quantitative semantics is currently very lively within the linear logic community and
beyond. This momentum originates in the introduction by Ehrhard [1] of models where λ-terms
could be interpreted by analytic maps, leading to the differential extensions of λ-calculus [3]
and linear logic [5] by Ehrhard and Regnier. The keystone of this line of work is an analogue
of the Taylor expansion formula, which allows to translate terms (or proofs) into infinite linear
combinations of finite approximants [6]: in the case of λ-calculus, those approximants are the
terms of a resource calculus, in which the copies of arguments of a function must be provided
explicitly, and then consumed linearly, instead of duplicated or discarded during reduction.

By contrast with denotational semantics à la Scott, these approximants thus retain a dynam-
ics, although a very simple, finitary one: the size of terms is strictly decreasing under reduction.
In particular, Ehrhard and Regnier have shown that the Taylor expansion τ(M) of a λ-term M
can always be normalized, and that its normal form is isomorphic to the Böhm tree BT (M) of
M [6, 4]: in particular, this normal form defines a proper denotational semantics.

The proof of Ehrhard and Regnier can be summed up as follows:

Step 1: The non-zero coefficients of resource terms in τ(M) do not depend onM . More precisely,
we can write τ(M) =

∑
s∈T (M)

1
m(s)s, where T (M) is the support set of Taylor expansion

and m(s) is an integer coefficient depending only on the resource term s.

Step 2: The set T (M) is a clique, setting s¨ s′ if s and s′ have the same syntactic tree, differing
only by the multiplicity of arguments.

Step 3: Writing NF (s) for the normal form of s, which is a finite sum of resource terms, the
respective supports of NF (s) and NF (s′) are disjoint cliques whenever s¨ s′ and s 6= s′.
Then one can setNF (τ(M)) =

∑
s∈T (M)

1
m(s)NF (s), the summands being pairwise disjoint.
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Step 4: If s is uniform, i.e. s¨ s, and t is in the support of NF (s) then NF (s)t = m(s)
m(t)

Step 5: By Step 1, τ(BT (M)) =
∑
t∈T (BT (M))

1
m(t) t. To conclude it is thus sufficient to prove

that t ∈ T (BT (M)) iff there exists s ∈ T (M) such that t is in the support of NF (s).

The first two steps are easy consequences of the definitions. For Step 3, it is sufficient to
observe that elementary resource reduction steps preserve coherence: this depends crucially on
uniformity (Step 2). Step 4 relies on a careful investigation of the combinatorics of substitution
in the resource calculus: this involves an elaborate argument about the structure of particular
subgroups of the group of permutations of variable occurrences [6]. Finally, Ehrhard and Regnier
establish Step 5 by relating Taylor expansion with execution in an abstract machine [4].

In the present work, we propose to revisit this seminal result, along three directions.

(i) We largely simplify Step 5, relying on a technique introduced by the second author [9].
We consider the parallel outmost reduction strategy (a slight variant of leftmost reduction,
underlying the construction of Böhm trees) and show that it can be simulated directly in
the resource calculus, through of Taylor expansion. We thus avoid the intricacies of an
abstract machine with resource state.

(ii) We extend all the results to a model of non-determinism, introduced as a formal binary
choice operator in the calculus. By contrast with previous proposals from Ehrhard [2], or
Pagani, Tasson and Vaux Auclair [7, 9], we show that uniformity can still be relied upon,
provided one keeps track of choices in the resource calculus: the coherence associated with
non-deterministic choice is then that of the with connective (&) of linear logic.

(iii) We analyse coefficients in the Taylor expansion by introducing a groupoid of permutations
on a rigid variant of resource terms, i.e. resource terms where multisets of arguments
are replaced with lists, and the reduction is deterministic in the sense that it does not
produce sums. This is more in accordance with the intuition that m(s) is the number of
permutations of arguments that leave s (or rather, any rigid representation of s) invariant:
Ehrhard and Regnier rather worked on permutations of variable occurrences, which allowed
to consider groups rather than a groupoid. Apart from this change of focus, the proof
technique for Step 4 is essentially the same, but we believe our presentation gives a better
understanding of the underlying combinatorics of substitution in resource terms.

Those three contributions are completely independent from each other.
It is natural to compare our proposals to the line of work of Tsukada, Asada and Ong [8].

Indeed, the resulting rigid calculus is very similar to theirs, but the viewpoints differ: whereas
Tsukada, Asada and Ong thrive to develop an abstract understanding of reduction paths in
non-deterministic λ-calculus, it follows from our results that Ehrhard and Regnier’s technique
can already be adapted to such non-determinism without introducing any new concept.

Also, our groupoid structure on rigid terms is reminiscent of morphisms in the interpretation
of types in their generalized species of structures. In future work, we plan to investigate a possible
refinement of our approach into a pure, untyped variant of their model: this will likely require
us to study the interaction between our groupoid structure and permutations of free variable
occurrences, which can be seen as a group action on contexts. We expect to obtain an explicit
presentation of a reflexive object in the model of Tsukada, Asada and Ong.
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2 Taylor expansion in a non-deterministic λ calculus

2.1 λ⊕-terms

We introduce a non-deterministic version of λ-calculus in a pure setting:1

Λ⊕ 3M,N,. . . ::= x | λx.M |MN |M ⊕N

As usual λ⊕-terms are considered up to renaming of bound variables. We write M [N/x] for the
capture avoiding substitution of N for x in M .

The reduction of λ⊕ is then the contextual extension of the following base cases:

(λx.M)N →M [N/x] and (M ⊕N)P →MP ⊕NP.

We will moreover rely on the parallel left reduction strategy defined as follows:

L(P ⊕Q) = L(P )⊕L(Q) L(λx1 . . .λxl.xQ1 · · ·Qk) = λx1 . . .λxl.xL(Q1) · · ·L(Qk)
L(λx1 . . .λxl.(λx.P )QQ1 · · ·Qk) = λx1 . . .λxl.(P [Q/x])Q1 · · ·Qk
L(λx1 . . .λxl.(P ⊕S)QQ1 · · ·Qk) = λx1 . . .λxl.(PQ⊕SQ)Q1 · · ·Qk

2.2 Resource terms

We define the set of resource terms ∆⊕ and the set of resource monomials ∆!
⊕ by mutual

induction as follows:

∆⊕ 3 s, t,u ::= x | λx.s | 〈s〉t̄ | s⊕• | •⊕s ∆!
⊕ 3 s̄, t̄, ū ::= [] | [s] · t̄

We write [s1, . . . ,sn] for [s1] · . . . · [sn] · []. Monomials are then considered up to permutations and
resource terms up to renaming of bound variables. We call resource expressions the elements of
∆(!)
⊕ = ∆⊕∪∆!

⊕. For any resource expression e, we write nx(e) for the number of occurrences of
variable x in e. If A is a set, we write N[A] for the set of finite formal sums of elements of A,
or equivalently the set of finite linear combinations of elements of A with coefficients in N. We
extend the syntactical constructs of the resource calculus to finite sums of resource expressions
by linearity: e.g., [s+ t] · ū= s · ū+ t · ū.
Definition 2.1. Let e∈∆(!)

⊕ , ū= [u1, . . . ,un]∈∆!
⊕ and x∈V. We define the n-linear substitution

∂xe · ū of ū for x in e as follows:

∂xe · ū=


∑

σ∈Sn

e[uσ(1)/x1, . . . ,uσ(n)/xn] if nx(e) = n

0 otherwise
where x1, . . . ,xnx(e) enumerate the occurrences of x in e.

The reduction of resource terms is defined contextually from the following base cases:

〈λx.s〉t̄→∂ ∂xs · t̄ 〈s⊕•〉t̄→∂ 〈s〉t̄⊕• 〈•⊕s〉t̄→∂ •⊕〈s〉t̄.

As for the original resource calculus [6], the reduction relation →∂ is confluent and strongly
normalizing. We write NF (s) for the unique normal form of s that is a formal sum of resource
terms. We can extend the notion of left-parallel reduction to resource terms in the natural way.
We write L∂(e) for the left-parallel reduct of e ∈∆(!)

⊕ .
1 Throughout the paper, we use a self explanatory if not standard variant of BNF notation for introducing

syntactic objects: here we define the set Λ⊕ as that inductively generated by variables, λ-abstraction, application
and sum, and we will denote terms using letters among M,N,P,Q, possibly with sub- and superscripts.
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2.3 Taylor expansion of λ⊕-terms

If A is a set, we write Q+〈A〉 for the set of possibly infinite linear combinations of elements of A
with positive rational coefficients (in fact we could use any commutative semifield): equivalently,
Q+〈A〉 is the set of functions from A to Q+. We write α=

∑
a∈Aαa.a∈Q+〈A〉. All the syntactic

constructs we have introduced on resource expressions can be extended by linear-continuity [9].
Let σ ∈ Q+〈∆⊕〉. We define σn by induction on n: if n = 0 then σn = []; if n = m+ 1 then

σn = [σ] ·σm. Then we define the promotion of σ as the series σ! =
∑∞
n=0

1
n!σ

n: because the
supports of σn and σp are disjoint when n 6= p, this sum involves finite coefficients only. Let
~a= (a1, . . . ,an) be any finite sequence and σ ∈Sn, we write ~a[σ] = (aσ−1(1), . . . ,aσ−1(n)) for the
action of σ on ~a. Then we write St(~a) = {σ ∈Sn | ~a[σ] = ~a} for the stabilizer subgroup.
Lemma 2.2. Let σ ∈Q+〈∆⊕〉 and s̄ ∈ supp(σ!). If ~s= (s1, . . . ,sn) is an enumeration of s̄, i.e.
[s1, . . . ,sn] = s̄, then (σ!)s̄ = 1

Card(St(~s)) · (σ)s1 · · ·(σ)sn .

Proof. By definition and by linearity we have σ! =
∑∞
n=0

∑
(s1,...,sn)∈∆n

1
n!(σ)s1 · · ·(σ)sn [s1, . . . ,sn].

In order to compute the coefficient of s̄ in σ!, we need to determine the number of possible
enumerations of s̄, i.e. the cardinality of {(s1, . . . ,sn) | [s1, . . . ,sn] = s̄}: observe that, having
fixed one enumeration ~s = (s1, . . . ,sn), this set is nothing but the orbit of ~s by the action of

the symetric group Sn. By a standard result of groups, Card(Orb(~s)) = Card(Sn)
Card(St(~s)) and we

conclude.

Let M be a λ⊕-term. We inductively define τ(M) ∈Q+〈∆⊕〉, the Taylor expansion of M :

τ(x) = x τ(λx.M ′) = λx.τ(M ′) τ(PQ) = 〈τ(P )〉τ(Q)! τ(P ⊕Q) = (τ(P )⊕•) + (•⊕ τ(Q))

Then we write T (M) for the support of τ(M): s ∈ T (M) iff τ(M)s 6= 0. Let s ∈ ∆⊕. We
inductively define m(s), the multiplicity of s, as follows:

m(x) = 1 m(λx.s) =m(s⊕•) =m(•⊕s) =m(s) m(〈s〉t̄) =m(s)m(t̄)

m([tn1
1 , . . . , tnn

n ]) =
n∏
i=1

ni! m(ti)ni

assuming the ti’s are pairwise distinct in the case of a monomial. We also define the coherence
relation ¨⊆∆(!)

⊕ ×∆(!)
⊕ inductively by the following rules:

x¨ x
s¨ s′

λx.s¨ λx.s′
s¨ s′ t̄¨ t̄′

〈s〉t̄¨ 〈s′〉t̄′
ti ¨ tj for 1≤ i, j ≤ n+m

[t1, . . . , tn] ¨ [tn+1, . . . , tn+m]
s¨ s′

s⊕•¨ s′⊕•
s¨ s′

•⊕s¨ •⊕s′ s⊕•¨ •⊕s′ .

We can then reproduce Steps 1 and 2 of Ehrhard and Regnier’s proof, establishing each of
the following two lemmas by a straightforward induction on resource terms, also using Lemma
2.2 in the application case for Lemma 2.3:
Lemma 2.3. Let s ∈ T (M). Then τ(M)s = 1

m(s) .

Lemma 2.4. The Taylor support T (M) is a clique: s¨ s′ for all s,s′ ∈ T (M).
We could as well obtain Step 3, following Ehrhard and Regnier again, but here we chose to

present it in the framework of rigid terms and inductive permutations to be introduced later.



F. Olimpieri & L. Vaux Auclair 5

2.4 Böhm trees and resource normal forms

We rely on the presentation of Böhm trees by Ehrhard and Regnier [4], extended to Λ⊕
straightforwardly, no special meaning being given to the non-deterministic choice operator:
e.g., BTn(M ⊕N) = BTn(M)⊕BTn(N) where BTn(M) denotes the n-th Böhm tree approxi-
mant of M . The Taylor expansion of a Böhm tree is then obtained by setting T (BT (M)) =⋃
n∈NT (BTn(M)) and τ(BT (M)) =

∑
s∈T (BT (M))

1
m(s)s. Then we achieve Step 5 by showing

that the parallel left strategy in Λ⊕ can be simulated in the support of Taylor expansion:
Lemma 2.5. Let M be a λ⊕-term. Then L∂(T (M)) = T (L(M)).

Observe that we only consider the action of L∂ on support sets here. The desired equation
then follows, using the fact that BT (M) is the lub of the increasing sequence (BTn(M)):
Theorem 2.6. Let M ∈ Λ⊕. Then T (BT (M)) =NF (T (M)).

Proof. Let us precise thatNF (T (M)) =
⋃
s∈T (M) supp(NF (s)). The proof is by double inclusion.

(⊆) Let s∈ T (BT (M)). Then there is n∈N such that s∈ T (BTn(M)) and the proof is by induc-
tion on n. (⊇) Let s′ ∈

⋃
s∈T (M) supp(NF (s)). Then there is m ∈ N such that s′ ∈ supp(Lm∂ (s))

for some s ∈ T (M), and the proof is by induction on m. In both directions, we use the previous
lemma as well as the fact that BT (M) =BT (L(M)).

3 The groupoid of permutations on rigid resource terms

3.1 Rigid resource terms

We introduce the set of rigid resource terms D and the set of rigid monomials D! by mutual
induction as follows:

D 3 a,b,c,d ::= x | λx.a | 〈a〉~b | •⊕a | a⊕• D! 3 ~a,~b,~c, ~d ::= () | a ::~b

Rigid resource terms are considered up to renaming of bound variables. We write (a1, . . . ,an)
for a1 :: . . . :: an :: (), |(a1, . . . ,an)|= n, and (a1, . . . ,an) :: (an+1, . . . ,an+m) for (a1, . . . ,an+m).
Definition 3.1. We define e{~b/x} for any e ∈D(!) and ~b ∈D! such that |~b|= nx(e) inductively:

x{(b)/x}= b y{()/x}= y (a⊕•){~b/x}= a{~b/x}⊕• (•⊕a){~b/x}= •⊕a{~b/x}
(λy.a){~b/x}= λy.(a{~b/x}) (〈c〉~d){~b0 ::~b1/x}= 〈c{~b0/x}〉~d{~b1/x}

(a1, . . . ,an){~b1 :: · · · ::~bn/x}= (a1{~b1/x}, . . . ,an{~bn/x})

whenever y 6= x, y /∈ FV (~b), |~b|= nx(a), |~b0|= nx(c), |~b1|= nx(~d), and |~bi|= nx(ai) for 1≤ i≤ n.
Definition 3.2. Let e ∈D(!), x ∈ V and ~b ∈D!. We define a[~b/x] the rigid substitution of ~b for
x in a, setting a[~b/x] = a{~b/x} if nx(a) = |~b| and a[~b/x] = 0 otherwise.

The reduction of rigid resource terms has the following base cases:

〈λx.a〉~b→r a[~b/x] 〈a⊕•〉~b→r 〈a〉~b⊕• 〈•⊕a〉~b→r •⊕〈a〉~b.

extended contextually. Again, →r is confluent and strongly normalizing. We write NF (a) for
the unique normal form of a that is a rigid term or 0. We can extend the coherence relation to
rigid resource terms in the natural way.
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3.2 Permutations of rigid monomials

Definition 3.3. We define the set of permutations G of monomials in rigid resource terms by
the following inference rules:

idx : x∼= x
α : a∼= a′

λx.α : λx.a∼= λx.a′

γ : c∼= c′ δ : ~d∼= ~d′

〈γ〉δ : 〈c〉~d∼= 〈c′〉~d′

α : a∼= a′

α⊕• : a⊕• ∼= a⊕•′
α : a∼= a′

•⊕α : •⊕a∼= •⊕a′
σ ∈Sn α1 : a1 ∼= a′σ(1) · · · αn : an ∼= a′σ(n)

(σ,α1, . . . ,αn) : (a1, . . . ,an)∼= (a′1, . . . ,a′n)
We write a ∼= a′ if there exists some f ∈ G such that f : a ∼= a′. It is easy to check that

∼= is an equivalence relation over rigid resource terms. In fact, we can organize the wit-
nesses of this equivalence relation into a groupoid G, with D(!) as collection of objects and
for a,a′ ∈ D(!), G(a,a′) = {α ∈ G | α : a ∼= a′}. The composition α′α of α ∈ G(a,a′) and α′ ∈
G(a′,a′′) is defined by induction on the syntax of rigid resource terms in the obvious way: e.g.,
(σ′,α′1, . . . ,α′n)(σ,α1, . . . ,αn) = (σ′σ,α′σ(1)α1, . . . ,α

′
σ(n)αn); and the identity 1a on a is the same

as a, with each variable occurence x replaced with 1x.
If ~a= (a1, . . . ,an) and ~a′= (a′1, . . . ,a′n), we set ~G(~a,~a′) =

∏n
i=1G(ai,a′i). Observe thatG(~a,~a′) =∑

σ∈Sn
~G(~a,~a′[σ]). We call quasi-stabilizer of ~a the set S(~a) = {σ ∈Sn | for 1≤ i≤ n, ai ∼= aσ(i)}.

Definition 3.4. We define the approximation relation C⊆D(!)×∆(!)
⊕ by the following rules:

xCx
aCs

λx.aCλx.s
aCs

a⊕•Cs⊕•
aCs

•⊕aC•⊕s
cCs ~dC t̄

〈c〉~dC 〈s〉t̄

a1 C t1 · · · anC tn

(a1, . . . ,an)C [t1, . . . , tn]
.

We set the rigid expansion of s as Tr(s) = {a ∈D(!) | aC s}. As a direct consequence of the
definitions, we obtain a precise relationship between ∼= and C:
Proposition 3.5. Let e ∈∆(!)

⊕ and let aCe. For all a′ ∈D(!), a∼= a′ iff a′Ce.
The rigid expansion of a resource term is thus the same as an equivalence class of rigid

resource terms. In particular, this equivalence is compatible with coherence: if a¨ b and a∼= a′

then a′ ¨ b. Indeed, coherence and uniformity are really properties of (non-rigid) resource terms.
Lemma 3.6. If t̄= [t1, . . . , tn]∈∆! and ~a∈D! with ~aC t̄ then St((t1, . . . , tn)) =S(~a) =π1(G(~a,~a)).

From the former lemma we can in particular derive that S(~a) is a group.
Lemma 3.7. Let ~a = (a1, . . . ,an) ∈ D! and let σ ∈ Sn. Then Card(G(~a,~a)) = Card(S(~a))×∏n
i=1Card(G(ai,ai)).
We are then able to formalize the interpretation of the multiplicity of a resource term s as

the number of permutations of monomials in s leaving any of its writings aC s unchanged:
Lemma 3.8. Let s ∈∆(!) and let aC s. Then m(s) = Card(G(a,a)).

3.3 Permutations and substitution

Definition 3.9. We define the substitution of inductive permutations as follows. Given α ∈
G(a,a′) and ~β ∈ ~G(~b,~b′) with |~b|= nx(a), we construct α[~β/x] by induction on α:

(idx)[(β)/x] = β (idy)[()/x] = idy (λy.α)[~β/x] = λy.(α[~β/x])
(α⊕•)[~β/x] = α[~β/x]⊕• (•⊕α)[~β/x] = •⊕α[~β/x] (〈γ〉δ)[~β0 :: ~β1/x] = (〈γ[~β0]〉δ[~β1/x])

(σ,(α1, . . . ,αn))[β1 :: · · · :: βn/x] = (σ,(α1[~β1/x], . . . ,αn[~βn/x])) .
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The action of α[~β/x] on a[~b/x] is quite intricate: in general, α[~β/x] 6∈G(a[~b/x],a′[~b′/x]).
Example 3.10. Consider the following rigid monomials a= (x,x) and ~b= (〈z〉(),〈z〉(z)). Writ-
ing τ for the unique transposition of S2, we obtain α = (τ, idx, idx) ∈ G(a,a). We also have
that ~β = ((idz,∗),(idz,(id1, idz))) ∈ ~G(~b,~b). Then α[~β/x] = (τ,(idz,∗),(idz,(id1, idz))), hence
α[~β/x] : a[~b/x]∼= (〈z〉(z),〈z〉()) 6= a[~b/x].

To describe the image of a[~b/x] through α[~β/x], we first introduce two operations on permu-
tations. If σ ∈Sn, τ ∈Sp and τ1 ∈Sk1 , ..., τn ∈Skn , we define the concatenation σ | τ ∈Sn+p
and the multiplexing σ · (τ1, ..., τn) ∈Sk1+...+kn :

(σ | τ)(i) = σ(i) (σ | τ)(n+ j) = τ(j) (σ · (τ1, ..., τn))
( i−1∑
r=1

kr + l

)
=

i−1∑
r=1

kσ−1(r) + τσ−1(i)(l)

for 1≤ i≤ n, 1≤ j ≤ p and 1≤ l ≤ ki.
Then we can define the restriction α|x ∈Snx(a) of α ∈G(a,a′) to the occurrences of x in a,

by induction on α:

(idx)|x = id ∈S1 (idy)|x = ∗ ∈S0 (λy.α)|x = (α⊕•)|x = (•⊕α)|x = α|x

(〈γ〉δ)|x = (γ|x) | (δ|x) (σ,(α1, . . . ,αn))|x = σ · (α1|x | · · · | αn|x)

where we assume x 6= y. Then we write G(a,a′)|x = {α|x | α ∈ G(a,a′)}. Intuitively α|x is the
permutation induced by α on the occurrences x1, . . . ,xnx(a) of x in a. We obtain:
Lemma 3.11. If α : a∼= a′ and βi : bi ∼= b′i for 1≤ i≤ nx(a) then α[~β/x] : a[~b/x]∼= a′[~b′[α|x ]/x].

3.4 Rigid resource terms and reduction

Proposition 3.12. Let u ∈ supp(∂xs · t̄). If cCu then there are aCs and ~bC t̄ with c= a[~b/x].
Lemma 3.13. Let a,a′ ∈D(!) and ~b,~b′ ∈D! with a¨ a′ and ~b¨~b′. If a[~b/x]∼= a′[~b/x] then a∼= a′

and ~b∼=~b′.
Proposition 3.14. Let a,a′ ∈D(!) with a¨ a′. If NF (a)∼=NF (a′) then a∼= a′.

The coherence hypothesis is necessary as shown by the following example:
Example 3.15. Let a= 〈〈y〉(x)〉〈z〉(x), a′ = 〈〈x〉(y)〉〈z〉(x) and ~b= (y,z). We have that a and
a′ are not coherent and ~b is not uniform(i.e. coherent with itself). One has that a[~b/x]∼= a′[~b/x]
but a is not isomorphic to a′.

We obtain Step 3 as a corollary:
Lemma 3.16. Let s,s′ ∈ T (M) be such that s ¨ s′. Then supp(NF (s))∪ supp(NF (s′)) is a
clique. If moreover supp(NF (s))∩supp(NF (s′)) 6= ∅ then s= s′.

We are now ready to establish preliminary results for Step 4. Let Ḡ(a,a) = {α ∈ G(a,a) |
α|x ∈ S(~b)}.
Lemma 3.17. Let a ∈D(!) and ~b ∈D! with |b|= nx(a). If a¨ a then Card(G(a[~b/x],a[~b/x])) =
Card(Ḡ(a,a))Card(~G(~b,~b)).

Proof. By induction on the definition of a[~b/x] and by uniformity, applying Lemma 3.7 and
Lemma 3.13.

Let S
a,x/~b

= {σ ∈Sn | a[~b/x]∼= a[~b[σ]/x])} whenever |~b|= nx(a). A simple inspection of the
definitions yields:
Proposition 3.18. Let a,a′ ∈D and ~b,~b′ ∈D!. then S

a,x/~b
= G(a,a)|xS(~b).



8 On the Taylor expansion of λ-terms and the groupoid structure of their rigid approximants

4 Quantitative account of the Taylor expansion
In this section we shall utilise the results about the groupoid of rigid approximants to prove the
commutation between Taylor expansion and Böhm trees.

Lemma 4.1. Let s ∈∆⊕ and t̄ ∈∆!
⊕. If u ∈ supp(∂xs · t̄) then (∂xs · t̄)u = m(s)m(t̄)

m(u) .

Proof. By definition of n-linear substitution we have that ∂xs · t̄=
∑
σ∈Sk

s[tσ(1)/x1, . . . , tσ(k)/xk].
Let cCu. By Proposition 3.12 there exists aCs and ~bC t̄ such that c= a[~b/x]Cu. We consider
c as a representative of the equivalence class Tr(u). By Proposition 3.5, one has that (∂xs · t̄)u =
Card({σ ∈Sk | s[tσ(1)/x1, . . . , tσ(k)/xk] = u}) = Card({σ ∈Sk | a[~b[σ]/x] ∈ Tr(u)}) = Card({σ ∈
Sk | G(a[~b/x],a[~b[σ]/x]) 6= ∅}) = Card(S

a,x/~b
). The proof then follows a pattern similar to that

of Ehrhard and Regnier [6, Section 4.2] via Lemma 3.17 and Proposition 3.18.

We have thus achieved Step 4. It follows that if u ∈ supp(L∂(s)) then (L∂(s))u = m(s)
m(u) , and

then (NF (s))u = m(s)
m(u) by iterating left reduction.

Theorem 4.2. Let M ∈ Λ⊕. Then τ(BT (M)) =NF (τ(M)).
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