Taylor expansion, β -reduction and normalization

Lionel Vaux

Institut de Mathématiques de Marseille, Université d'Aix-Marseille, France

Computer Science Logic 2017, August 20-24, Stockholm

Denotational semantics...

Give a "meaning" to programs, that is stable under evaluation, e.g.:

 λ -terms \rightsquigarrow continuous functions on domains

Denotational semantics...

Give a "meaning" to programs, that is stable under evaluation, e.g.:

 λ -terms \leadsto Böhm trees \leadsto continuous functions on domains

3

Denotational semantics...

Give a "meaning" to programs, that is stable under evaluation, e.g.:

 λ -terms \rightsquigarrow Böhm trees \rightsquigarrow continuous functions on domains

... for non-deterministic programs

- in domain theory: powerdomains and the like (around 1980)
- as infinitary normal forms: de'Liguoro and Piperno's Böhm trees for erratic choice (1995)
- ..

Denotational semantics...

Give a "meaning" to programs, that is stable under evaluation, e.g.:

 λ -terms \rightsquigarrow Böhm trees \rightsquigarrow continuous functions on domains

... for non-deterministic programs

- in domain theory: powerdomains and the like (around 1980)
- as infinitary normal forms: de'Liguoro and Piperno's Böhm trees for erratic choice (1995)
- ...

... and more

- quantitative parallelism
- probabilistic programs
- quantum stuff

Non-determinism in the λ -calculus

$$M, N, \ldots := x \mid \lambda x. M \mid M N$$

$$(\lambda x.M) N \rightarrow_{\beta} M [N/x]$$

Non-determinism in the λ -calculus

$$M, N, \ldots := x \mid \lambda x. M \mid M N \mid M + N$$

$$(\lambda x.M) N \to_{\beta} M [N/x]$$

 $M + N \to_{+} M \text{ (or } N)$

Non-determinism in the λ -calculus, contextually

$$M, N, \ldots := x \mid \lambda x. M \mid M N \mid M + N$$

$$(\lambda x.M) N \rightarrow_{\beta} M [N/x]$$

$$(M+N)$$
 $P=M$ $P+N$ P $\lambda x. (M+N)=\lambda x. M+\lambda x. N$

 $implicitly\ call-by-name$

$$M, N, \dots := x \mid \lambda x.M \mid M N \mid M + N \mid 0$$

$$(\lambda x.M) \quad N \to_{\beta} M [N/x]$$

$$(M+N) \quad P = M P + N P \qquad \lambda x. (M+N) = \lambda x.M + \lambda x.N$$

$$0 \quad P = 0 \qquad \qquad \lambda x.0 = 0$$

implicitly call-by-name

$$M,N,\ldots := x \mid \lambda x.M \mid M N \mid M+N \mid 0 \mid a.M \quad (a \in \mathbf{S}, \text{ some semiring})$$

$$(\lambda x.M) \ N \to_{\beta} M \left[N/x \right]$$

$$(M+N) \ P = M \ P + N \ P \qquad \lambda x. \ (M+N) = \lambda x.M + \lambda x.N$$

$$0 \ P = 0 \qquad \qquad \lambda x.0 = 0$$

$$(a.M) \ P = a.M \ P \qquad \lambda x. \ (a.M) = a.\lambda x.M$$

$$implicitly \ call-by-name$$

The algebraic λ -calculus (V., RTA 2007)

$$M,N,\ldots:=x\mid \lambda x.M\mid MN\mid M+N\mid 0\mid a.M\quad (a\in\mathbf{S},\text{ some semiring})$$

$$(\lambda x.M)\;N\to_{\beta}M\left[N/x\right]$$

$$(M+N)\;P=MP+NP\qquad \lambda x.\left(M+N\right)=\lambda x.M+\lambda x.N$$

$$0\;P=0\qquad \qquad \lambda x.0=0$$

$$(a.M)\;P=a.M\;P\qquad \lambda x.\left(a.M\right)=a.\lambda x.M$$

The algebraic λ -calculus (V., RTA 2007)

$$M,N,\ldots ::= x \mid \lambda x.M \mid M N \mid M+N \mid 0 \mid a.M \quad (a \in \mathbf{S}, \text{ some semiring})$$

$$(\lambda x.M) \ N \to_{\beta} M \left[N/x \right]$$

$$(M+N) \ P = M P + N P \qquad \lambda x. (M+N) = \lambda x.M + \lambda x.N$$

$$0 \ P = 0 \qquad \qquad \lambda x.0 = 0$$

$$(a.M) \ P = a.M \ P \qquad \qquad \lambda x. (a.M) = a.\lambda x.M$$

$$(+ \text{ module equations}) \qquad \qquad implicitly \ call-by-name$$

Condider
$$\infty_M := \operatorname{Fix} \lambda x. (M+x)$$

so that $\infty_M \to_{\beta}^* M + \infty_M$.

The algebraic λ -calculus (V., RTA 2007)

$$M,N,\ldots:=x\mid \lambda x.M\mid MN\mid M+N\mid 0\mid a.M\quad (a\in \mathbf{S}, \text{ some semiring})$$

$$(\lambda x.M)\ N\to_{\beta} M\left[N/x\right]$$

$$(M+N)\ P=MP+NP\qquad \lambda x.(M+N)=\lambda x.M+\lambda x.N$$

$$0\ P=0\qquad \qquad \lambda x.0=0$$

$$(a.M)\ P=a.MP\qquad \lambda x.\left(a.M\right)=a.\lambda x.M$$

$$(+\text{ module equations})\qquad \qquad implicitly\ call-by-name$$

Condider
$$\infty_M := \operatorname{Fix} \lambda x. (M+x)$$

so that $\infty_M \to_{\beta}^* M + \infty_M$.

Then: BT $(\infty_y) = ?$

The algebraic λ -calculus (V., RTA 2007)

$$M,N,\ldots ::= x \mid \lambda x.M \mid M \ N \mid M+N \mid 0 \mid a.M \quad (a \in \mathbf{S}, \text{ some semiring})$$

$$(\lambda x.M) \ N \to_{\beta} M \left[N/x \right]$$

$$(M+N) \ P = M \ P + N \ P \qquad \lambda x. (M+N) = \lambda x.M + \lambda x.N$$

$$0 \ P = 0 \qquad \qquad \lambda x.0 = 0$$

$$(a.M) \ P = a.M \ P \qquad \qquad \lambda x. (a.M) = a.\lambda x.M$$

$$(+ \text{ module equations})$$

$$implicitly \ call-by-name$$

Condider
$$\infty_M := \operatorname{Fix} \lambda x. (M+x)$$

so that $\infty_M \to_{\beta^*} M + \infty_M$.

Then: BT $(\infty_y) = ?$ $\perp ?$ $\omega.y?$ $\omega.y + \perp ?$

The algebraic λ -calculus (V., RTA 2007)

$$M,N,\ldots:=x\mid \lambda x.M\mid MN\mid M+N\mid 0\mid a.M\quad (a\in \mathbf{S}, \text{ some semiring})$$

$$(\lambda x.M)\ N\to_{\beta} M\left[N/x\right]$$

$$(M+N)\ P=MP+NP\qquad \lambda x.\left(M+N\right)=\lambda x.M+\lambda x.N$$

$$0\ P=0\qquad \qquad \lambda x.0=0$$

$$(a.M)\ P=a.MP\qquad \lambda x.\left(a.M\right)=a.\lambda x.M$$

$$(+\text{ module equations})\qquad \qquad implicitly\ call-by-name$$

Condider
$$\infty_M := \operatorname{Fix} \lambda x. (M+x)$$

so that $\infty_M \to_{\beta}^* M + \infty_M$.

Then:
$$\mathsf{BT}\left(\infty_y\right) = ? \quad \bot? \quad \omega.y? \quad \omega.y + \bot?$$

Worse: $\mathsf{BT}\left(\infty_y + (-1).\left(\lambda x.x\right)\infty_y\right) = ?$

The algebraic λ -calculus (V., RTA 2007)

$$M, N, \ldots := x \mid \lambda x.M \mid MN \mid M+N \mid 0 \mid a.M \quad (a \in \mathbf{S}, \text{ some semiring})$$

$$(\lambda x.M) N \to_{\beta} M [N/x]$$

$$(M+N) P = MP + NP \qquad \lambda x. (M+N) = \lambda x.M + \lambda x.N$$

$$0 P = 0 \qquad \lambda x.0 = 0$$

$$(a.M) P = a.M P$$
 $\lambda x. (a.M) = a.\lambda x.M$

Condider
$$\infty_M := \operatorname{Fix} \lambda x. (M+x)$$

so that $\infty_M \to_{\beta}^* M + \infty_M$.
Then: $\operatorname{BT}(\infty_y) = ? \quad \bot? \quad \omega.y? \quad \omega.y + \bot?$
Worse: $\operatorname{BT}(\infty_y + (-1). (\lambda x.x) \infty_y) = ?$

Plain n.d. choice ($\mathbf{S} = \mathbf{B}$):

Choice as sum (S = N):

Quantitative semantics

Normal functors (Girard, '80s, before LL)

 λ -terms \rightsquigarrow set-valued power series (cf. Joyal's analytic functors)

Interprets non-deterministic choice quantitatively:

$$[\![M \oplus N]\!] = [\![M]\!] + [\![N]\!] \qquad \text{(disjoint sum of sets)}$$

Quantitative semantics

Normal functors (Girard, '80s, before LL)

 λ -terms \leadsto set-valued power series (cf. Joyal's analytic functors)

Interprets non-deterministic choice quantitatively:

$$[\![M \oplus N]\!] = [\![M]\!] + [\![N]\!] \qquad \text{(disjoint sum of sets)}$$

Finiteness spaces (Ehrhard, early 2000's)

Reformulate q.s. for linear logic in standard algebra:

- types \leadsto particular topological vector spaces (or semimodules):
 - $[\![A]\!] \subseteq \mathbf{S}^{|A|}$ + some additional structure
- function terms \rightsquigarrow power series

Normalizing Taylor expansions

Quantitative semantics

Normal functors (Girard, '80s, before LL)

 λ -terms \leadsto set-valued power series (cf. Joyal's analytic functors)

Interprets non-deterministic choice quantitatively:

$$[\![M \oplus N]\!] = [\![M]\!] + [\![N]\!] \qquad \text{(disjoint sum of sets)}$$

Finiteness spaces (Ehrhard, early 2000's)

Reformulate q.s. for linear logic in standard algebra:

- types \leadsto particular topological vector spaces (or semimodules):
 - $[\![A]\!] \subseteq \mathbf{S}^{|A|}$ + some additional structure
- function terms \rightsquigarrow power series

Quantitative semantics

Normal functors (Girard, '80s, before LL)

 λ -terms \rightsquigarrow set-valued power series (cf. Joyal's analytic functors)

Interprets non-deterministic choice quantitatively:

$$[\![M \oplus N]\!] = [\![M]\!] + [\![N]\!] \qquad \text{(disjoint sum of sets)}$$

Finiteness spaces (Ehrhard, early 2000's)

Reformulate q.s. for linear logic in standard algebra:

- \bullet types \leadsto particular topological vector spaces (or semimodules):
 - $[A] \subseteq S^{|A|}$ + some additional structure
- function terms \rightsquigarrow power series

Differentiation of λ -terms (Ehrhard-Regnier, 2003-2004)

- differential λ -calculus
- \bullet a finitary fragment: resource $\lambda\text{-calculus}$
 - = the target of Taylor expansion

Resource λ -calculus

Resource λ -calculus

Resource reduction

$$\langle \lambda x.s \rangle \ \bar{t} \to_{\partial} \partial_x s \cdot \bar{t}$$
 (anywhere)

Semantically: (in a typed setting)

$$\partial_x s \cdot [s_1, \dots, s_n] = \left(\frac{\partial^n s}{\partial x^n}\right)_{x=0} \cdot (s_1, \dots, s_n)$$

Syntactically:

$$\partial_x s \cdot \bar{t} = \begin{cases} \sum_{f \in \mathfrak{S}_n} s \left[t_{f(1)}, \dots, t_{f(n)} / x_1, \dots, x_n \right] & \text{if } \mathbf{n}_x \left(s \right) = \# \bar{t} = n \\ 0 & \text{otherwise} \end{cases}$$

Resource λ -calculus

Resource reduction

$$\langle \lambda x.s \rangle \ \bar{t} \to_{\partial} \partial_x s \cdot \bar{t}$$
 (anywhere)

Semantically: (in a typed setting)

$$\partial_x s \cdot [s_1, \dots, s_n] = \left(\frac{\partial^n s}{\partial x^n}\right)_{x=0} \cdot (s_1, \dots, s_n)$$

Syntactically:

$$\partial_x s \cdot \bar{t} = \begin{cases} \sum_{f \in \mathfrak{S}_n} s \left[t_{f(1)}, \dots, t_{f(n)} / x_1, \dots, x_n \right] & \text{if } \mathbf{n}_x \left(s \right) = \# \bar{t} = n \\ 0 & \text{otherwise} \end{cases}$$

- Linearity: $\lambda x.0 = 0$, $\langle s \rangle [t_1 + t_2, u] = \langle s \rangle [t_1, u] + \langle s \rangle [t_2, u]$, ...
- Resource reduction preserves free variables, is size-decreasing, strongly confluent and strongly normalizing.

Many models related with LL validate:

(M)
$$N = \sum_{n \in \mathbb{N}} \frac{1}{n!} \langle M \rangle N^n$$
 where $N^n = [N, \dots, N]$

In those models $[\![M]\!] = [\![\Theta\left(M\right)]\!]$:

31

Many models related with LL validate:

(M)
$$N = \sum_{n \in \mathbb{N}} \frac{1}{n!} \langle M \rangle N^n$$
 where $N^n = [N, \dots, N]$

In those models $\llbracket M \rrbracket = \llbracket \Theta(M) \rrbracket$:

Taylor expansion:
$$\Theta(M) \in \mathbf{Q}^{\Delta}$$

$$\Theta\left(\left(M\right)\,N\right) = \sum_{n \in \mathbf{N}} \frac{1}{n!} \left\langle \Theta\left(M\right) \right\rangle \, \Theta\left(N\right)^{n}$$

$$\Theta \left(x\right) =x\quad \ \Theta \left(\lambda x.M\right) =\lambda x.\Theta \left(M\right) \label{eq:energy_energy}$$

Many models related with LL validate:

(M)
$$N = \sum_{n \in \mathbb{N}} \frac{1}{n!} \langle M \rangle N^n$$
 where $N^n = [N, \dots, N]$

In those models $\llbracket M \rrbracket = \llbracket \Theta(M) \rrbracket$:

Taylor expansion:
$$\Theta(M) \in \mathbf{Q}^{\Delta}$$

$$\Theta((M) \ N) = \sum_{n \in \mathbb{N}} \frac{1}{n!} \langle \Theta(M) \rangle \ \Theta(N)^n$$

$$\Theta\left(x\right)=x \quad \ \Theta\left(\lambda x.M\right)=\lambda x.\Theta\left(M\right)$$

Quantitative semantics in two steps

Taylor expansion: $\Theta(M)$

normalization: $\llbracket M \rrbracket := \mathsf{NF} \left(\Theta \left(M \right) \right)$

Many models related with LL validate:

(M)
$$N = \sum_{n \in \mathbb{N}} \frac{1}{n!} \langle M \rangle N^n$$
 where $N^n = [N, \dots, N]$

In those models $\llbracket M \rrbracket = \llbracket \Theta(M) \rrbracket$:

Taylor expansion: $\Theta(M) \in \mathbf{Q}^{\Delta}$

$$\Theta((M) \ N) = \sum_{n \in \mathbb{N}} \frac{1}{n!} \langle \Theta(M) \rangle \ \Theta(N)^n$$

$$\Theta\left(x\right)=x \quad \Theta\left(\lambda x.M\right)=\lambda x.\Theta\left(M\right)$$

Quantitative semantics in two steps

Taylor expansion: $\Theta(M)$

normalization: $\llbracket M \rrbracket := \mathsf{NF} (\Theta(M))$

linearity \leadsto a generic semantics of non-deterministic superpositions

$$\Theta\left(a.M + b.N\right) = a.\Theta\left(M\right) + b.\Theta\left(N\right)$$

Many models related with LL validate:

(M)
$$N = \sum_{n \in \mathbb{N}} \frac{1}{n!} \langle M \rangle N^n$$
 where $N^n = [N, \dots, N]$

In those models $\llbracket M \rrbracket = \llbracket \Theta(M) \rrbracket$:

Taylor expansion:
$$\Theta(M) \in \mathbf{Q}^{\Delta}$$

$$\Theta((M) \ N) = \sum_{n \in \mathbb{N}} \frac{1}{n!} \langle \Theta(M) \rangle \ \Theta(N)^n$$

$$\Theta(x) = x \quad \Theta(\lambda x.M) = \lambda x.\Theta(M)$$

Quantitative semantics in two steps

Taylor expansion: $\Theta(M)$

normalization: $\llbracket M \rrbracket := \mathsf{NF} (\Theta(M))$?

linearity \leadsto a generic semantics of non-deterministic superpositions

$$\Theta\left(a.M + b.N\right) = a.\Theta\left(M\right) + b.\Theta\left(N\right)$$

Normalizing Taylor expansions

We want to set

$$\mathsf{NF}\left(\sum_{i\in I} a_i.s_i\right) = \sum_{i\in I} a_i.\mathsf{NF}\left(s_i\right)$$

Normalizing vectors fails in general!

$$\mathsf{NF}\left(\sum_{n\in\mathbf{N}}\left\langle \lambda x.x\right\rangle ^{n}\left[y\right]\right)=? \qquad \qquad (\text{with }\left\langle \lambda x.x\right\rangle ^{n}\left[y\right]=\left\langle \lambda x.x\right\rangle \left[\left\langle \lambda x.x\right\rangle \left[\cdots \left[y\right]\cdots\right]\right]\right)$$

Normalizing Taylor expansions

We want to set

$$\mathsf{NF}\left(\sum_{i\in I}a_i.s_i\right) = \sum_{i\in I}a_i.\mathsf{NF}\left(s_i\right)$$

Normalizing vectors fails in general!

$$\mathsf{NF}\left(\sum_{n\in\mathbf{N}}\left\langle \lambda x.x\right\rangle ^{n}\left[y\right]\right)=? \qquad \qquad (\text{with }\left\langle \lambda x.x\right\rangle ^{n}\left[y\right]=\left\langle \lambda x.x\right\rangle \left[\left\langle \lambda x.x\right\rangle \left[\cdot\cdot\cdot\left[y\right]\cdot\cdot\cdot\right]\right])$$

Theorem (Ehrhard-Regnier, 2004 (published in TCS in 2008))

For all $M \in \Lambda$ and $t \in \Delta$, there is at most one $s \in \text{support}(\Theta(M))$ such that $NF(s)_{t} \neq 0$.

Proof. λ -terms are uniform: their approximants all have the same structure.

ш

Normalizing Taylor expansions

We want to set

$$\mathsf{NF}\left(\sum_{i\in I}a_i.s_i\right) = \sum_{i\in I}a_i.\mathsf{NF}\left(s_i\right)$$

Normalizing vectors fails in general!

$$\mathsf{NF}\left(\sum_{n\in\mathbf{N}}\left\langle \lambda x.x\right\rangle ^{n}\left[y\right]\right)=? \qquad \qquad (\text{with }\left\langle \lambda x.x\right\rangle ^{n}\left[y\right]=\left\langle \lambda x.x\right\rangle \left[\left\langle \lambda x.x\right\rangle \left[\cdot\cdot\cdot\left[y\right]\cdot\cdot\cdot\right]\right])$$

Theorem (Ehrhard-Regnier, 2004 (published in TCS in 2008))

For all $M \in \Lambda$ and $t \in \Delta$, there is at most one $s \in \text{support}(\Theta(M))$ such that $NF(s)_{t} \neq 0$.

Proof. λ -terms are uniform: their approximants all have the same structure.

Theorem (Ehrhard-Regnier, CiE 2006)

$$NF(\Theta(M)) \simeq BT(M)$$

(in particular NF $(\Theta(\Omega)) = 0 \simeq \bot$)

Normalizable resource vectors

Definition

Say $\sigma \in \mathbf{S}^{\Delta}$ is normalizable if, for all $t \in \Delta$, there are finitely many $s \in \text{support}(\sigma)$ such that $\mathsf{NF}(s)_t \neq 0$.

Lemma (V., CSL 2017)

 $\Theta(M)$ is normalizable as soon as M is.

Proof. Generalize (Ehrhard, LICS 2010) and (Pagani–Tasson–V., FoSSaCS 2016): introduce a *finiteness structure* on resource terms and show it is closed under anti-left- β -reduction.

We design a reduction relation $\Longrightarrow_{\partial}$ on \mathbf{S}^{Δ} such that:

- If $M \to_{\beta} N$ then $\Theta(M) \cong_{\partial} \Theta(N)$.
- If $\sigma \in \mathbf{S}^{\Delta}$ is normalizable and $\sigma \Longrightarrow_{\partial} \sigma'$ then σ' is normalizable and $\mathsf{NF}(\sigma) = \mathsf{NF}(\sigma')$.

Then it is sufficient to follow a reduction from M to its normal form.

We design a reduction relation $\widetilde{\Rightarrow}_{\partial}$ on \mathbf{S}^{Δ} such that:

- If $M \to_{\beta} N$ then $\Theta(M) \cong_{\partial} \Theta(N)$.
- If $\sigma \in \mathbf{S}^{\Delta}$ is normalizable and $\sigma \Longrightarrow_{\partial} \sigma'$ then σ' is normalizable and $\mathsf{NF}(\sigma) = \mathsf{NF}(\sigma')$.

Then it is sufficient to follow a reduction from M to its normal form.

Parallel reduction on resource vectors

$$\sum_{i \in i} a_i . s_i \xrightarrow{\cong_{\partial}} \sum_{i \in I} a_i . \sigma_i'$$

whenever $s_i \Rightarrow_{\partial} \sigma'_i$ for all $i \in I$, where \Rightarrow_{∂} is the parallel version of \rightarrow_{∂} .

We design a reduction relation $\widetilde{\Rightarrow}_{\partial}$ on \mathbf{S}^{Δ} such that:

- If $M \to_{\beta} N$ then $\Theta(M) \cong_{\partial} \Theta(N)$.
- If $\sigma \in \mathbf{S}^{\Delta}$ is normalizable and $\sigma \Longrightarrow_{\partial} \sigma'$ then σ' is normalizable and $\mathsf{NF}(\sigma) = \mathsf{NF}(\sigma')$.

Then it is sufficient to follow a reduction from M to its normal form.

Parallel reduction on resource vectors

$$\sum_{i \in i} a_i . s_i \xrightarrow{\cong_{\partial}} \sum_{i \in I} a_i . \sigma_i'$$

whenever $s_i \Rightarrow_{\partial} \sigma'_i$ for all $i \in I$, where \Rightarrow_{∂} is the parallel version of \rightarrow_{∂} .

Technical issues

- Given $\sigma = \sum_{i \in i} a_i . s_i$ and a family of reductions $(s_i \Rightarrow_{\partial} \sigma'_i)_{i \in I}, \sum_{i \in I} a_i . \sigma'_i$ might not converge.
- Actually need an extra condition on the family of reductions to avoid inconsistencies (if $-1 \in \mathbf{S}$).

We design a reduction relation $\Longrightarrow_{\partial}$ on \mathbf{S}^{Δ} such that:

- If $M \to_{\beta} N$ then $\Theta(M) \cong_{\partial} \Theta(N)$.
- If $\sigma \in \mathbf{S}^{\Delta}$ is normalizable and $\sigma \Longrightarrow_{\partial} \sigma'$ then σ' is normalizable and $\mathsf{NF}(\sigma) = \mathsf{NF}(\sigma')$.

Then it is sufficient to follow a reduction from M to its normal form.

Parallel reduction on resource vectors

$$\sum_{i \in i} a_i . s_i \, \widetilde{\Rightarrow_{\partial}} \, \sum_{i \in I} a_i . \sigma_i'$$

whenever $s_i \Rightarrow_{\partial} \sigma'_i$ for all $i \in I$, where \Rightarrow_{∂} is the parallel version of \rightarrow_{∂} .

Technical issues

- Given $\sigma = \sum_{i \in i} a_i . s_i$ and a family of reductions $(s_i \Rightarrow_{\partial} \sigma'_i)_{i \in I}, \sum_{i \in I} a_i . \sigma'_i$ might not converge.
 - Actually need an extra condition on the family of reductions to avoid inconsistencies (if $-1 \in \mathbf{S}$).

But it is always OK when we follow β -reductions.

algebraic $\lambda\text{-terms}$

 ∞_M $\infty_M - \infty_M$

Fix $\lambda x. \left(\frac{1}{2}.M + \frac{1}{2}.x\right)$

Fix λx . (M-x)

.

Normalizing Taylor expansions: living alongside dragons

If **S** is complete (say **S** = $[0, +\infty]$):

Conclusion

Normalization and Taylor expansion commute provided it makes sense to normalize

51

Conclusion

Normalization and Taylor expansion commute provided it makes sense to normalize and this is good way to generalize normalizability

Conclusion

Normalization and Taylor expansion commute provided it makes sense to normalize and this is good way to generalize normalizability

Further work

- unify with TAO's results
- does $\mathsf{NF}(\Theta(M))$ coincide with existing notions of (non extensional) Böhm trees?
- when is Taylor expansion injective on normal forms? \leadsto might lead to injectivity results for a class of quantitative denotational models
- adapt those results to proof nets (WIP within the GDRI-LL)
- generalization to infinitary λ -calculi?

The end

Questions?