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and more
e quantitative parallelism
e probabilistic programs

o quantum stuff
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Quantitative non-determinism in the A-calculus
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Quantitative non-determinism in the A-calculus
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Quantitative non-determinism in the A-calculus
The algebraic A-calculus (V., RTA 2007)

M,N,...:.=xz | XM |MN|M+N|0|aM (a€S,some semiring)

(Ax.M) N —p5 M [N/x]

(M+N)P=MP+NP Az. (M + N) = Az.M + \z.N
0P=0 Az.0=0
(a.M) P=a.MP Az. (a.M) = a. e. M
(—I— ﬁ‘ked-u-l&eq—uﬁ:t—leﬂﬁ) implicitly call-by-name

Condider ooy := Fix Ax. (M + x)
so that copr —+5* M + ooy

Then: BT (coy) =7 17 wy? wy+L1?
Worse: BT (oo, + (—1). (Az.z) 00y) =7
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algebraic A-terms

~
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algebraic A-terms
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pure
A-terms

algebraic A-terms

00N

OONM — OOM
Fix Az. (%M—i— éx)

Fix \z. (M — z)

J
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-
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Plain n.d. choice (S = B):

plenty of models:
e.g., De’Liguoro-Piperno’s trees —
or the relational model

pure
A-terms

algebraic A\-terms
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Choice as sum (S = N):

Girard’s quantitative semantics —
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Quantitative semantics
Normal functors (Girard, '80s, before LL)

A-terms ~~ set-valued power series (cf. Joyal’s analytic functors)
Interprets non-deterministic choice quantitatively:

[M @ NJ] = [M] + [N] (disjoint sum of sets)
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Finiteness spaces
give a model
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Normalizing Taylor expansions
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Quantitative semantics
Normal functors (Girard, '80s, before LL)

A-terms ~~ set-valued power series (cf. Joyal’s analytic functors)

Interprets non-deterministic choice quantitatively:

[M @ NJ] = [M] + [N] (disjoint sum of sets)

Finiteness spaces (Ehrhard, early 20007s)
Reformulate q.s. for linear logic in standard algebra:
@ types ~» particular topological vector spaces (or semimodules):
[[A]] - Sl 1 some additional structure

e function terms ~~ power series

Differentiation of A-terms (Ehrhard-Regnier, 2003-2004)
o differential A-calculus

e a finitary fragment: resource A-calculus
= the target of Taylor expansion
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Resource M\-calculus

W w
wl
S

A
A

x| Azs|(s)t
[S1s---,Sn]

(terms)
(monomials)
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Resource M\-calculus

)

x| Azs|(s)t (terms)

t
t m= [s1,...,80] (monomials)

wl »

A >
A >

i

Resource reduction

<)\£L’8> t —d O S t (anywhere)

Semantically: (in a typed setting)

0rS [S1,..-,8n] = (ngf)$:0 < (81,--+58n)
Syntactically:

9572 ] Lree,sltr@s - otrm/T - mn] g (s) =#E=n
v 0 otherwise
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Resource M\-calculus

)

x| Azs|(s)t (terms)

t
t m= [s1,...,80] (monomials)

wl »

A >
A >

i

Resource reduction
<)\£L’S> t —d O S t (anywhere)

Semantically: (in a typed setting)

83;3 o [317. . ~78n] = (ng.:)a::O . (817. a .,Sn)
Syntactically:

5.7 dfes, S [tr1ys - sty /T1s - an] 0y (s)=#E=n
v 0 otherwise

o Linearity: Az.0 =0, (s) [t1 + t2,u] = (s) [t1,u] + (s) [t2, ], ...

@ Resource reduction preserves free variables, is size-decreasing, strongly
confluent and strongly normalizing.
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Taylor expansion of A-terms
Many models related with LL validate:

(M) N =3, cn i (M) N* where N* = [N,..., N|
In those models [M] = [© (M)]:

Taylor expansion: © (M) € Q*

=
O@)=z OMAz.M)=0(M)

Quantitative semantics in two steps
Taylor expansion: © (M)
normalization: [M] := NF (0 (M)) ?
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Normalizing Taylor expansions

We want to set

NF (Z ai.si> = ZGZNF(SJ

i€l i€l

Normalizing vectors fails in general!

NF (3 ,en (Az2)" [y]) =7 (with (Az.z)" [y] = (Az.z) [(Az.z) [ [y]--]])
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Normalizing Taylor expansions

We want to set

NF (Z ai.si> = ZaiNF(sl)

i€l i€l

Normalizing vectors fails in general!

NF (3 en (Az.2)" [y]) =7 (with (Az.z)" [y] = (Az.z) [(Az.z) [ [y]--]])

Theorem (Ehrhard-Regnier, 2004 (published in TCS in 2008))

For all M € A and t € A, there is at most one s € support (© (M)) such that
NF (s), # 0.

Proof. A-terms are uniform: their approximants all have the same structure. (|

Theorem (Ehrhard-Regnier, CiE 2006)
NF (© (M)) ~ BT (M) (in particular NF (© (Q)) =0~ L)
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Normalizable resource vectors

Definition

Say o € S? is normalizable if, for allt € A, there are finitely many
s € support (o) such that NF (s), # 0.

Lemma (V., CSL 2017)
© (M) is normalizable as soon as M is.
Proof. Generalize (Ehrhard, LICS 2010) and (Pagani-Tasson-V., FoSSaCS 2016):

introduce a finiteness structure on resource terms and show it is closed
under anti-left-/-reduction. ]
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O (M) is normalizable
(V., CSL 2017)

pure

A-terms

—

typed terms

normalizable
terms

algebraic A\-terms

oo M
OONM — OOM
Fix Az. (%M—i— éx)

Fix Az. (M — )

J
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-
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NF(©(M)) = ©(NF(M))
(V., CSL 2017)

algebraic A\-terms

J

pure n
A-terms =
oM Z
©)
w OONM — OOM 3
typed terms o
normalizable Fix Az. (%M + éx) A
terms —
Fix \z. (M — z) E
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O
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NF(O(M)) = ©(NF(M))
We design a reduction relation = on S? such that:
o If M -5 N then © (M) =5 O (N).
e If o € S2 is normalizable and o =5 o’
then ¢’ is normalizable and NF (o) = NF (¢”).

Then it is sufficient to follow a reduction from M to its normal form.
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NF(O(M)) = ©(NF(M))
We design a reduction relation = on S? such that:
o If M -5 N then © (M) =5 O (N).
e If o € S2 is normalizable and o =5 o’
then ¢’ is normalizable and NF (o) = NF (¢”).

Then it is sufficient to follow a reduction from M to its normal form.

Parallel reduction on resource vectors

g a;.8; =¢ E a;.o;

1€1 i€l

whenever s; =9 o for all i € I, where = is the parallel version of —5.
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NF(O(M)) = ©(NF(M))
We design a reduction relation = on S? such that:
o If M -5 N then © (M) =5 O (N).
e If o € S2 is normalizable and o =5 o’
then ¢’ is normalizable and NF (o) = NF (¢”).

Then it is sufficient to follow a reduction from M to its normal form.

Parallel reduction on resource vectors
Z a;.8; =¢ Z a;.o;
1€ el

whenever s; =9 o for all i € I, where = is the parallel version of —5.

Technical issues

o Given o =), ; a;.s; and a family of reductions (s; =5 0}),c15 Dics @i}
might not converge.

@ Actually need an extra condition on the family of reductions to avoid
inconsistencies (if —1 € S).
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NF(O(M)) = ©(NF(M))
We design a reduction relation = on S? such that:
o If M -5 N then © (M) =5 O (N).
e If o € S2 is normalizable and o =5 o’
then ¢’ is normalizable and NF (o) = NF (¢”).

Then it is sufficient to follow a reduction from M to its normal form.

Parallel reduction on resource vectors
Z a;.8; =¢ Z a;.o;
1€ el

whenever s; =9 o for all i € I, where = is the parallel version of —5.

Technical issues

o Giveno =3 .,
might not converge.

@ Actually need an extra condition on the family of reductions to avoid
inconsistencies (if —1 € S).

But it is always OK when we follow S-reductions.

a;.s; and a family of reductions (s; =9 07);c;, D icy @i-0;
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NF(©(M)) = ©(NF(M))
(V., CSL 2017)

algebraic A\-terms

J

pure n
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O(NA,(M)) — NF(©(M))

(V., arXiv:1706.04700 [cs.LO])

-

typed terms

normalizable
terms

hereditarily
determinable

terms

algebraic A\-terms

o0 M
OONM — OOM
Fix Az. (%M—i— éx)

Fix Az. (M — )
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-
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NF(©(-)) is stable under
(V., CSL 2017)

typed terms

normalizable
terms

hereditarily
determinable

terms

Taylor
normalizable

terms
\

algebraic A\-terms

oo M
OONM — OOM
Fix Az. (%M—i— éx)

Fix Az. (M — )

J

HC SVNT DRACONES

-
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Normalizing Taylor expansions: living alongside dragons

NF(©(-)) is stable under 8
(V., CSL 2017)

Proposal
BT (M) := NF (© (M))

~
algebraic A\-terms
n
<)
O N %
oON — OO 3
typed terms =
normalizable Fix Az. (%M + éx) A
terms -
hereditarily Fix Az. (M — ) E
determinable n
) ®
Taylor s
normalizable
N y,
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If S is complete (say S = [0, +00]):

NF(©(M)) = ©(BT(M)) |

(Tsukada-Asada-Ong, LICS 2017)

s N
algebraic A\-terms
n
=
con Z
o
B o 2
typed terms =]
g o
normalizable Fix Az. (%?M + éx) = A
terms i —
hereditarily Fix —z) ';;» E
determinable wn
terms @
am
- J
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Conclusion

Normalization and Taylor expansion commute

provided it makes sense to normalize
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Conclusion

Normalization and Taylor expansion commute

provided it makes sense to normalize
and this is good way to generalize normalizability

Further work

e unify with TAO’s results

o does NF (O (M)) coincide with existing notions of (non extensional) Bohm
trees?

e when is Taylor expansion injective on normal forms? ~» might lead to
injectivity results for a class of quantitative denotational models

e adapt those results to proof nets (WIP within the GDRI-LL)

e generalization to infinitary A-calculi?
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The end

Questions?
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