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Abstract The working mathematician fears complicated words but loves
pictures and diagrams. We thus give a no-fancy-anything picture rich
glimpse into Khovanov’s novel construction of “the categorification of the
Jones polynomial”. For the same low cost we also provide some computa-
tions, including one that shows that Khovanov’s invariant is strictly stronger
than the Jones polynomial and including a table of the values of Khovanov’s
invariant for all prime knots with up to 11 crossings.
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1 Introduction

In the summer of 2001 the author of this note spent a week at Harvard Univer-
sity visiting David Kazhdan and Dylan Thurston. Our hope for the week was
to understand and improve Khovanov’s seminal work on the categorification
of the Jones polynomial [Kh1, Kh2]. We’ve hardly achieved the first goal and
certainly not the second; but we did convince ourselves that there is something
very new and novel in Khovanov’s work both on the deep conceptual level (not
discussed here) and on the shallower surface level. For on the surface level
Khovanov presents invariants of links which contain and generalize the Jones
polynomial but whose construction is like nothing ever seen in knot theory
before. Not being able to really digest it we decided to just chew some, and
then provide our output as a note containing a description of his construction,
complete and consistent and accompanied by computer code and examples but
stripped of all philosophy and of all the linguistic gymnastics that is necessary
for the philosophy but isn’t necessary for the mere purpose of having a working
construction. Such a note may be more accessible than the original papers. It
may lead more people to read Khovanov at the source, and maybe somebody
reading such a note will figure out what the Khovanov invariants really are.
Congratulations! You are reading this note right now.
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1.1 Executive summary In very brief words, Khovanov’s idea is to replace
the Kauffman bracket 〈L〉 of a link projection L by what we call “the Khovanov
bracket” !L", which is a chain complex of graded vector spaces whose graded
Euler characteristic is 〈L〉. The Kauffman bracket is defined by the axioms

〈∅〉 = 1; 〈©L〉 = (q + q−1)〈L〉; 〈 〉 = 〈 〉 − q〈 〉.

Likewise, the definition of the Khovanov bracket can be summarized by the
axioms

!∅" = 0 → Z → 0; !©L" = V ⊗ !L"; ! " = F
(

0 → ! " d
→ ! "{1} → 0

)

.

Here V is a vector space of graded dimension q + q−1 , the operator {1} is the
“degree shift by 1” operation, which is the appropriate replacement of “multi-
plication by q”, F is the “flatten” operation which takes a double complex to
a single complex by taking direct sums along diagonals, and a key ingredient,
the differential d, is yet to be defined.

The (unnormalized) Jones polynomial is a minor renormalization of the Kauff-
man bracket, Ĵ(L) = (−1)n−qn+−2n−〈L〉. The Khovanov invariant H(L) is the
homology of a similar renormalization !L"[−n−]{n+ − 2n−} of the Khovanov
bracket. The “main theorem” states that the Khovanov invariant is indeed a
link invariant and that its graded Euler characteristic is Ĵ(L). Anything in
H(L) beyond its Euler characteristic appears to be new, and direct computa-
tions show that there really is more in H(L) than in its Euler characteristic.

1.2 Acknowledgements I wish to thank David Kazhdan and Dylan Thurston
for the week at Harvard that led to writing of this note and for their help since
then. I also wish to thank G. Bergman, S. Garoufalidis, J. Hoste, V. Jones,
M. Khovanov, A. Kricker, G. Kuperberg, A. Stoimenow and M. Thistlethwaite
for further assistance, comments and suggestions.

2 The Jones polynomial
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n+ = 4; n− = 2

All of our links are oriented links in an oriented Euclidean
space. We will present links using their projections to the
plane as shown in the example on the right. Let L be a
link projection, let X be the set of crossings of L, let n =
|X |, let us number the elements of X from 1 to n in some
arbitrary way and let us write n = n+ +n− where n+ (n−)
is the number of right-handed (left-handed) crossings in X .
(again, look to the right).

Algebraic & Geometric Topology, Volume 2 (2002)



On Khovanov’s categorification of the Jones polynomial 339

Recall that the Kauffman bracket [Ka] of L is defined by the formulas1 〈∅〉 = 1,
〈©L〉 = (q + q−1)〈L〉 and 〈 〉 = 〈 〉 − q〈 〉, that the unnormalized Jones
polynomial is defined by Ĵ(L) = (−1)n−qn+−2n−〈L〉, and that the Jones poly-
nomial of L is simply J(L) := Ĵ(L)/(q + q−1). We name and the 0-
and 1-smoothing of , respectively. With this naming convention each vertex
α ∈ {0, 1}X of the n-dimensional cube {0, 1}X corresponds in a natural way
to a “complete smoothing” Sα of L where all the crossings are smoothed and
the result is just a union of planar cycles. To compute the unnormalized Jones
polynomial, we replace each such union Sα of (say) k cycles with a term of the
form (−1)rqr(q + q−1)k , where r is the “height” of a smoothing, the number
of 1-smoothings used in it. We then sum all these terms over all α ∈ {0, 1}X

and multiply by the final normalization term, (−1)n−qn+−2n− . Thus the whole
procedure (in the case of the trefoil knot) can be depicted as in the diagram
below. Notice that in this diagram we have split the summation over the ver-
tices of {0, 1}X to a summation over vertices of a given height followed by a
summation over the possible heights. This allows us to factor out the (−1)r

factor and turn the final summation into an alternating summation:

1

3

2 q(q+q−1)

100

!!
!!

!!
!

!!
!!

!!
!+

q2(q+q−1)2

110

""
""

""
""

""
""

""
"

+

(q+q−1)2

000

##############

""
""

""
""

""
""

"

!!

q(q+q−1)

010

$$$$$$$$$$$$$$$

%%%%
%%%%%

%%%%

+

q2(q+q−1)2

101

+

q3(q+q−1)3

111

!!

q(q+q−1)

001

&&&&&&

&&&&&&

!!

q2(q+q−1)2

011

''''''''''''''

!!

(q + q−1)2 − 3q(q + q−1) + 3q2(q + q−1)2 − q3(q + q−1)3

(1)

= q−2 + 1 + q2 − q6 ·(−1)n− qn+−2n−

−−−−−−−−−−−−−−→
(with (n+, n−) = (3, 0))

q + q3 + q5 − q9 ·(q+q−1)−1

−−−−−−−→ J( ) = q2 + q6 − q8.

1Our slightly unorthodox conventions follow [Kh1]. At some minor regrading and
renaming cost, we could have used more standard conventions just as well.
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3 Categorification

3.1 Spaces

Khovanov’s “categorification” idea is to replace polynomials by graded vector
spaces2 of the appropriate “graded dimension”, so as to turn the Jones polyno-
mial into a homological object. With the diagram (1) as the starting point the
process is straight forward and essentially unique. Let us start with a brief on
some necessary generalities:

Definition 3.1 Let W =
⊕

m Wm be a graded vector space with homogeneous
components {Wm}. The graded dimension of W is the power series qdim W :=
∑

m qm dim Wm .

Definition 3.2 Let ·{l} be the “degree shift” operation on graded vector
spaces. That is, if W =

⊕

m Wm is a graded vector space, we set W{l}m :=
Wm−l , so that qdim W{l} = ql qdim W .

Definition 3.3 Likewise, let ·[s] be the “height shift” operation on chain com-

plexes. That is, if C̄ is a chain complex . . . → C̄r dr

→ C̄r+1 . . . of (possibly
graded) vector spaces (we call r the “height” of a piece C̄r of that complex),
and if C = C̄[s], then Cr = C̄r−s (with all differentials shifted accordingly).

Armed with these three notions, we can proceed with ease. Let L, X , n and n±

be as in the previous section. Let V be the graded vector space with two basis
elements v± whose degrees are ±1 respectively, so that qdim V = q+q−1 . With
every vertex α ∈ {0, 1}X of the cube {0, 1}X we associate the graded vector
space Vα(L) := V ⊗k{r}, where k is the number of cycles in the smoothing of L
corresponding to α and r is the height |α| =

∑

i αi of α (so that qdim Vα(L)
is the polynomial that appears at the vertex α in the cube at (1)). We then set
the rth chain group !L"r (for 0 ≤ r ≤ n) to be the direct sum of all the vector
spaces at height r : !L"r :=

⊕

α:r=|α| Vα(L). Finally (for this long paragraph),
we gracefully ignore the fact that !L" is not yet a complex, for we have not yet
endowed it with a differential, and we set C(L) := !L"[−n−]{n+ − 2n−}. Thus
the diagram (1) (in the case of the trefoil knot) becomes:

2Everything that we do works just as well (with some linguistic differences) over Z.
In fact, in [Kh1] Khovanov works over the even more general ground ring Z[c] where
deg c = 2.
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V {1}

010

,,,,,,,,,,,,,,

--
--

--
--

--
--

⊕

V ⊗2{2}

101

⊕

V ⊗3{3}

111

!!

V {1}

001

......

.....

!!

V ⊗2{2}

011

#############

!!(

! "0 ; ! "1 ; ! "2 ; ! "3
)

= ! " ·[−n−]{n+−2n−}
−−−−−−−−−−−−−−→
(with (n+, n−) = (3, 0))

C( ). (2)

The graded Euler characteristic χq(C) of a chain complex C is defined to be the
alternating sum of the graded dimensions of its homology groups, and, if the
degree of the differential d is 0 and all chain groups are finite dimensional, it is
also equal to the alternating sum of the graded dimensions of the chain groups.
A few paragraphs down we will endow C(L) with a degree 0 differential. This
granted and given that the chains of C(L) are already defined, we can state and
prove the following theorem:

Theorem 1 The graded Euler characteristic of C(L) is the unnormalized
Jones polynomial of L:

χq(C(L)) = Ĵ(L).

Proof The theorem is trivial by design; just compare diagrams (1) and (2)
and all the relevant definitions. Thus rather than a proof we comment on the
statement and the construction preceding it: If one wishes our theorem to hold,
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everything in the construction of diagram (2) is forced, except the height shift
[−n−]. The parity of this shift is determined by the (−1)n− factor in the
definition of Ĵ(L). The given choice of magnitude is dictated within the proof
of Theorem 2.

3.2 Maps

Next, we wish to turn the sequence of spaces C(L) into a chain complex. Let
us flash the answer upfront, and only then go through the traditional ceremony
of formal declarations:

1

3

2 V {1}

100

◦
d1!0

""

◦

%%%%
%%%%

d10!

##%%
%%

%%%
%⊕

V ⊗2{2}

110

d11!

##//////////////////

⊕

V ⊗2

000

d!00

$$000000000000000000

d0!0

""

d00!

##//////
/////

/////

!!

V {1}

010

d!10

%%&&&&&&&&&&&&&&&&&&

◦

d01!
&&1111111111111111

⊕

V ⊗2{2}

101

◦
d1!1

""

⊕

V ⊗3{3}

111

!!

V {1}

001

22222222

d!01

''22222222

d0!1

""

!!

V ⊗2{2}

011

d!11

''33333333333333333

!!

! "0 d0
"" ! "1 d1

"" ! "2 d2
"" ! "3

∑

|ξ|=0

(−1)ξdξ

!!

∑

|ξ|=1

(−1)ξdξ

!!

∑

|ξ|=2

(−1)ξdξ

!!

= ! " ·[−n−]{n+−2n−}
−−−−−−−−−−−−−−→
(with (n+, n−) = (3, 0))

C( ). (3)

This diagram certainly looks threatening, but in fact, it’s quite harmless. Just
hold on tight for about a page! The chain groups !L"r are, as we have already
seen, direct sums of the vector spaces that appear in the vertices of the cube
along the columns above each one of the !L"r spaces. We do the same for the
arrows dr — we turn each edge ξ of the cube to map between the vector spaces
at its ends, and then we add up these maps along columns as shown above.
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The edges of the cube {0, 1}X can be labeled by sequences in {0, 1, $}X with
just one $ (so the tail of such an edge is found by setting $ → 0 and the head
by setting $ → 1). The height |ξ| of an edge ξ is defined to be the height of its
tail, and hence if the maps on the edges are called dξ (as in the diagram), then
the vertical collapse of the cube to a complex becomes dr :=

∑

|ξ|=r(−1)ξdξ .

It remains to explain the signs (−1)ξ and to define the per-edge maps dξ . The
former is easy. To get the differential d to satisfy d ◦ d = 0, it is enough that
all square faces of the cube would anti-commute. But it is easier to arrange the
dξ ’s so that these faces would (positively) commute; so we do that and then
sprinkle signs to make the faces anti-commutative. One may verify that this
can be done by multiplying dξ by (−1)ξ := (−1)

∑

i<j ξi , where j is the location
of the $ in ξ . In diagram (3) we’ve indicated the edges ξ for which (−1)ξ = −1
with little circles at their tails. The reader is welcome to verify that there is an
odd number of such circles around each face of the cube shown.

It remains to find maps dξ that make the cube commutative (when taken with
no signs) and that are of degree 0 so as not to undermine Theorem 1. The
space Vα on each vertex α has as many tensor factors as there are cycles in
the smoothing Sα . Thus we put these tensor factors in Vα and cycles in Sα in
bijective correspondence once and for all. Now for any edge ξ , the smoothing at
the tail of ξ differs from the smoothing at the head of ξ by just a little: either
two of the cycles merge into one (see say ξ = 0$0 above) or one of the cycles
splits in two (see say ξ = 1$1 above). So for any ξ , we set dξ to be the identity
on the tensor factors corresponding to the cycles that don’t participate, and
then we complete the definition of ξ using two linear maps m : V ⊗ V → V
and ∆ : V → V ⊗ V as follows:

( )

−→
(

V ⊗ V
m
→ V

)

m :

{

v+ ⊗ v− +→ v− v+ ⊗ v+ +→ v+

v− ⊗ v+ +→ v− v− ⊗ v− +→ 0

(4)

( )

−→
(

V
∆
→ V ⊗ V

)

∆ :

{

v+ +→ v+ ⊗ v− + v− ⊗ v+

v− +→ v− ⊗ v−
(5)

We note that because of the degree shifts in the definition of the Vα ’s and
because we want the dξ ’s to be of degree 0, the maps m and ∆ must be of
degree −1. Also, as there is no canonical order on the cycles in Sα (and hence on
the tensor factors of Vα ), m and ∆ must be commutative and co-commutative
respectively. These requirements force the equality m(v+ ⊗ v−) = m(v− ⊗ v+)
and force the values of m and ∆ to be as shown above up to scalars.
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