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Abstract

As a consequence of a general result about finite group actions on
3-manifolds, we show that a hyperbolic 3-manifold can be the cyclic
branched cover of at most fifteen inequivalent knots in S

3 (in fact, a main
motivation of the present paper is to establish the existence of such a
universal bound). A similar, though weaker, result holds for arbitrary ir-
reducible 3-manifolds: an irreducible 3-manifold can be a cyclic branched
cover of odd prime order of at most six knots in S

3. We note that in most
other cases such a universal bound does not exist.
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1 Introduction

A classical way to construct closed, connected, orientable 3-manifolds is to con-
sider cyclic covers of the 3-sphere branched along knots. A natural question in
this setting is to understand in how many different ways a closed, connected,
orientable 3-manifold can be presented as the (total space of a) cyclic branched
cover of a knot. There is an extensive literature on this problem, mainly fo-
cussing on the case where the branching order is fixed. For instance, it is known
that a closed hyperbolic 3-manifold is the n-fold cyclic branched cover of at
most two knots in S3, provided n > 2 [Z2], and at most nine if n = 2 [Re]. For
arbitrary closed, connected, orientable, irreducible 3-manifolds some results are
known but only for prime orders of ramification. More precisely, such manifolds
can be 2-fold cyclic branched covers of arbitrary many knots [Mon1, Mon2]
but can cover at most two knots if the order is an odd prime [BoPa]. For
branching order equal to 2, several analyses of how the different quotient knots
are related can also be found (see, for instance, [MR] for hyperbolic manifolds,
[Mon1, Mon2, V, MonW] for toroidal ones, [P] for Conway reducible hyperbolic
knots, and [Gr] for alternating ones).

∗Partially supported by ANR project 12-BS01-0003-01
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Possibly due to the fact that the knots that are covered by the same manifold
but with different orders of branching are harder to relate, not much was known
so far on the general problem, even for hyperbolic manifolds (see [RZ]). The
prime motivation for this work was to understand whether it is possible to
establish bounds on the number of ways a 3-manifold can be presented as a
cyclic branched cover of a knot, without fixing the order of the cover. By the
above discussion, no universal bound can be given in general, however the first
main result of the present paper assures the existence of a universal bound for
the class of closed hyperbolic 3-manifolds.

Theorem 1. A closed hyperbolic 3-manifold is a cyclic branched cover of at
most fifteen inequivalent knots in S3.

We call two knots equivalent if one is mapped to the other by an orientation-
preserving diffeomorphism of S3. In the present paper, all manifolds are closed,
connected and orientable, and all maps are smooth and orientation-preserving.

The orientation-preserving isometry group of a closed hyperbolic 3-manifold
M is finite, and every finite group occurs for some hyperbolic M . Suppose
that M is a cyclic branched cover of a knot in S3; then the group of covering
transformations acting on M is generated by a hyperelliptic rotation: we call
a periodic diffeomorphism of a closed 3-manifold a hyperelliptic rotation if all
of its non-trivial powers have connected, non-empty fixed-point set (a simple
closed curve), and its quotient (orbit) space is S3. By the geometrization of
3-orbifolds, or of finite group actions on 3-manifolds ([BLP], [BoP], [DL]), the
group of covering transformations is conjugate to a subgroup of the isometry
group of M . Hence establishing a universal upper bound for hyperbolic 3-
manifolds as in Theorem 1 is equivalent to bounding the number of conjugacy
classes of cyclic subgroups generated by hyperelliptic rotations of the isometry
group of a hyperbolic 3-manifold. Now Theorem 1 is a consequence of the
following more general result on finite group actions on closed 3-manifolds.

Theorem 2. Let M be a closed 3-manifold not homeomorphic to S3. Let G be
a finite group of orientation-preserving diffeomorphisms of M . Then G contains
at most fifteen conjugacy classes of cyclic subgroups generated by a hyperelliptic
rotation (at most six for cyclic subgroups whose order is not a power of two).

Note that the 3-sphere is the n-fold cyclic branched cover of the trivial knot
for any integer n ≥ 2 (and, by the solution to the Smith conjecture, only of the
trivial knot). It is well-known that, for any branching order n, a 3-manifold can
be the n-fold cyclic branched cover of an arbitrary number of non-prime knots
(such a manifold is not irreducible), and that an irreducible 3-manifold can be
the 2-fold branched cover of arbitrarily many prime knots (see [Mon1, Mon2, V]).
Moreover, Proposition 7 in Section 6.1 shows that Seifert fibred manifolds can
cover an arbitrary number of knots, all with non-prime orders. It is thus natural
to restrict our attention to covers of odd prime order.

For irreducible 3-manifolds, the following holds:

Theorem 3. Let M be a closed, irreducible 3-manifold. Then there are at most
six inequivalent knots in S3 having M as a cyclic branched cover of odd prime
order.
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The proof of Theorem 3 uses Theorem 2 in connection with the equivariant
torus-decomposition of irreducible 3-manifolds into geometric pieces, see [BoP],
[BLP], [CHK], and [KL]. For arbitrary 3-manifolds, as a direct consequence
of Theorem 3 as well as the equivariant prime decomposition for 3-manifolds
[MSY], the following remains true.

Corollary 1. Let M be a closed 3-manifold not homeomorphic to S3. Then
M is a p-fold cyclic branched cover of a knot in S3 for at most six distinct odd
prime numbers p.

Another consequence of Theorem 2 is the following characterisation of the
3-sphere which generalises the main result of [BPZ] from the case of Z-homology
3-spheres to arbitrary closed 3-manifolds.

Corollary 2. A closed 3-manifold M is homeomorphic to S3 if and only if
there is a finite group G of orientation-preserving diffeomorphisms of M such
that G contains sixteen conjugacy classes of subgroups generated by hyperelliptic
rotations.

A noteworthy aspect of the proof of Theorem 2 is the substantial use of finite
group theory, in particular of the classification of finite simple groups. For a
prime p, the p-fold cyclic branched cover of a knot in S3 is a rational homology
3-sphere, and we will prove in Section 7 that every finite group acts non-freely
on some rational homology 3-sphere, so the use of the classification seems to
be intrinsic to the proofs of our results. We note that the class of finite groups
acting on a Z/2-homology 3-sphere instead is quite restricted (see [MZ]), and
in this case the much shorter Gorenstein-Harada classification of finite simple
groups of sectional 2-rank at most four is sufficient for our proofs. The bounds
that can be derived for Z/2-homology 3-spheres are, however, precisely the same
as those we get for arbitrary manifolds.

We have tried to separate the algebraic, purely group theoretical parts of
the proof (Section 4) from the topological parts (Sections 3 and 5), so they can
be read independently.

We note that, although the upper bounds in our results are quite small, at
this point we do not know if they are really optimal. In the hyperbolic case,
one can easily construct manifolds that are covers of orders > 2 of three distinct
knots [RZ]. For hyperbolic double covers, the bound (nine) is sharp according
to a result of Kawauchi [Ka], but no explicit examples are known so far. For
general irreducible manifolds, Brieskorn spheres of type Σ(p, q, r), where p, q,
and r are three pairwise different odd primes, provide examples of manifolds
that cover four knots: Σ(p, q, r) is the p-fold (resp. q-fold and r-fold) cyclic
cover of S3 branched along the torus knot T (q, r) (resp. T (p, r) and T (p, q)) as
well as the double branched cover of a Montesinos knot.

The paper is organised as follows. In Section 2 we present a brief sketch of the
proof of Theorem 2. Hyperelliptic rotations and their properties are considered
in Section 3. Section 4 contains the main group-theoretical part of the paper,
Section 5 the proof of Theorem 2, and Section 6 the proof of Theorem 3 for the
irreducible case. Finally, in an Appendix we prove that every finite group acts
non-freely on some rational homology sphere (adapting the result of [CL] that
deals with free actions).
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2 Sketch of the proof of Theorem 2

The proof of Theorem 2 is based on a series of preliminary results which are
presented in Sections 3 and 4. Our choice to present the group-theoretical part
of the proof in a separate section (Section 4) allows for the group-theoretical
results to be read independently of the other parts of the paper. In the following,
in order to make the paper more accessible, we explain the main steps of the
proof.

We begin with a more detailed definition of hyperelliptic rotation. Note that
throughout the paper, unless otherwise stated, 3-manifold will mean orientable,
connected, closed 3-manifold. Also, all finite group actions by diffeomorphisms
will be faithful and orientation-preserving.

Definition 1. Let ψ : M −→ M be a finite order diffeomorphism of a 3-
manifold M . We shall say that ψ is a rotation if it preserves the orientation
of M , Fix(ψ) is non-empty and connected, and Fix(ψ) = Fix(ψk) for all non-
trivial powers ψk of ψ. Fix(ψ) will be referred to as the axis of the rotation.
Note that if ψ is a periodic diffeomorphism of prime order, then ψ is a rotation
if and only if Fix(ψ) = S1. We shall say that a rotation ψ is hyperelliptic if
the space of orbits M/ψ of its action is S3, and a hyperelliptic group is a cyclic
group generated by a hyperelliptic rotation.

We start by observing that the case of hyperelliptic rotations whose order is
a power of two is already well-understood by work of Reni and Mecchia (see [Re]
and [Mec1]). In particular, there are at most nine conjugacy classes of cyclic
groups generated by such hyperelliptic rotations. As a consequence, from now
on, we exclude this case and consider only hyperelliptic groups whose order is
not a power of two.

Section 3 collects various simple facts on the geometry of hyperelliptic rota-
tions. In particular, we prove that there are at most three hyperelliptic groups
commuting pairwise. This result implies the existence of a universal bound in
the solvable case. In fact, in the solvable case, the presence of Hall subgroups
assures that all hyperelliptic subgroups commute, up to conjugacy, implying
that there at most three conjugacy classes of such groups.

The case of non-solvable groups, where local approaches on the basis of p-
groups fail, is more involved. We need a global description of the groups that
may arise, which is provided in Section 4. In that section, we introduce the
notion of an algebraically hyperelliptic collection of cyclic subgroups which have
the same algebraic properties as the hyperelliptic subgroups; this allows a purely
algebraic approach in Section 4. The main result there (Theorem 4) is that a
non-solvable finite group generated by an algebraically hyperelliptic collection
is of a very special type, in particular G has a quotient by a normal solvable
subgroup which is isomorphic to the direct product of at most two simple groups.

The next step is to cover the hyperelliptic subgroups by a bounded number
of conjugacy classes of solvable subgroups (i.e., to find a collection of solvable
subgroups such that each element of odd prime order in a hyperelliptic sub-
group has a conjugate in one of these solvable subgroups); this concept of a
solvable cover of a finite group is central for the proofs in the present paper
since a bound on the number of elements of such a cover implies that there is
a bound on the number of conjugacy classes of hyperelliptic subgroups. Using
the classification of finite simple groups, we prove, in Proposition 4, that in any
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finite simple group the hyperelliptic subgroups can be covered, up to conjugacy,
by at most four solvable subgroups. This result, together with the characterisa-
tion of groups generated by algebraically hyperelliptic collections, gives directly
the existence of a universal bound of fifty-seven, much larger than the bound
of fifteen obtained in Theorem 2 by exploiting extra topological considerations.
Note that the existence of a universal (although non explicit) bound is ensured
by the existence of only a finite number of simple sporadic groups.

In Section 5 we conclude the proof of Theorem 2. We can suppose that G is
generated by an algebraically hyperelliptic collection and that G is not solvable.
Under these hypotheses, the proof is divided into two cases.

In the first case, we suppose that G contains no rotation of order two. By
geometric motivations, an involution acting dihedrally by conjugation on a hy-
perelliptic subgroup is a rotation. The absence of this type of involutions induces
further restrictions on the structure of G; in particular, up to a quotient by a
solvable subgroup, G is a single simple group. By using these properties of G
and the solvable covers we prove that four is the upper bound in this case.

In the second case, G contains a rotation of order two. The groups that
may act on 3-manifolds containing such an involution are listed in [Mec2]. We
combine this with our result about groups generated by an algebraically hyper-
elliptic collection and we obtain that a quotient of G by a solvable subgroup
must be isomorphic to one of A8, PSL2(q) or PSL2(q) × PSL2(q

′). For these
groups we explicitly find a solvable cover with a bounded number of elements
and hence a universal bound as in Theorem 2.

3 Rotations and their properties

In this section we shall establish some properties of rotations in general and
hyperelliptic ones in particular.

Remark 1. Assume that ψ is a hyperelliptic rotation acting on a 3-manifold
M . The natural projection from M to the space of orbits M/ψ of ψ is a cyclic
cover of S3 branched along a knot K = Fix(ψ)/ψ. The converse is also true,
that is any deck transformation generating the automorphism group of a cyclic
covering of S3 branched along a knot is a hyperelliptic rotation.

We observe that cyclic branched covers of prime order are closely related to
Q-homology 3-spheres.

Remark 2.

1. If the order of ψ is a prime p, then M is a Z/p-homology sphere [Go].

2. By Smith theory, if f is a periodic diffeomorphism of order p, a prime
number, acting on a Z/p-homology sphere, then f either acts freely or is
a rotation.

We start with a somehow elementary remark which is however central to
determine constraints on finite groups acting on 3-manifolds.

Remark 3. Let G ⊂ Diff+(M) be a finite group of diffeomorphisms acting on
a 3-manifold M . One can choose a Riemannian metric on M which is invariant
by G and with respect to which G acts by isometries. Let now ψ ∈ G be
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a rotation. Since the normaliser NG(〈ψ〉) of ψ in G consists precisely of those
diffeomorphisms that leave the circle Fix(ψ) invariant, we deduce that NG(〈ψ〉)
is a finite subgroup of Z/2⋉ (Q/Z⊕Q/Z), where the nontrivial element in Z/2
acts by conjugation sending each element of Q/Z⊕Q/Z to its inverse. Note that
the elements of NG(〈ψ〉) are precisely those that rotate about Fix(ψ), translate
along Fix(ψ), or invert the orientation of Fix(ψ); in the last case the elements
have order 2 and non-empty fixed-point set meeting Fix(ψ) in two points.

Remark 4. Let us consider the 3-sphere S3. According to Smith’s theory, an
orientation-preserving finite-order diffeomorphism of S3 is a rotation if and only
if its fixed-point set is non-empty. Because of the positive solution to the Smith
conjecture the fixed-point set of a rotation of S3 is the trivial knot. Morover,
any group of symmetries of a non-trivial knot K (that is, any finite group of
orientation-preserving diffeomorphisms of S3 acting on the pair (S3,K)) is either
cyclic or dihedral.

Lemma 1. Let ϕ and ψ be two rotations contained in a finite group of orientation-
preserving diffeomorphisms of a 3-manifold M .

1. A non-trivial power of ψ of order different from 2 commutes with a non-
trivial power of ϕ, if and only if ϕ and ψ commute.

2. Assume M 6= S3. If ϕ and ψ are hyperelliptic and Fix(ϕ) = Fix(ψ), then
〈ϕ〉 = 〈ψ〉 (in particular they have the same order).

3. Assume M 6= S3. If ϕ and ψ are hyperelliptic, then 〈ϕ〉 and 〈ψ〉 are
conjugate if and only if some non-trivial power of ϕ is conjugate to some
non-trivial power of ψ.

Proof.

Part 1 The sufficiency of the condition being obvious, we only need to prove
the necessity. Remark that we can assume that both rotations act as isometries
for some fixed Riemannian metric on the manifold. Denote by f and g the
non trivial powers of ϕ and ψ, respectively. Note that, by definition, Fix(ψ) =
Fix(g) and Fix(ϕ) = Fix(f). Since g and f commute, g leaves invariant
Fix(ϕ) = Fix(f) and thus normalises every rotation about Fix(ϕ). Moreover
g and ϕ commute, for the order of g is not 2 (see Remark 3). In particular, ϕ
leaves Fix(ψ) = Fix(g) invariant and normalises every rotation about Fix(ψ).
The conclusion follows.
Part 2 Reasoning as in Part 1, one sees that the two rotations commute. As-
sume, by contradiction, that the subgroups they generate are different. Under
this assumption, at least one of the two subgroups is not contained in the other.
Without loss of generality we can assume that 〈ϕ〉 6⊂ 〈ψ〉. Take the quotient of
M by the action of ψ. The second rotation ϕ induces a non-trivial rotation of S3

which leaves the quotient knot K = Fix(ψ)/ψ ⊂ S3 invariant. Moreover, this
induced rotation fixes pointwise the knot K. The positive solution to the Smith
conjecture implies now that K is the trivial knot and thus M = S3, against the
hypothesis.
Part 3 follows from 2 since the conjugate of a hyperelliptic rotation is again a
hyperelliptic rotation.

Corollary 3. Let G be a finite group of orientation-preserving diffeomorphisms
acting on a 3-manifoldM 6= S3. Let ψ be a rotation and let f ∈ G be an element
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of odd prime order which is a power of ψ. Then we have CG(〈f〉) = CG(〈ψ〉)
and NG(〈f〉) = NG(〈ψ〉).

There is a natural bound on the number of hyperelliptic subgroups of order
not a power of two which commute pairwise; we begin analysing the situation
of the symmetry group of a knot.

Definition 2. A rotation of a knot K in S3 is a rotation ψ of S3 such that
ψ(K) = K and K ∩ Fix(ψ) = ∅. We shall say that ψ is a full rotation if K/ψ
in S3 = S3/ψ is the trivial knot.

Remark 5. Let ψ and ϕ be two commuting rotations acting on some manifold
M and with orders not both equal to 2. Assume that ψ is hyperelliptic and
ϕ is not a power of ψ. According to Remark 3 we have two situations: Either
Fix(ψ)∩Fix(ϕ) = ∅ and ϕ induces a rotation φ of K = Fix(ψ)/ψ, or Fix(ψ) =
Fix(ϕ). In the former situation we have that ϕ is hyperelliptic if and only if
φ is a full rotation. This can be shown by considering the quotient of M by
the action of the group generated by ψ and ϕ. This quotient is S3 and the
projection onto it factors through M/ϕ, which can be seen as a cyclic cover of
S3 branched along K/φ. By the positive solution to the Smith conjecture, M/ϕ
is S3 if and only if K/φ is the trivial knot. In the latter situation, again because
of the positive solution to Smith’s conjecture, we have M = S3 (compare also
Part 2 of Lemma 1).

The following finiteness result about commuting rotations of a non-trivial
knot in S3 is one of the main ingredients in the proof of Theorem 2 (see [BoPa,
Proposition 2], and [BoPa, Theorem 2] for a stronger result where commutativity
is not required).

Proposition 1. Let K be a non-trivial knot in S3. Let us consider a set of
pairwise commuting full rotations in Diff+(S3,K). The elements of the set
generate at most two pairwise distinct cyclic subgroups.

Proof. Note, first of all, that, according to Remark 4 the finite subgroup of
Diff+(S3,K) generated by a finite set of pairwise commuting full rotations is
cyclic.

Assume now, by contradiction, that there are three pairwise distinct cyclic
subgroups generated by commuting full rotations of K, ϕ, ψ and ρ respectively.
Note that such cyclic subgroups have distinct orders. Assume that two of them
-say ϕ, ψ- have the same axis. Fix the one with smaller order -say ψ-: since ψ is
a full rotation, the quotient K/ψ is the trivial knot, and ϕ induces a rotation of
K/ψ which is non-trivial since ϕ commutes with ψ and its order is larger than
that of ψ. The axis A of this induced symmetry is the image of Fix(ψ) in the
quotient S3/ψ by the action of ψ. In particular K/ψ and A form a Hopf link
and K is the trivial knot: this follows from the equivariant Dehn lemma, see
[Hil].

We can thus assume that the axes are pairwise disjoint. Indeed, this follows
from Remark 3 taking into account that the rotations commute pairwise and
at most one of them has order 2. Therefore we would have that the axis of ρ,
which is a trivial knot, admits two commuting rotations, ϕ and ψ, with distinct
axes, which is impossible: this follows, for instance, from the fact (see [EL, Thm
5.2]) that one can find a fibration of the complement of the trivial knot which
is equivariant with respect to the two symmetries.
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Observe that the proof of the proposition shows that two commuting full
rotations of a non-trivial knot either generate the same cyclic subgroup or have
disjoint axes.

We stress that if a knot K ⊂ S3 admits a full rotation, then it is a prime
knot, see [BoPa, Lemma 2].

Lemma 2. Let G be a finite group of diffeomorphisms acting on a 3-manifold
M 6= S3 and {H1, . . . , Hm} be a set of hyperelliptic subgroups of G of order not
a power of two. Suppose that there exists an abelian subgroup of G, containing
at least an element of odd prime order of each Hi, then m ≤ 3. Moreover either
the orders of the Hi are pairwise coprime or m ≤ 2.

Proof.

By Lemma 1 we obtain that the subgroups Hi commute and have trivial
intersection pairwise. Consider the cyclic branched covering M → M/H1

∼= S3

over the knot Fix(H1)/H1. By projecting Hi with i ≥ 2 toM/H1 we obtain full
rotations of Fix(H1)/H1. Note that if two subgroups Hi have the same order
that is moreover a divisor of the order of H1, a priori they might map to the
same subgroup in 〈H1, . . . , Hm〉/H1. We claim, however, that the induced full
rotations are distinct so there are m − 1 of them. This follows from the fact
that, for different indices i and j, Fix(Hi) and Fix(Hj) are disjoint according
to Part 2 of Lemma 1. Now, since the subgroups commute, for all i = 1, . . . ,m
we have H1(Fix(Hi)) = Fix(Hi), so that the fixed-point sets of the induced
full rotations are disjoint, too, and the full rotations are pairwise distinct. By
Proposition 1 we obtain m− 1 ≤ 2. Note that, by Remark 4 a non-trivial knot
cannot admit two distinct and commuting cyclic groups of symmetries of the
same order. This proves the latter part of the lemma.

The above lemma implies directly the following corollary.

Corollary 4. Let p be an odd prime and assume that H ∼= Z/p⊕Z/p acts on a
3-manifold M 6= S3, the group H contains at most two distinct cyclic subgroups
generated by non-trivial powers of hyperelliptic rotations.

We now collect several facts relative to hyperelliptic rotations that can be
deduced from the discussion in this section.

Remark 6. Let G be a finite group of orientation-preserving diffeomorphisms
of a 3-manifold M 6= S3. Let ψ ∈ G be a hyperelliptic rotation of order not a
power of 2. Recall that the structures of the centraliser and of the normaliser
of 〈ψ〉 are described in Remark 3. Let N denote the normaliser NG(〈ψ〉).

1. The centraliser CG(〈ψ〉) of ψ in G satisfies 1 −→ 〈ψ〉 −→ CG(〈ψ〉) −→
H −→ 1, where H is cyclic, possibly trivial. This follows from Remark 4.

2. Since the symmetries of a knot not acting freely have connected fixed-
point set (see again Remark 4), the possible elements of N \ CG(〈ψ〉) are
rotations of order two.

3. According to last part of Lemma 2, the centraliser CG(〈ψ〉) contains at
most one more cyclic subgroup of the same order as 〈ψ〉 and generated by
a hyperelliptic rotation.

4. Observe that we have NG(N) = NG(CG(〈ψ〉)).
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5. Of course, the conjugate of a hyperelliptic rotation is again a hyperelliptic
rotation. Consider an element g ∈ NG(N). Then either g conjugates 〈ψ〉
to itself and so g belongs to N , or g does not normalise 〈ψ〉. In this case,
CG(〈ψ〉) contains precisely two cyclic subgroups generated by hyperelliptic
rotations of the same order as ψ (〈ψ〉 and another one) and g exchanges
them. It follows that CG(〈ψ〉) has index a divisor of 4 in NG(N).

6. Let f ∈ G be an element of odd prime order which is a power of ψ. Then
we have CG(〈f〉) = CG(〈ψ〉) and NG(〈f〉) = N . This is just Corollary 3.

The following general observation will be useful in the sequel.

Remark 7. With the notation used in the previous remark, assume that there
are elements in NG(N) which do not act in the same way on CG(〈ψ〉), then
necessarily the index of N in NG(N) is two and CG(〈ψ〉) contains two distinct
subgroups conjugate to 〈ψ〉.

We end this section by providing a dictionary translating between algebraic
properties of the structure of NG(N) and the symmetries of the knot K =
Fix(ψ)/ψ. This will not be needed in the proofs of our results but will provide
a geometric interpretation of the different situations that occur in the proof of
Theorem 2 (see Remark 9). We start with the following definition.

Definition 3. A 2-component link is called exchangeable if there exists an
orientation-preserving diffeomorphism of S3 which exchanges the two compo-
nents of the link.

Let K be a knot and ρ a rotation of K of order n and with axis A. Consider
the 2-component link K ∪ A consisting of the images of the knot K and of the
axis A in the quotient S3/ρ of the 3-sphere by the action of ρ. Note that at
least one component of this link (i.e. A) is trivial. We call K n-self-symmetric
if K ∪A is exchangeable. In this case ρ is a full rotation of K.

=

Figure 1: A 5-self-symmetric knot on the left, and its exchangeable quotient
link on the right.

Since the structure of the normaliser of 〈ψ〉 and of its centraliser, only depend
on the symmetries of K that lift to G, we introduce the following definitions:

Definition 4. Let G be a finite group of orientation preserving diffeomorphisms
of a closed connected 3-manifoldM . Let ψ be a hyperelliptic rotation contained
in G with quotient knot K. We say that K is strongly invertible with respect
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to G if K admits a strong inversion that lifts to G. Similarly we say that K
is self-symmetric with respect to G if G contains an element ψ′ conjugate to ψ
such that the subgroup 〈ψ,ψ′〉 is abelian of rank 2, i.e. not cyclic. Remark that
in the latter case K is n-self-symmetric, where n is the order of ψ.

The proof of the following facts is elementary and left to the reader.

Proposition 2. Let K, ψ, N , and G be as above.

• The centraliser of 〈ψ〉 in G is contained with index 2 in N if and only if
K is strongly invertible with respect to G.

• N is contained with index 2 in NG(N) if and only if K is self-symmetric
with respect to G.

Moreover, if M is hyperbolic and G = Iso+(M), K is strongly invertible if and
only if it is strongly invertible with respect to G, and it is self-symmetric with
respect to G if and only if it is n-self-symmetric, where n is the order of the
hyperelliptic rotation ψ.

4 Group theoretical results

This section is devoted to the proofs of the group-theoretical results that are
used to obtain the bound provided by Theorem 2.

The first result, Theorem 4, is probably the more interesting of the two from
a group-theoretical point of view. It describes the finite groups G that may be
generated by hyperelliptic rotations. In this settings, a hyperelliptic rotation
is simply an element of G of order not a power of two, satisfying a purely
algebraic condition (see Definition 5, below) on the structure of the normaliser
of (a power of odd prime order of) the element. More precisely, Theorem 4
states that either G is solvable, or it admits a quotient by a normal solvable
subgroup so that the quotient is either the product of a simple group times a
cyclic group of odd order, or the product of two simple groups. We see that the
fact of being generated by hyperelliptic rotations puts very strong constraints
on the structure of G.

The second result, Proposition 4, although possibly not as striking as the
previous one, is however key to be able to carry out the strategy of bounding
the number of hyperelliptic subgroups by covering them with solvable subgroups
(see Definition 6). Indeed, in Proposition 4 we establish the fact that four
conjugacy classes of solvable subgroups are sufficient to contain, up to conjugacy,
all hyperelliptic subgroups of orders not a power of two that may sit inside a
finite simple group.

Note that these two main results imply that 4× 4 solvable subgroups suffice
to cover all hyperelliptic groups in G, and together with Lemma 3, and Lemma 2
show that a finite group G can contain at most forty-eight conjugacy classes of
hyperelliptic subgroups of orders that are not powers of 2.

In the following G will denote a finite group. We start with some preliminary
observations and definitions.
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Definition 5. A collection {Ci} of subgroups of G, each of odd prime order pi,
is said to be algebraically hyperelliptic if, for each i, the following conditions are
satisfied:

1. the centraliser of Ci in G is abelian of rank at most two and has index at
most two in the normaliser of Ci in G;

2. each element belonging to the normaliser of Ci but not to the centraliser
inverts by conjugation each element in the centraliser;

3. if Ci is contained in a Sylow pi-subgroup Si of G, then Si contains at most
two distinct conjugates of Ci.

We remark that in this definition the primes pi are not necessarily pairwise
distinct.

Proposition 3. Let S be a Sylow pi-subgroup where pi is the order of a group
Ci belonging to an algebraically hyperelliptic collection.

1. S is either cyclic or the product of two cyclic groups, and

2. NG(S) contains with index at most 2 the normaliser of a conjugate of Ci,
and contains an abelian subgroup of rank at most 2 with index a divisor
of 4. In particular NG(S) is solvable.

Proof.

Up to conjugation we can suppose that S contains Ci. By Properties 1 and
2 in Definition 5 and the fact that pi is odd, the normaliser NS(Ci) is abelian
of rank at most two. Property 3 in Definition 5 implies that NS(NS(Ci)) =
NS(Ci). Since S is a pi-subgroup we obtain that S = NS(Ci) and we get the
first part of the thesis.

Since the subgroup NG(S) normalises the maximal elementary abelian sub-
group of S, we obtain also the second part of the thesis.

Lemma 3. Let G be a solvable group containing an algebraically hyperelliptic
collection {C1, · · · , Cm} of subgroups of odd prime order. Then there exists an
abelian subgroup of G containing a conjugate of Ci, for each i = 1, . . . ,m. In
particular the subgroups Ci commute pairwise up to conjugacy.

Proof. Let π be the set of the orders of the Ci and letB be a Hall π-subgroup
of G. Each Ci is conjugate to a subgroup of B. Since π contains only odd primes,
Definition 5 yields that centraliser and normaliser of every Sylow p-subgroup of
B coincide. By Burnside’s p-complement theorem (see [Su, Theorem 2.10 page
144]), every Sylow p-subgroup of B has a normal complement, and hence B is
abelian.

Remark 8. Suppose that N is a normal subgroup of G and H is a p-subgroup
of G. If the order of N is coprime with p, then the normaliser of the projection
of H to G/N is the projection of the normaliser of H in G, that is

NG/N (HN/N) = NG(H)N/N.

The inclusion ⊇ holds trivially. We prove briefly the other inclusion. Let fN
be an element of NG/N (HN/N), then Hf ⊆ HN . Both Hf and H are Sylow
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p-subgroups of HN and by the second Sylow theorem they are conjugate by an
element hn ∈ HN. We obtain that Hfhn = H, and hence f ∈ NG(H)N.

Analogously if f is an element of prime order coprime with the order of N ,
then CG/N (fN) = CG(f)N/N.

Recall that a finite group Q is quasisimple if it is perfect (the abelianised
group is trivial) and the factor group Q/Z of Q by its centre Z is a nonabelian
simple group (see [Su, chapter 6.6]). A group E is semisimple if it is perfect
and the factor group E/Z(E) is a direct product of nonabelian simple groups.
A semisimple group E is a central product of quasisimple groups which are
uniquely determined. Any finite group G has a unique maximal semisimple
normal subgroup E(G) (maybe trivial), which is characteristic in G. The sub-
group E(G) is called the layer of G and the quasisimple factors of E(G) are
called the components of G.

The maximal normal nilpotent subgroup of a finite group G is called the Fit-
ting subgroup and is usually denoted by F (G). The Fitting subgroup commutes
elementwise with the layer of G. The normal subgroup generated by E(G) and
by F (G) is called the generalised Fitting subgroup and is usually denoted by
F ∗(G). The generalised Fitting subgroup has the important property to con-
tain its centraliser in G, which thus coincides with the centre of F ∗(G). For
further properties of the generalised Fitting subgroup see [Su, Section 6.6.].

Theorem 4. Suppose that G is generated by the algebraically hyperelliptic col-
lection H := {C1, · · · , Cm}. Denote by pi the order of Ci and by A the maximal
normal solvable subgroup of order coprime with every pi.

If G is non-solvable, then the following properties hold:

1. every pi divides the order of any component of G/A;

2. either G/A is the direct product of a cyclic group of odd order and a simple
group or it is the direct product of two simple groups;

3. if in addition G does not contain any involution acting dihedrally on any
Ci, then E(G/A) is simple, every pi divides the order of F (G/A) and a
Sylow pi-subgroup of G contains exactly two conjugates of Ci.

Proof. Let π be the set of the primes pi.
By Remark 8 we can suppose that A is trivial and F (G) is a π-group.

Claim 1. F (G) is cyclic and E(G) is not trivial.

Suppose first that F (G) contains an abelian pi-subgroup S of rank two.
Then S, being the maximal elementary abelian pi-subgroup contained in F (G),
is normal in G and contains Ci. This implies that G is solvable and we get a
contradiction. Hence F (G) is cyclic.

If E(G) is trivial, then F (G) = F ∗(G) and G/F (G) is isomorphic to a
subgroup of AutF (G). Since F (G) is cyclic AutF (G) is solvable, and we get
again a contradiction.

Claim 2. Each pi divides the order of any component of G. Moreover the
components of G are simple groups and are at most two.
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Since the Sylow pi-subgroups are abelian and A is trivial, by [Su, Exercise
1, page 161] the components of G have trivial centre.

Now we prove that each component of G is normalised by any Ci. Let fi be
a generator of Ci and Q a component of G. Suppose by contradiction that Q is
not normalised by fi. We define the following subgroup:

Qc = {xfixf
−1
i . . . fpi−1

i xfpi−1
i | x ∈ Q}.

Since the components of G commute elementwise, Qc is a subgroup of G iso-
morphic to Q. Moreover, each element of Qc commutes with fi and this gives
a contradiction.

We have that Ci normalises Q but cannot centralise it, so the action by
conjugation of fi on Q is not trivial.

Assume that Q is either sporadic or alternating. Since the order of the outer
automorphism group of any such simple group is a (possibly trivial) power of
2 (see [GLS, Section 5.2 and 5.3]), we conclude that f must induce an inner
automorphism of Q. In particular pi divides the order of Q.

We can thus assume that Q is a simple group of Lie type.
Recall that, by [GLS, Theorem 2.5.12], Aut(Q) is the semidirect product

of a normal subgroup Inndiag(Q), containing the subgroup Inn(Q) of inner
automorphisms, and a group ΦΓ, where, roughly speaking, Φ is the group of
automorphisms of Q induced by the automorphisms of the defining field and Γ
is the group of automorphisms of Q induced by the symmetries of the Dynkin
diagram associated to Q (see [GLS] for the exact definition). By [GLS, The-
orem 2.5.12.(c)], every prime divisor of |Inndiag(Q)| divides |Q|. Thus we
can assume that the automorphism induced by fi on Q is not contained in
Inndiag(Q) and its projection θ on Aut(Q)/Inndiag(Q) ∼= ΦΓ has order pi.
We will find a contradiction showing that in this case the centraliser of fi in Q
is not abelian.

Write θ = φγ, with φ ∈ Φ and γ ∈ Γ. If φ = 1, then γ is nontrivial and fi
induces a graph automorphism according to [GLS, Definition 2.5.13]. Since pi
is odd, the only possibility is that Q is D4(q) and pi = 3 (see [GLS, Theorem
2.5.12 (e)]). The centraliser of fi in Q is nonabelian by [GLS, Table 4.7.3 and
Proposition 4.9.2.]. If φ 6= 1 and Q is not isomorphic to the group 3D4(q), then
the structure of the centraliser of fi in Q is described by [GLS, Theorem 4.9.1],
and it is nonabelian. Finally, if φ 6= 1 and Q ∼= 3D4(q), the structure of the non
abelian centraliser of fi in Q follows from [GLS, Proposition 4.2.4]. We proved
that the automorphism induced by fi is contained in Inndiag(Q) and pi divides
|Q|.

Since pi divides the order of any component, G has at most two components.

Claim 3. G = E(G)F (G).

We prove first that G = E(G)CG(E(G)). Let us assume by contradiction
that there exists Ci with trivial intersection with E(G)CG(E(G)) and denote by
f a generator of Ci. Since pi divides the order of every component of G and the
Sylow pi-subgroup has rank at most 2, we get that E(G) has only one component
which we denote byQ. The Sylow pi-subgroups ofQ are cyclic. Moreover, by the
first part of the proof, the automorphism induced by f on Q is inner-diagonal.
If it is inner, we obtain f as a product of an element that centralises Q and
an element in Q, a contradiction to our assumption; otherwise, we get again
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contradiction, since, by [GLS, Theorem 2.5.12] and [A, (33.14)], a group of Lie
type with cyclic Sylow pi-subgroup cannot have a diagonal automorphism of
order pi.

Hence, all the subgroups Ci are contained in E(G)CG(E(G)) and, since they
generate G, we obtain that G = E(G)CG(E(G)).

Now if F (G) = 1, then F ∗(G) = E(G) and hence CG(E(G)) = CG(F ∗(G)) =
Z(E(G)) = 1 and the claim is proved. So suppose that F (G) 6= 1. Then,
since F (G) is a π-group, there is at least one subgroup Ci that is contained in
E(G)F (G). Hence there is a subgroup T1 of E(G) with order pi and a subgroup
T2 of F (G) with order pi such that Ci ≤ T1T2. Since F (G) is cyclic, T2 is
normal in G and so CG(E(G)) ≤ NG(T1T2). But NG(T1T2) has an abelian
normal subgroup of index a divisor of 4, so CG(E(G)) is solvable. This shows
that every Sylow p-subgroup of CG(E(G)) for p odd is contained in F (G), whence
it follows that G = E(G)F (G).

Claim 4. If no involution of G acts dihedrally on any Ci, then E(G) is simple,
and, for every i, pi divides the order of F (G) and a Sylow pi-subgroup of G
contains exactly two conjugates of Ci.

Suppose no involution of G acts dihedrally on any Ci. By Definition 5, it
follows that NG(Ci) = CG(Ci) for every i = 1, . . . ,m. Let Q be a component of
E(G) and suppose by contradiction that Q contains a Sylow pi-subgroup S of
rank two, for some i. Up to conjugation we can suppose that S contains Ci. By
Definition 5, NQ(S) contains with index at most two the abelian group CQ(Ci).
Since Q is simple, Burnside’s p-complement theorem (see [Su, Theorem 2.10
page 144]) yields that NQ(S) is not abelian. Therefore, NQ(S) contains with
index two NQ(Ci) and the elements of NQ(S) \NQ(Ci) conjugate Ci to a cyclic
subgroup distinct from Ci. By using [Su, Exercise 1, page 161] and the fact that
Q is perfect we get again a contradiction. Hence, for every i ∈ {1, . . . ,m}, the
Sylow pi-subgroups of Q are cyclic. Now, as above for every Sylow subgroup S
of Q we have NQ(S) 6= CQ(S). Since NG(Ci) = CG(Ci) for every i = 1, . . . ,m,
that implies that the Sylow pi-subgroups of G are not cyclic and hence pi divides
the order of F (G) for every i.

To bound above the number of conjugacy classes of hyperelliptic rotations,
our strategy will consist of conjugating hyperelliptic rotations in solvable sub-
groups of G, where they are forced to commute, hence, in analogy with the
standard definition of normal covers, we introduce the notion of solvable nor-
mal π-cover and we prove the following lemma.

Definition 6. Let G be a finite group. Let π be a set of primes dividing
|G|. We will call a collection C of subgroups of G a solvable normal π-cover
of G if every element of G of prime order p belonging to π is contained in an
element of C and for every g ∈ G, H ∈ C we have that Hg ∈ C. We denote
by γsπ(G) the smallest number of conjugacy classes of subgroups in a solvable
normal π-cover of G. Here, the letter “s” stands for “solvable”, and is used to
distinguish this number from γ(G), that is the standard notation in the case
of covers by subgroups that are not requested to be solvable. Note that, since
Sylow subgroups are clearly solvable, γsπ(G) ≤ |π|.

Proposition 4. Let G be a finite nonabelian simple group. If π is the set of odd
primes p such that G has cyclic Sylow p-subgroup, the centraliser of CG(g) is
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abelian for every element g ∈ G of order p and the normaliser of any subgroup
of order p contains with index at most two its centraliser, then γsπ(G) ≤ 4.

Proof.

If G is a sporadic group, the primes dividing the order of the group do not
satisfy the condition on the normaliser.

If G is isomorphic to the alternating group An and p ∈ π, then the condition
on the centraliser of the elements of order p implies that p > n−4 and γsπ(G) ≤
|π| ≤ 2.

The only remaining case is that of groups of Lie type.
Let G ∼= Σn(q) or G ∼= dΣn(q), where q is a power of a prime t. Here we

use the same notation as in [GLS]: the symbol Σ(q) (resp. dΣ(q)) may refer
to finite groups in different isomorphism classes, each of them is an untwisted
(resp. twisted) finite group of Lie type with root system Σ (see [GLS, Remark
2.2.5]). Any finite group of Lie type is quasisimple with the exception of the fol-
lowing groups: A1(2), A1(3),

2A2(2),
2B2(2), B2(2), G2(2),

2F4(2) and 2G2(3)
(see [GLS, Theorem 2.2.7]).

If t ∈ π, then by [GLS, Theorem 3.3.3], either t = 3 and G ∼= (2G2(3))
′ or

G ∼= A1(s). In the former case the order of 2G2(3)
′ is divided only by two odd

primes, thus γsπ(G) ≤ 2; in the latter case we have γsπ(G) ≤ 2 (see for example
[H]).

Assume now that t 6∈ π. By [GLS, Paragraph 4.10], since the Sylow sub-
groups are cyclic, every element of order p ∈ π is contained in a maximal torus
of G, and clearly a maximal torus is abelian.

Therefore, we need only to bound the number of conjugacy classes of cyclic
maximal tori in G with abelian centraliser. Note that the number of conjugacy
classes of maximal tori in G is bounded by the number of different cyclotomic
polynomials evaluated in q appearing as factors of |G|. Moreover the power of
a cyclotomic polynomial in the order of G gives the rank of the corresponding
maximal torus (except possibly when the prime divides the order of the centre
but in this case the Sylow subgroup is not cyclic, see [A, (33.14)])

Recall Σ is the root system associated to G as in [GLS, 2.3.1]; let Π =
{α1, . . . , αn} be a fundamental system for Σ as in Table 1.8 in [GLS], α∗ be
the lowest root relative to Π as defined in [GLS, Paragraph 1.8] and set Π∗ =
Π ∪ {α∗}. We recall that |G| can be deduced from [GLS, Table 2.2] and the
Dynkin diagrams can be found in [GLS, Table 1.8]. Observe that, by [GLS,
Proposition 2.6.2], if Σ0 is a root subsystem of Σ, then G contains a subsystem
subgroup H, which is a central product of groups of Lie type corresponding
to the irreducible constituents of Σ0. In order to prove the lemma, we shall
show that for every group G and for every element g of order a prime r lying in
a maximal torus belonging to any but four conjugacy classes of maximal tori,
either the Sylow r-subgroup is not cyclic or we find a subsystem subgroup H
that is a central product of two groups H1 and H2 such that H1 contains g and
H2 is not abelian. Note that for every prime power q, A1(q) is a non-abelian
group (see [GLS, Theorem 2.2.7]).

We treat the case G ∼= An(q) in detail as an example. All other cases can be
dealt similarly. Assume G ∼= An(q). Let m be the minimum index i such that r
divides qi+1−1 and let Σ0 be generated by Π∗\{α1, αn}. Then the corresponding
subsystem subgroup is H = H1 · H2, where H1

∼= An−2(q) and H2
∼= A1(q).

Thus if m ≤ n−1, then H1 contains an element g of order r and CG(g) contains
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H2 which is not abelian. Therefore, since g has an abelian centraliser, r may
divide only (qn − 1)(qn+1 − 1), that is r divides Φn(q)Φn+1(q). Hence we have
at most two conjugacy classes of maximal tori with abelian centraliser.

5 Proof of Theorem 2

Let G be a finite group of orientation preserving diffeomorphisms ofM , a closed
orientable connected 3-manifold which is not homeomorphicto S3.

As noted in Section 2, there at most nine conjugacy classes of cyclic sub-
groups generated by a hyperelliptic rotation of order 2n, so we concentrate on
hyperelliptic subgroups whose order is not a power of two and we will prove
that there are at most six conjugacy classes of such subgroups.

Let S = {C1, . . . , Cm} be the set of cyclic subgroups of odd prime orders that
are generated by powers of the hyperelliptic rotations of G. We recall that the
conjugate of a power of a hyperelliptic rotation is the power of a hyperelliptic
rotation too. By Remark 3 and Corollary 4, S is an algebraically hyperelliptic
collection, and actually the definition of an algebraically hyperelliptic collection
was chosen precisely to capture the behaviour of cyclic subgroups of odd prime
orders generated by powers of the hyperelliptic rotations. For i ∈ {1, . . . ,m},
let pi be the prime order of Ci and π be the set including every pi. We denote by
G0 the subgroup generated by the subgroups Ci. Let A be the maximal normal
solvable subgroup of G0 of order coprime with all pi. We denote by G0 the
quotient group G0/A and by Ci the projection of Ci to G0.

Case 1. If G0 is solvable, we are in the hypotheses of Lemma 3 which
affirms that up to conjugacy the hyperelliptic rotations of G commute. Since
they commute we can apply Lemma 2 and conclude that there are at most three
conjugacy classes of subgroups generated by hyperelliptic rotations of order not
a power of two.

Even if its proof is easier than that of the remaining situations, the solvable
case is interesting in its own right, in particular for it plays an important role
also in the proof of Theorem 3. We then summarise the conclusions in the
following proposition.

Proposition 5. Let M be a closed 3-manifold not homeomorphic to S3. Let
G be a finite group of orientation preserving diffeomorphisms of M . If G is
solvable, it contains at most three conjugacy classes of hyperelliptic subgroups of
order not a power of two, and any two such subgroups commute up to conjugacy.
Moreover, if there are three conjugacy classes, then their orders must be pairwise
coprime.

Case 2. Suppose G0 is not solvable and it has no rotation of order 2 outside
A. Then, because of the structure of the normaliser of a hyperelliptic rotation
as described in Remark 3, G0 has no involution acting dihedrally on any Ci and
by Part 3 of Theorem 4 describing the structure of G0, E(G0) is simple and,
for each pi, any Sylow pi-subgroup contains exactly two distinct conjugates of
C̄i. By Remark 3 every hyperelliptic rotation commuting with one of these
two subgroups of order pi commutes also with the other one. From this fact,
Lemma 3, and Lemma 2, it follows that γsπ(G0) bounds from above the number
of conjugacy classes of hyperelliptic subgroups of order not a power of two (see

16



also Proposition 5). It is easy to see that γsπ(G0) ≤ γsπ(E(G0)). By Proposition 4
we have γsπ(E(G0)) ≤ 4 and so we get the thesis in this case.

Case 3. Suppose G0 is not solvable and it has a rotation of order 2 not
contained in A. The groups containing a rotation of order two are studied in
[Mec2] where the following result was proved.

Theorem 5. [Mec2] Let D be a finite group of orientation-preserving diffeo-
morphisms of a closed orientable 3-manifold. Let O be the maximal normal
subgroup of odd order and E(D̃) be the layer of D̃ = D/O. Suppose that D
contains an involution which is a rotation.

1. If E(D̃) is trivial, there exists a normal subgroup H of D such that H is
solvable and D/H is isomorphic to a subgroup of A8, the alternating group
on 8 letters.

2. If the semisimple group E(D̃) is not trivial, it has at most two components
and the factor group of D̃/E(D̃) is solvable.

Moreover if D contains a rotation of order 2 such that its projection is contained
in E(D̃), then E(D̃) is isomorphic to one of the following groups:

PSL2(q), SL2(q)×Z/2 SL2(q
′)

where q and q′ are odd prime powers greater than 4.

Applying Theorem 5 and Theorem 4 to G0, we get that E(G0) is isomorphic
either to a subgroup of A8, or to PSL2(q), or to PSL2(q) × PSL2(q

′). In the
first case, there are at most three odd primes dividing the order of E(G0) and
the thesis follows again from Lemma 2 and Lemma 3.

In the remaining cases, we will use a solvable normal π-cover to bound
the number of conjugacy classes. We have that γsπ(PSL2(q)) ≤ 2. In fact the
upper triangular matrices form a solvable subgroup of SL2(q) of order (q −
1)q, moreover SL2(q) contains a cyclic subgroup of order q + 1 (see [H]). The
conjugates of the projections of these two subgroups to PSL2(q) give a solvable
normal π-cover of PSL2(q). It is again easy to see that, if E(G0) is isomorphic
to PSL2(q), then γ

s
π(G) ≤ 2. As above, by Lemma 3 and Lemma 2, we get a

bound of six in this case.
Finally, if E(G) is isomorphic to PSL2(q)× PSL2(q

′), then it follows from
the discussion above that γsπ(E(G0)) ≤ 4, and hence γsπ(G0) ≤ 4. Now, by Part
1 of Theorem 4, for each pi ∈ π, pi divides the order of both PSL2(q) and
PSL2(q

′), so that the Sylow pi-subgroup of G0 has rank 2. For each Sylow
pi-subgroup Si, one can find in E(G0) elements of the group which normalise
Si but do not act in the same way on all of its elements. Indeed, let H be a
cyclic subgroup of order pi in PSL2(q). If pi does not divide q, then there is
an element of order 2 in PSL2(q) which acts dihedrally on H but commutes
with all elements of order p in PSL2(q

′). If pi divides q, then q = pi since
the Sylow pi-subgroup of the component must be cyclic. Since q > 3, we have
again elements in PSL2(q) that normalise the Sylow p-subgroup but do not
centralise it (note that in this case the structure of the normaliser is compatible
with the description given in Remark 3 only if p = q = 5). We now deduce from
Remark 7 and Corollary 3 that Si contains two subgroups conjugate to Ci.
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Reasoning as in Case 2 we get that γsπ(G0) bounds from above the number
of conjugacy classes of hyperelliptic subgroups of order not a power of two. This
concludes the proof.

Remark 9. We wish to stress that the three cases that appear in the proof of
Theorem 2 correspond to different types of symmetries possessed by the knots
that are branched covered by the manifold. Let M be a closed, connected,
oriented 3-manifold and let G a finite group of diffeomorphisms of M generated
by a set {ψ1, . . . , ψk} of hyperelliptic rotations. Denote by Ki the quotient
knot Fix(ψi)/ψi, i = 1, . . . , k. If there exists a Ki which is neither strongly
invertible nor self-symmetric with respect to G, then we are in Case 1, that is,
the hyperelliptic rotations commute up to conugacy (see [Su, Thm 2.10, page
144]). If there is a Ki which is strongly invertible with respect to G, then G
contains a rotation of order 2 and we are in Case 3. Otherwise, every Ki is
self-symmetric with respect to G but not strongly invertible with respect to G,
and we are in Case 2.

The proof of Theorem 2 shows that topology and geometry can impose extra
constraints on the conditions that can be derived by the algebra alone. In this
spirit, note that ifM is a (closed, connected, oriented) reducible 3-manifold and
G a finite group of diffeomorphisms of M generated by hyperelliptic rotations,
then, by the equivariant sphere theorem, G is isomorphic to a finite subgroup of
SO(3), that is cyclic, dihedral or a spherical triangular group. It follows readily,
that, up to conjugacy, at most three cyclic hyperelliptic subgroups can be con-
tained in any such G. We know, however, that the group of diffeomorphisms of
a reducible 3-manifolds can admit arbitrarily many conjugacy classes of cyclic
hyperelliptic subgroups.

The main point here is that, generically, one expects that two hyperelliptic
rotations in the group Diff+(M) generate an infinite subgroup. As a con-
sequence, Theorem 2 cannot be directly exploited to obtain bounds for non-
hyperbolic manifolds and new strategies must be developped, as we will see in
the next section.

6 Proof of Theorem 3

The statement of Theorem 3 is equivalent to the following:

Theorem 6. Let M be a closed, orientable, connected, irreducible 3-manifold
which is not homeomorphic to S3, then the group Diff+(M) of orientation
preserving diffeomorphisms of M contains at most six conjugacy classes of hy-
perelliptic subgroups of odd prime order.

6.1 Proof of Theorem 6 for Seifert manifolds

In this section we prove Proposition 6 which implies Theorem 6 for closed Seifert
fibred 3-manifolds. We also show that the assumption that the hyperelliptic
rotations have odd prime orders cannot be avoided in general by exhibiting
examples of closed Seifert fibred 3-manifolds M such that Diff+(M) contains
an arbitrarily large number of conjugacy classes of hyperelliptic subgroups of
odd, but not prime, orders.
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Proposition 6. Let M be a closed Seifert fibred 3-manifold which is not home-
omorphic to S3. Then the group Diff+(M) of orientation preserving diffeo-
morphisms of M contains at most one conjugacy class of hyperelliptic subgroups
of odd prime order except if M is a Brieskorn integral homology sphere with 3
exceptional fibres. In this latter case Diff+(M) contains at most three non
conjugate hyperelliptic subgroups of odd prime orders.

Proof.

By hypothesis M is a cyclic cover of S3 branched over a knot, so it is ori-
entable and a rational homology sphere by Remark 2. Notably, M cannot be
S1 × S2 nor a Euclidean manifold, except for the Hantzsche-Wendt manifold,
see [Or, Chap. 8.2]. In particular, since M is prime it is also irreducible.

Consider a hyperelliptic rotation ψ on M of odd prime order p and let K be
the image of Fix(ψ) in the quotient S3 = M/ψ by the action of ψ. The knot
K must be hyperbolic or a torus knot, otherwise its exterior would be toroidal
and have a non-trivial JSJ-collection of essential tori which would lift to a non-
trivial JSJ-collection of tori for M , since the order of ψ is p > 2 (see [JS, J] and
[BS]). By the orbifold theorem (see [BoP], [CHK]), the cyclic branched cover
with order p ≥ 3 of a hyperbolic knot is hyperbolic, with a single exception
for p = 3 when K is the the figure-eight knot and M is the Hantzsche-Wendt
Euclidean manifold. But then, by the orbifold theorem and the classification of
3-dimensional christallographic groups, ψ generates the unique, up to conjugacy,
Euclidean hyperelliptic cyclic subgroup of Diff+(M), see for example [Dun],
[Z1].

So we can assume that M is the p-fold cyclic cover of S3 branched along a
non-trivial torus knot K of type (a, b), where a > 1 and b > 1 are coprime inte-
gers. Then M is a Brieskorn-Pham manifold M = V (p, a, b) = {zp + xa + yb =
0 with (z, x, y) ∈ C3 and |z|2 + |x|2 + |y|2 = 1}. A simple computation shows
that M admits a Seifert fibration with 3, p or p+ 1 exceptional fibres and base
space S2, see [Ko, Lem. 2], or [BoPa, Lemma 6 and proof of Lemma 7]. In
particular M has a unique Seifert fibration, up to isotopy: by [Wa], [Sco] and
[BOt] the only possible exception with base S2 and at least 3 exceptional fibres
is the double of a twisted I-bundle, which is not a rational homology sphere,
since it fibers over the circle. We distinguish now two cases:

Case 1: The integers a and b are coprime with p, and there are three singular
fibres of pairwise relatively prime orders a, b and p. By the orbifold theorem
any hyperelliptic rotation of M of order > 2 is conjugate into the circle action
S1 ⊂ Diff+(M) inducing the Seifert fibration, hence the uniqueness of the
Seifert fibration, up to isotopy, implies that M admits at most 3 non conjugate
hyperelliptic groups of odd prime orders belonging to {a, b, p}. Indeed M is a
Brieskorn integral homology sphere, see [BPZ].

Case 2: Either a = p and M has p singular fibres of order b, or a = a′p with
a′ > 1, and M has p singular fibres of order b and one extra singular fibre of
order a′. In both situations, there are p ≥ 3 exceptional fibres of order b which
are cyclically permuted by the hyperelliptic rotation ψ. As before, M has a
unique Seifert fibration, up to isotopy. Therefore, up to conjugacy, ψ is the only
hyperelliptic rotation of order p on M , and by the discussion above M cannot
admit a hyperelliptic rotation of odd prime order q 6= p.
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Remark 10. The requirement that the rotations are hyperelliptic is essential in
the proof of Proposition 6. The Brieskorn homology sphere Σ(p1, . . . , pn), n ≥
4, with n ≥ 4 exceptional fibres admits n rotations of pairwise distinct prime
orders but which are not hyperelliptic.

The hypothesis that the orders of the hyperelliptic rotations are 6= 2 cannot
be avoided either.

Indeed, Montesinos’s construction of fibre preserving hyperelliptic involu-
tions on Seifert fibered rational homology spheres [Mon1], [Mon2], (see also
[BS, Appendix A], [BZH, Chapter 12]), shows that for any given integer n there
are infinitely many closed orientable Seifert fibred 3-manifolds with at least n
conjugacy classes of hyperelliptic rotations of order 2.

On the other hand, the hypothesis that the orders are odd primes is sufficient
but not necessary: A careful analysis of the Seifert invariants shows that if
M 6= S3 is a Seifert rational homology sphere, thenM can be the cyclic branched
cover of a knot in S3 of order > 2 in at most three ways.

The hypotheses of Proposition 6 cannot be relaxed further, though: Propo-
sition 7 below shows that there exist closed 3-dimensional circle bundles with
arbitrarily many conjugacy classes of hyperelliptic rotations of odd, but not
prime, orders.

Proposition 7. Let N be an odd prime integer. For any integer 1 ≤ q < N
2

the Brieskorn-Pham manifold M = V ((2q + 1)(2(N−q) + 1), 2q + 1, 2(N−q) + 1)
is a circle bundle over a closed surface of genus g = 2N−1 with Euler class ±1.
Hence, up to homeomorphism (possibly reversing the orientation), M depends
only on the integer N and admits at least N−1

2 conjugacy classes of hyperelliptic
groups of odd orders.

Proof. We remark first that the integers q and N − q are relatively prime,
because N is prime. If k is a common prime divisor of 2q +1 and 2(N−q)+1, by
the Bezout identity we have 21 = 2aq+b(N−q) ≡ (−1)a+b mod k which implies
that k = 3. But then (−1)q ≡ (−1)(N−q) ≡ −1 mod 3 and thus (−1)N ≡ 1
mod 3 which is impossible since N is odd. Hence 2q + 1 and 2(N−q) + 1 are
relatively prime.

So the Brieskorn-Pham manifold M is the (2q + 1)(2(N−q) + 1)-fold cyclic
cover of S3 branched over the torus knot Kq = T (2q + 1, 2(N−q) + 1). It is
obtained by Dehn filling the (2q+1)(2(N−q)+1)-fold cyclic cover of the exterior
of the torus knot Kq along the lift of its meridian. The (2q +1)(2(N−q)+1)-fold
cyclic cover of the exterior of Kq is a trivial circle bundle over a once punctured
surface of genus g = 2N − 1. On the boundary of the torus-knot exterior the
algebraic intersection between a meridian and a fibre of the Seifert fibration of
the exterior is ±1 (the sign depends on a choice of orientation, see for example
[BZH, Chapter 3]). So on the torus boundary of the (2q + 1)(2(N−q) + 1)-fold
cyclic cover the algebraic intersection between the lift of a meridian of the torus
knot and an S1-fiber is again ±1. Hence the circle bundle structure of the
(2q +1)(2(N−q)+1)-fold cyclic cover of the exterior of the torus knot Kq can be
extended with Euler class ±1 to the Dehn filling along the lift of the meridian.
So M is a circle bundle over a closed surface of genus g = 2N−1 with Euler class
±1.

Since the torus knots Kq = T (2q+1, 2(N−q)+1) are pairwise inequivalent for
1 ≤ q ≤ N−1

2 , the hyperelliptic subgroups corresponding to the (2q+1)(2(N−q)+
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1)-fold cyclic branched covers of the knots Kq are pairwise not conjugate in
Diff+(M).

Remark 11. Note that the Seifert manifoldsM and their hyperelliptic rotations
constructed in Proposition 7 enjoy the following properties: If N > 8, then no
hyperelliptic rotation can commute up to conjugacy with all the remaining ones
(see Proposition 5 and [BoPa, Theorem 2]). If N > 14 no finite subgroup
of Diff+(M) can contain up to conjugacy all hyperelliptic rotations of M ,
according to Theorem 2.

6.2 Reduction to the finite group action case

The fact that Theorem 6 implies Corollary 1 follows from the existence of a de-
composition of a closed, orientable 3-manifold M as a connected sum of prime
manifolds and the observation that a hyperelliptic rotation on M induces a hy-
perelliptic rotation on each of its prime summands. A 3-manifold admitting
a hypereliptic rotation must be a rational homology sphere, and so M cannot
have S2×S1 summands. Hence all prime summands are irreducible and at least
one is not homeomorphic to S3, since M itself is not homeomorphic to S3. This
is enough to conclude.

The remaining of this section is devoted to the proof that Theorem 2 implies
Theorem 6.

We prove the following proposition:

Proposition 8. If M is a closed, orientable, irreducible 3-manifold such that
there are k ≥ 7 conjugacy classes of hyperelliptic subgroups of Diff+(M) whose
order is an odd prime, then M is homeomorphic to S3.

Proof.

Let M be a closed, orientable, irreducible 3-manifold such that Diff+(M)
contains k ≥ 7 conjugacy classes of hyperelliptic subgroups of odd prime orders.

According to the orbifold theorem (see [BoP], [BMP], [CHK]), a closed ori-
entable irreducible manifold M admitting a rotation has geometric decomposi-
tion. This means that M can be split along a (possibly empty) finite collection
of π1-injective embedded tori into submanifolds carrying either a hyperbolic or
a Seifert fibered structure. This splitting along tori is unique up to isotopy and
is called the JSJ-decomposition of M , see for example [NS], [BMP, chapter 3].
In particular, if its JSJ-decomposition is trivial, M admits either a hyperbolic
or a Seifert fibred structure.

First we see that M cannot be hyperbolic. Indeed, if the manifold M is
hyperbolic then, by the orbifold theorem, any hyperelliptic rotation is conju-
gate into the finite group Isom+(M) of orientation preserving isometries of M .
Hence, applying Theorem 2 to G = Isom+(M), we see that k ≤ 6 against the
hypothesis.

If the manifold M is Seifert fibred, it follows readily from Proposition 6 of
the previous section that M = S3. So we are left to exclude the case where the
JSJ-decomposition of M is not empty.

Consider the JSJ-decomposition of M : each geometric piece admits either
a complete hyperbolic structure with finite volume or a Seifert fibred product
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structure with orientable base. Moreover, the geometry of each piece is unique,
up to isotopy.

Let Ψ = {ψ1, . . . , ψk, k ≥ 7} be the set of hyperelliptic rotations which
generate non conjugate cyclic subgroups inDiff+(M). By the orbifold theorem
[BoP], [BMP], [CHK], after conjugacy, one can assume that each hyperelliptic
rotation preserves the JSJ-decomposition, acts isometrically on the hyperbolic
pieces, and respects the product structure on the Seifert pieces. We say that
they are geometric.

Let Γ be the dual graph of the JSJ-decomposition: it is a tree, for M is a
rational homology sphere (in fact, the dual graph of the JSJ-decomposition for a
manifold which is the cyclic branched cover of a knot is always a tree, regardless
of the order of the covering). Let H ⊂ Diff+(M) be the group of diffeomor-
phisms of M generated by the set Ψ of geometric hyperelliptic rotations. By
[BoPa, Thm 1], there is a subset Ψ0 ⊂ Ψ of k0 ≥ 4 hyperelliptic rotations with
pairwise distinct odd prime orders, say Ψ0 = {ψi, i = 1, . . . , k0}.

LetHΓ denote the image of the induced representation ofH in Aut(Γ). Since
rotations of finite odd order cannot induce an inversion on any edge of Γ, the
finite group HΓ must fix pointwise a non-empty subtree Γf of Γ.

The idea of the proof is now analogous to the ones in [BoPa] and [BPZ]: we
start by showing that, up to conjugacy, the k0 ≥ 4 hyperelliptic rotations with
pairwise distinct odd prime orders can be chosen to commute on the submani-
fold Mf of M corresponding to the subtree Γf . We consider then the maximal
subtree corresponding to a submanifold of M on which these hyperelliptic rota-
tions commute up to conjugacy and prove that such subtree is in fact Γ. Then
the conclusion follows by applying Lemma 2.

The first step of the proof is achieved by the following proposition:

Proposition 9. The hyperelliptic rotations in Ψ0 commute, up to conjugacy in
Diff+(M), on the submanifold Mf of M corresponding to the subtree Γf .

Proof.

Since the hyperelliptic rotations in Φ have odd orders, either Γf contains an
edge, or it consists of a single vertex. We shall analyse these two cases.

Case 1: Mf contains an edge.

Claim 5. Assume that Γf contains an edge and let T denote the corresponding
torus. The hyperelliptic rotations in Ψ0 commute, up to conjugacy in Diff+(M),
on the geometric pieces of M adjacent to T .

Proof.

The geometric pieces adjacent to T are left invariant by the hyperelliptic
rotations in Ψ0, since their orders are odd. Let V denote one of the two adjacent
geometric pieces: each hyperelliptic rotation acts non-trivially on V with odd
prime order. We distinguish two cases according to the geometry of V .
V is hyperbolic. In this case all rotations act as isometries and leave a cusp
invariant. Since their order is odd, the rotations must act as translations along
horospheres, and thus commute.

Note that, even in the case where a rotation has order 3, its axis cannot
meet a torus of the JSJ-decomposition of M for each such torus is separating
and cannot meet the axis in an odd number of points.
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V is Seifert fibred. In this case we can assume that the hyperelliptic rotations
in Ψ preserve the Seifert fibration with orientable base. Since their orders are
odd and prime, each one preserves the orientation of the fibres and of the base.
The conjugacy class of a fiber-preserving rotation of V with odd prime order
depends only on its combinatorial behaviour, i.e. its translation action along the
fibre and the induced permutation on cone points and boundary components of
the base. In particular, two geometric rotations with odd prime order having
the same combinatorial data are conjugate via a diffeomorphism isotopic to the
identity.

Since the hyperelliptic rotations in Ψ0 have pairwise distinct odd prime
orders, an analysis of the different cases described in Lemma 4 below shows that
at most one among these hyperelliptic rotations can induce a non-trivial action
on the base of the fibration, and thus the remaining ones act by translation
along the fibres and induce the identity on the base. Since the translation
along the fibres commutes with every fiber-preserving diffeomorphism of V , the
hyperelliptic rotations in Ψ0 commute on V .

Lemma 4 describes the Seifert fibred pieces of a manifold admitting a hy-
perelliptic rotation of odd prime order, as well as the action of the rotation on
the pieces. Its proof can be found in [BoPa, Lemma 6 and proof of Lemma 7],
see also [Ko, Lem. 2].

Lemma 4. Let M be an irreducible 3-manifold admitting a non-trivial JSJ-
decomposition. Assume that M admits a hyperelliptic rotation of prime odd
order p. Let V be a Seifert piece of the JSJ-decomposition for M . Then the
base B of V can be:

1. A disc with 2 cone points. In this case either the rotation freely permutes p
copies of V or leaves V invariant and acts by translating along the fibres.

2. A disc with p cone points. In this case the rotation leaves V invariant
and cyclically permutes the singular fibres, while leaving a regular one
invariant.

3. A disc with p+1 cone points. In this case the rotation leaves V and a sin-
gular fibre invariant, while cyclically permuting the remaining p singular
fibres.

4. An annulus with 1 cone point. In this case either the rotation freely per-
mutes p copies of V or leaves V invariant and acts by translating along
the fibres.

5. An annulus with p cone points. In this case the rotation leaves V invariant
and cyclically permutes the p singular fibres.

6. A disc with p−1 holes and 1 cone point. In this case the rotation leaves V
invariant and cyclically permutes all p boundary components, while leaving
invariant the only singular fibre and a regular one.

7. A disc with k holes, k ≥ 2. In this case either the rotation freely permutes
p copies of V or leaves V invariant. In this latter case either the rotation
acts by translating along the fibres, or k = p−1 and the rotation permutes
all the boundary components (while leaving invariant two fibres), or k = p
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and the rotation permutes p boundary components, while leaving invariant
the remaining one and a regular fibre.

We conclude that the rotations in Ψ0 can be chosen to commute on the
submanifold Mf of M corresponding to Γf by using inductively at each edge of
Γf the gluing lemma below (see [Lemma 6][BPZ]). We give the proof for the
sake of completeness.

Lemma 5. If the rotations preserve a JSJ-torus T then they commute on the
union of the two geometric pieces adjacent to T .

Proof.

Let V and W be the two geometric pieces adjacent to T . By Claim 5, after
conjugacy in Diff+(M), the rotations in Ψ0 commute on V and W . Since
they have pairwise distinct odd prime orders, their restrictions on V and W
generate two cyclic groups of the same finite odd order. Let gV and gW be
generators of these two cyclic groups. Since they have odd order, they both act
by translation on T . We need the following result about the slope of translation
for such periodic transformation of the torus:

Claim 6. Let ψ be a periodic diffeomorphism of the product T 2 × [0, 1] which
is isotopic to the identity and whose restriction to each boundary torus T ×{i},
i = 0, 1, is a translation with rational slopes α0 and α1 in H1(T

2;Z). Then
α0 = α1.

Proof.

By Meeks and Scott [MS, Thm 8.1], see also [BS, Prop. 12], there is a
Euclidean product structure on T 2 × [0, 1] preserved by ψ such that ψ acts by
translation on each fiber T × {t} with rational slope αt. By continuity, the
rational slopes αt are constant.

Now the the following claim shows that the actions of gW and gV can be
glued on T .

Claim 7. The translations gV |T and gW |T have the same slope in H1(T
2;Z).

Proof.

Let Ψ0 = {ψi, i = 1, . . . , k0}. Let pi the order of ψi and qi = Πj 6=ipj . Then
the slopes αV and αW of gV |T and gW |T verify: qiαV = qiαW for i = 1, ..., k0,
by applying Claim 6 to each ψi. Since the GCD of the qi is 1, it follows that
αV = αW .

This finishes the proof of Lemma 5 and of Proposition 9 when Mf contains
an edge.

To complete the proof of Proposition 9 it remains to consider the case where
Γf is a single vertex.

Case 2: Mf is a vertex.

Claim 8. Assume that Γf consists of a single vertex and let V denote the
corresponding geometric piece. Then the hyperelliptic rotations in Ψ0 commute
on V , up to conjugacy in Diff+(M).
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Proof.

We consider again two cases according to the geometry of V .
The case where V is Seifert fibred follows once more from Lemma 4.
We consider now the case where V is hyperbolic.
In this case, the hyperelliptic rotations in Ψ act non-trivially on V by isome-

tries of odd prime orders. The restriction H|V ⊂ Isom+(V ) of the action of the
subgroup H that they generate in Diff+(M) is finite.

If the action on V of the cyclic subgroups generated by two of the hyper-
elliptic rotations in Ψ are conjugate in H|V , one can conjugate the actions in
Diff+(M) to coincide on V , since any diffeomorphism in H|V extends to M .
Then by [BoPa, Lemma 10] these actions must coincide onM , contradicting the
hypothesis that the conjugacy classes of cyclic subgroups generated by the hy-
perelliptic rotations in Ψ are pairwise distinct in Diff+(M). Hence, the cyclic
subgroup generated by the k ≥ 7 hyperelliptic rotations in Ψ are pairwise not
conjugate in the finite group H|V ⊂ Isom+(V ).

Since the dual graph of the JSJ-decomposition of M is a tree, a boundary
torus T ⊂ ∂V is separating and bounds a component UT of M \ int(V ). Since,
by hypothesis, Γf consists of a single vertex, no boundary component T is
setwise fixed by the finite group H|V . This means that there is a hyperelliptic
rotation ψi ∈ Ψ of odd prime order pi such that the orbit of UT under ψi is the
disjoint union of pi copies of UT . In particular UT projects homeomorphically
onto a knot exterior in the quotient S3 = M/ψi. Therefore on each boundary
torus T = ∂UT ⊂ ∂V , there is a simple closed curve λT , unique up to isotopy,
that bounds a properly embedded incompressible and ∂-incompressible Seifert
surface ST in the knot exterior UT .

By pinching the surface ST onto a disc D2, in each component UT of M \
int(V ), one defines a degree-one map π : M −→ M ′, where M ′ is the rational
homology sphere obtained by Dehn filling each boundary torus T ⊂ V along
the curve λT .

For each hyperelliptic rotation ψi in Ψ, of odd prime order pi, the ψi-orbit
of each component UT of M \ int(V ) consists of either one or pi elements. As a
consequence, by [Sa], ψi acts equivariantly on the set of isotopy classes of curves
λT ⊂ ∂V . Hence, each ψi extends to periodic diffeomorphism ψ′

i of order pi on
M ′. Moreover, M ′ is a Z/pi-homology sphere, since so is M and π :M −→M ′

is a degree-one map. According to Smith theory, if Fix(ψ′) is non-empty on
M ′, then ψ′

i is a rotation on M ′. To see that Fix(ψ′) 6= ∅ on M ′ it suffices to
observe that either Fix(ψ) ⊂ V or ψi is a rotation of some UT ; in this latter
case, ψ′

i must have a fixed point on the disc D2 onto which the surface ST is
pinched. To show that ψ′

i is hyperelliptic it remains to show that the quotient
M ′/ψ′

i is homeomorphic to S3.
Since ψi acts equivariantly on the components UT of M \ int(V ) and on the

set of isotopy classes of curves λT ⊂ ∂V , the quotient S3 = M/ψi is obtained
from the compact 3-manifold V/ψi by gluing knot exteriors (maybe solid tori)
to its boundary components, in such a way that the boundaries of the Seifert
surfaces of the knot exteriors are glued to the curves λT /ψi ⊂ ∂V/ψi.

In the same way, the rotation ψ′
i acts equivariantly on the components M ′ \

int(V ) and on the set of isotopy classes of curves λT ⊂ ∂V . By construction,
these components are solid tori, and either the axis of the rotation is contained
in V or there exists a unique torus T ∈ ∂V such that the solid torus glued to
T to obtain M ′ contains the axis. In the latter case, by [EL, Cor. 2.2], the
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rotation ψ′
i preserves a meridian disc of this solid torus and its axis is a core

of WT . It follows that the images in the quotient M ′/ψ′
i of the the solid tori

glued to ∂V are again solid tori. Hence M ′/ψ′
i is obtained from S3 by replacing

each components of S3 \ V/ψi by a solid torus, in such way that boundaries
of meridian discs of the solid tori are glued to the curves λT /ψ

′
i ⊂ ∂V/ψ′

i. It
follows that M ′/ψ′

i is again S3.
So far we have constructed a closed orientable 3-manifold M ′ with a finite

subgroup of orientation preserving diffeomorphisms HV that contains at least
seven conjugacy classes of hyperelliptic subgroups of odd prime orders. Theo-
rem 2 implies that M ′ must be S3, and thus by the orbifold theorem [BLP] HV

is conjugate to a finite subgroup of SO(4). In particular the subgroup H0 ⊂ HV

generated by the subset Ψ0 of at least 4 hyperelliptic rotations with pairwise
distinct odd prime orders must be solvable. Therefore, by Proposition 5 the in-
duced rotations commute on M ′ and, by restriction, the hyperelliptic rotations
in Ψ0 commute on V .

In the final step of the proof we extend the commutativity on Mf to the
whole manifold M . The proof of this step is analogous to the one given in
[BPZ], since the proof there was not using the homology assumption. We give
the argument for the sake of completeness.

Proposition 10. The k0 ≥ 4 hyperelliptic rotations in Ψ0 commute, up to
conjugacy in Diff+(M), on M .

Proof.

Let Γc be the largest subtree of Γ containing Γf , such that, up to conjugacy
in Diff+(M), the rotations in Ψ0 commute on the corresponding invariant
submanifold Mc of M . We shall show that Γc = Γ. If this is not the case, we
can choose an edge contained in Γ corresponding to a boundary torus T of Mc.
Denote by UT the submanifold of M adjacent to T but not containing Mc and
by VT ⊂ UT the geometric piece adjacent to T .

Let H0 ⊂ Diff+(M) be the group of diffeomorphisms of M generated by
the set of geometric hyperelliptic rotations Ψ0 = {ψi, i = 1, . . . , k0}. Since the
rotations in Ψ0 commute on Mc and have pairwise distinct odd prime orders,
the restriction of H0 on on Mc is a cyclic group with order the product of the
orders of the rotations. Since Γf ⊂ Γc, the H0-orbit of T cannot be reduced to
only one element. Moreover each rotation ψ ∈ Ψ0 either fixes T or acts freely
on the orbit of T since its order is prime.

If no rotation in Ψ0 leaves T invariant, the H0-orbit of T contains as many
elements as the product of the orders of the rotations, for they commute onMc.
In particular, only the identity (which extends to U) stabilises a torus in the
H0-orbit of T . Note that all components of ∂Mc that are in the H0-orbit of T
bound a manifold homeomorphic to UT .

Since the rotation ψi acts freely on the H0-orbit of UT , UT is a knot exterior
in the quotient M/ψi = S3. Hence there is a well defined meridian-longitude
system on T = ∂UT and also on each torus of the H0-orbit of T . This set of
meridian-longitude systems is cyclically permuted by each ψi and thus equiv-
ariant under the action of H0.

Let Mc/H0 be the quotient of Mc by the induced cyclic action of H0 on Mc.
Then there is a unique boundary component T ′ ⊂ ∂(Mc/H0) which is the image
of theH0-orbit of T . We can glue a copy of the knot exterior UT toMc/H0 along
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T ′ by identifying the image of the meridian-longitude system on ∂UT with the
projection on T ′ of the equivariant meridian-longitude systems on the H0-orbit
of T . Denote by N the resulting manifold. For all i = 1, . . . , k0, consider the
cyclic (possibly branched) cover of N of order qi =

∏
j 6=i pj which is induced

by the cover πi : Mc/ψi −→ Mc/H0. This makes sense because π1(T
′) ⊂

πi∗(π1(Mc/ψi)). Call Ñi the total space of such covering. By construction it
follows that Ñi is the quotient (Mc ∪ H0 · UT )/ψi. This implies that the ψi’s
commute on Mc ∪H0 · UT contradicting the maximality of Γc.

We can thus assume that some rotations fix T and some do not. Since all
rotations commute on Mc and have pairwise distinct odd prime orders, we see
that the orbit of T consists of as many elements as the product of the orders
of the rotations which do not fix T and each element of the orbit is fixed by
the rotations which leave T invariant. The rotations which fix T commute on
the orbit of VT according to Claim 5 and Lemma 5, and form a cyclic group
generated by, say, γ. The argument for the previous case shows that the rota-
tions acting freely on the orbit of T commute on the orbit of UT and thus on
the orbit of VT , and form again a cyclic group generated by, say, η. To reach
a contradiction to the maximality of Mc, we shall show that γ, after perhaps
some conjugacy, commutes with η on the H0-orbit of VT , in other words that
γ and ηγη−1 coincide on H0 · VT . Since η acts freely and transitively on the
H0-orbit of VT there is a natural and well-defined way to identify each element
of the orbit H0 · VT to VT itself. Note that this is easily seen to be the case if
VT is hyperbolic: this follows from Claim 5 and Claim 6. We now consider the
case when VT is Seifert fibred.

Claim 9. Assume that VT is Seifert fibred and that the restriction of γ induces
a non-trivial action on the base of VT . Then γ induces a non-trivial action on
the base of each component of the H0-orbit of VT . Moreover, up to conjugacy
on H0 · VT \ VT by diffeomorphisms which are the identity on H0 · T and extend
to M , we can assume that the restrictions of γ to these components induce the
same permutation of their boundary components and the same action on their
bases.

Proof.

By hypothesis γ and ηγη−1 coincide on ∂Mc. The action of γ on the base of
VT is non-trivial if and only if its restriction to the boundary circle of the base
corresponding to the fibres of the torus T is non-trivial. Therefore the action of
γ is non-trivial on the base of each component of H0 · VT .

By Lemma 4 and taking into account the fact that VT is a geometric piece
in the JSJ-decomposition of the knot exterior UT , the only situation in which
the action of γ on the base of VT is non-trivial is when the base of VT consists of
a disc with p holes, where p is the order of one of the rotations that generate γ.
Moreover, the restriction of γ to the elements of H0 ·VT cyclically permutes their
boundary components which are not adjacent to Mc. Up to performing Dehn
twists, along vertical tori inside the components of H0 ·VT \VT , which permute
the boundary components, we can assume that the restriction of γ induces the
same cyclic permutations on the boundary components of each element of the
orbit H0 ·VT . We only need to check that Dehn twists permuting two boundary
components extend to the whole manifold M . This follows from the fact that
the manifolds adjacent to these components are all homeomorphic and that
Dehn twist act trivially on the homology of the boundary.
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Since the actions of the restrictions of γ on the bases of the elements of
H0 · VT are combinatorially equivalent, after perhaps a further conjugacy by an
isotopy, the different restrictions can be chosen to coincide on the bases.

By Claim 5 and Claim 9 we can now deduce that the restrictions of γ and
ηγη−1 to the H0-orbit of VT commute, up to conjugacy of γ which is the identity
on the H0-orbit of T . Since γ and ηγη−1 coincide on this H0-orbit of T , we can
conclude that they coincide on the H0-orbit of VT . This finishes the proof of
Proposition 10.

Since there are at least four hyperelliptic rotations with paiwise distinct
odd prime orders in Ψ0, Proposition 8 is consequence of Proposition 10 and
Proposition 1, like in the solvable case.

Remark 12. As we have seen, the strategy to prove that an irreducible manifold
M with non-trivial JSJ-decomposition cannot admit more than six conjugacy
classes of hyperelliptic subgroups of odd prime order inside Diff+(M) consists
in modifying by conjugacy any given set of hyperelliptic rotations so that the
new hyperelliptic rotations commute pairwise. Note that this strategy cannot
be carried out in general if the orders are not pairwise coprime (see, for instance,
[BoPa, Section 4.1] where the case of two hyperelliptic rotations of the same odd
prime order, generating non conjugate subgroups, is considered). Similarly, for
hyperelliptic rotations of arbitrary orders > 2 lack of commutativity might arise
on the Seifert fibred pieces of the decomposition, as it does for the Seifert fibred
manifolds constructed in Proposition 7.

7 Appendix: non-free finite group actions on ra-

tional homolgy spheres

In this section we will show that every finite group G admits a faithful action
by orientation preserving diffeomorphisms on some rational homology sphere so
that some elements of G have non-empty fixed-point sets.

Cooper and Long’s construction of G-actions on rational homolgy spheres in
[CL] consists in starting with a G-action on some 3-manifold and then modifying
the original manifold, notably by Dehn surgery, so that the new manifold inherits
a G-action but has “smaller” rational homology. Since their construction does
not require that the G-action is free, it can be used to prove the existence of
non-free G-actions. We will thus start by exhibiting non-free G-actions on some
3-manifold before pointing out what need to be taken into account in this setting
in order for Cooper and Long’s construction to work.

Since every (non-trivial) cyclic group acts as a group of rotations of S3, for
simplicity we will assume that G is a finite non-cyclic group.

Claim 10. Let G be a finite non-cyclic group. There is a closed, connected,
orientable 3-manifold M on which G acts faitfully, by orientation preserving
diffeomorphisms so that there are g ∈ G\{1} with the property that Fix(g) 6= ∅.

Proof.

Let k ≥ 2 and let {gi}1≤i≤k+1 be a system of generators for G satisfying the
following requirements:

• for all 1 ≤ i ≤ k + 1, the order of gi is ni ≥ 2;
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• gk+1 = g1g2 . . . gk.

Since G is not cyclic these conditions are not difficult to fulfill, and actually
they can be fulfilled even in the case when G is cyclic for an appropriate choice
of the set {gi}1≤i≤k+1.

Consider the free group of rank k that we wish to see as the fundamental
group of a (k+ 1)-punctured 2-sphere: each generator xi corresponds to a loop
around a puncture of the sphere so that a loop around the k + 1st puncture
corresponds to the element x1x2 . . . xk. Build an orbifold O by compactifying
the punctured-sphere with cone points so that the ith puncture becomes a cone
point of order ni. The resulting orbifold has (orbifold) fundamental group with
the following presentation:

〈x1, x2, . . . , xk, xk+1 | {xni

i }1≤i≤k+1, x1 . . . xkx
−1
k+1〉.

Clearly this group surjects onto G. Such surjection gives rise to an orbifold
covering Σ −→ O, where Σ is an orientable surface on which G acts in such a
way that each element gi has non-empty fixed-point set. One can consider the
3-manifold Σ × S1: the action of G on Σ extends to a product action of G on
Σ× S1 which is trivial on the S1 factor.

To be able to repeat Cooper and Long’s construction it is now easy to observe
that it is always possible to choose G-equivariant families of simple closed curves
in M so that they miss the fixed-point sets of elements of G and either their
homology classes generate H1(M ;Q) (so that the hypothesis of [CL, Lemma
2.3] are fulfilled when we choose X to be the exterior of such families) or the
family is the G-orbit of a representative of some prescribed homology class (as
in the proof of [CL, Proposition 2.5]).

Acknowledgement The authors are indebted to M. Broué for valuable dis-
cussions on the topics of the paper.
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