# Chern Simons theory and the volume of three-manifolds 

Derbez and Wang

November 4, 2012

## Volume of representations

Let $(G, X)$ be either the 3-dimensional hyperbolic geometry

$$
\left(\operatorname{PSL}(2 ; \mathbb{C}), \mathbf{H}^{3}\right)
$$

or the Seifert geometry

$$
\left(\operatorname{Iso}_{0}\left(\widetilde{\mathrm{SL}_{2}(\mathbb{R})}, \widetilde{\mathrm{SL}_{2}(\mathbb{R})}\right) \text { where } \mathrm{Iso}_{0} \widetilde{\mathrm{SL}_{2}(\mathbb{R})}=\mathbb{R} \times_{\mathbb{Z}} \widetilde{\mathrm{SL}_{2}(\mathbb{R})}\right.
$$

In either case denote by $\omega_{X}$ the $G$-invariant volume form on $X$.
Let $M$ be a closed, connected, oriented 3-manifold. For each $\rho: \pi_{1} M \rightarrow G$, there is a developing $\operatorname{map} D_{\rho}: \widetilde{M} \rightarrow X$ which is equivariant. Then a volume can be defined by

$$
\operatorname{vol}_{G}(M, \rho)=\left|\int_{M} D_{\rho}^{*} \omega_{X}\right|
$$

## Maximal volumes

According to Reznikov in case $G=\operatorname{PSL}(2 ; \mathbb{C})$ and Goldman-Brooks in case $G=\operatorname{Iso}_{0}\left(\underset{\operatorname{SL}_{2}(\mathbb{R})}{ }\right)$ the set

$$
\operatorname{vol}(M, G)=\left\{\operatorname{vol}_{G}(M, \rho), \rho: \pi_{1} M \rightarrow G\right\}
$$

is always finite. Therefore it makes sense to define the hyperbolic volume

$$
\operatorname{HV}(M)=\max \operatorname{vol}(M, \operatorname{PSL}(2 ; \mathbb{C}))
$$

and the Seifert volume

$$
\operatorname{SV}(M)=\max \operatorname{vol}\left(M, \operatorname{Iso}_{0} \widetilde{\mathrm{SL}_{2}(\mathbb{R})}\right)
$$

## Maximal volumes

The hyperbolic and Seifert volume satisfy the following functorial property: for any non-zero degree map $f: N \rightarrow M$ (and in particular for any finite covering)

$$
\operatorname{SV}(N) \geq|\operatorname{deg} f| \operatorname{SV}(M) \text { and } \operatorname{HV}(N) \geq|\operatorname{deg} f| \operatorname{HV}(M)
$$

It is unclear whether these inequalities turn to equalities in the case of finite covering maps.

## Volumes of geometric manifolds

Let $M$ be a closed oriented geometric 3-manifold.
Theorem (Reznikov)
If $M$ is hyperbolic then $\operatorname{HV}(M)$ is reached by the volume of a representation iff it is faithful and discrete and $\operatorname{HV}(M)$ is the volume of $M$ for the hyperbolic metric.
If $M$ is geometric but not hyperbolic then $\operatorname{HV}(M)=0$.
Theorem (Goldman-Brooks)
The same statement is true if $M$ is an $\widetilde{\mathrm{SL}_{2}(\mathbb{R}) \text {-manifold and }}$ $\operatorname{SV}(M)=4 \pi^{2} \frac{\chi^{2}\left(\mathcal{O}_{M}\right)}{\left|e\left(M \rightarrow \mathcal{O}_{M}\right)\right|}$.
If $M$ is geometric but neither hyperbolic nor $\widetilde{\mathrm{SL}_{2}(\mathbb{R})}$ then $\mathrm{SV}(M)=0$.

## Volumes of geometric manifolds

Describing the set $\operatorname{vol}(M, G)$ when $M$ is hyperbolic seems a very hard question. However when $M$ is a Seifert manifold this set can be made explicit, using the works of Goldman-Brooks and Eisendud-Hirsh-Neumann.
Suppose $M$ supports the $\widetilde{\mathrm{SL}_{2}(\mathbb{R}) \text {-geometry and that its base }}$ 2 -orbifold has a positive genus $g$. Then

$$
\operatorname{vol}\left(M, \operatorname{IsoSL}_{2}(\mathbb{R})\right)=\left\{\frac{4 \pi^{2}}{|e(M)|}\left(\sum_{i=1}^{r} \frac{n_{i}}{a_{i}}-n\right)^{2}\right\}
$$

where $n_{1}, \ldots, n_{r}, n$ are integers such that

$$
\sum_{i=1}^{r}\left\llcorner n_{i} / a_{i}\right\lrcorner-n \leq 2 g-2, \quad \sum_{i=1}^{r}\left\ulcorner n_{i} / a_{i}\right\urcorner-n \geq 2-2 g
$$

and $a_{1}, \ldots, a_{r}$ are the indices of the singular points of $\mathcal{O}_{M}$.

## Geometric decomposition of 3-manifolds

Let $M$ be a closed oriented and irreducible 3-manifold.
The geometrization of 3-manifolds implies that $M$ can be decomposed along a family of tori and Klein bottles $\mathcal{T}_{M}$ such that each component of $M \backslash \mathcal{T}_{M}$ is geometric.
When $M$ is non-geometric, i.e. $\mathcal{T}_{M} \neq \emptyset$, we write

$$
M^{*}=M \backslash \mathcal{T}_{M}=\mathcal{S}(M) \cup \mathcal{H}(M)
$$

where the components of $\mathcal{S}(M)$ are $\mathbf{H}^{2} \times \mathbb{R}$ and those of $\mathcal{H}(M)$ are hyperbolic. When $\mathcal{H}(M)=\emptyset$, then $M$ is a graph manifold. Denote by $\tau: \partial M^{*} \rightarrow \partial M^{*}$ the sewing involution such that $M \simeq M^{*} / \tau$.

## Seifert volume of graph manifolds

## Proposition (DW)

Any closed oriented non-geometric graph manifold has a virtually positive Seifert Volume.

## Remark

It is not clear whether the hypothesis "virtually" is needed because we don't know if there are examples of non-geometric graph manifolds with $\mathrm{SV}=0$.
The geometric pieces of $M^{*}$ are virtual product so they don't contribute to the volume. The volume is positive rather because they are glued together in a non-trivial way (so that their geometries do not extend). Therefore one can expect that the volume of representations detects the sewing involution of $M$.

## Hyperbolic volume of 3-manifolds

Conjecture (M. Boileau)
A closed 3-manifold has a virtually positive HV iff $\|M\|>0$.
By Reznikov $H V(M) \leq \mu_{3}\|M\|$ therefore manifolds with virtually positive hyperbolic volume must contain some hyperbolic pieces in their geometric decomposition.

## Proposition (DW)

There are one-edged manifolds $M$ with $\|M\|>0$ but $\mathrm{HV}(M)=0$.
Meanwhile

## Proposition (DW)

If the dual graph of $M$ is a tree (in particular if $M$ is a $\mathbf{Q H S}$ ) with $\|M\|>0$ then $M$ has a virtually positive hyperbolic volume.
Notice that in this case the term "virtually" cannot be dropped.

## Basic gauge theory

Let $M$ be a closed oriented 3-manifold and denote by $p: \widetilde{M} \rightarrow M$ its universal covering.
Given a representation $\rho: \pi_{1} M \rightarrow G$ we get a principal $G$-bundle

$$
\xi: P=\widetilde{M} \times G / \pi_{1} M \rightarrow M
$$

defined by

$$
\xi([x, g])=p(x)
$$

and endowed with a $G$-invariant horizontal foliation $\mathcal{F}_{\rho}$ which is the image of the trivial foliation on $\widetilde{M} \times G$.
Denote by $A \in \Omega^{1}(P ; \mathfrak{g})$ a 1 -form connection such that ker $A=T \mathcal{F}_{\rho}$. Chern and Simons associated to any connection $A$ a closed 3-form $\operatorname{Tf}(A) \in \Omega^{3}(P ; \mathbb{C})$ based on a degree 2 invariant polynomial $f: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathbb{C}$. If moreover $P \rightarrow M$ is trivial, the Chern-Simons invariant of $A$ is defined after choosing a section $\delta$ of $P \rightarrow M$ by

$$
\mathfrak{c s}_{M}(A, \delta)=\int_{M} \delta^{*} \operatorname{Tf}(A)
$$

## The volume as a Chern-Simons invariant

When $G=\operatorname{PSL}(2 ; \mathbb{C})$ choose

$$
f(A \otimes A)=P_{1}(A \otimes A)=-\frac{1}{8 \pi^{2}} \operatorname{tr} A^{2} \in \mathbb{C}
$$

and using a computation of Yoshida we get

$$
\Im_{\mathfrak{c s}_{M}}(A, \delta)=-\frac{1}{\pi^{2}} \operatorname{vol}_{G}(M, \rho)
$$

when $G=\operatorname{Iso} 0 \widetilde{\mathrm{SL}(2 ; \mathbb{R})}=\mathbb{R} \times \mathbb{Z} \widetilde{\mathrm{SL}_{2}(\mathbb{R})}$ choose

$$
f(A \otimes A)=\operatorname{tr} X^{2}+t^{2} \in \mathbb{R}
$$

where $A=X+t$ in the Lie algebra $\mathfrak{s l l}(2 ; \mathbb{R}) \oplus \mathbb{R}$ and we get

$$
\mathfrak{c s}_{M}(A, \delta)=\frac{2}{3} \operatorname{vol}_{G}(M, \rho)
$$

## Additivity Principle

Suppose $M=S \cup_{\partial S=\partial Q} Q$ with base points $x \in \operatorname{int} S$ and $y \in \operatorname{int} Q$. For each component $T_{i}$ of $\partial S \cap \partial Q$ fix a basis $\left(\lambda_{i}, \mu_{i}\right)$ for $H_{1}\left(T_{i} ; \mathbb{Z}\right)$. Let $\varphi: \pi_{1}(S, x) \rightarrow G$ and $\psi: \pi_{1}(Q, y) \rightarrow G$ denote two representations such that

$$
\begin{gather*}
\varphi\left(\lambda_{i}\right) \stackrel{G}{\sim} \psi\left(\lambda_{i}\right) \text { and } \varphi\left(\mu_{i}\right) \stackrel{G}{\sim} \psi\left(\mu_{i}\right)  \tag{0.1}\\
\operatorname{ker} \varphi\left|H_{1}\left(T_{i} ; \mathbb{Z}\right)=\operatorname{ker} \psi\right| H_{1}\left(T_{i} ; \mathbb{Z}\right) \simeq \mathbb{Z} \tag{0.2}
\end{gather*}
$$

and generated by a primitive curve denoted $m_{i}$ in $T_{i}$. Denote $m=\left(m_{1}, \ldots, m_{p}\right)$.
Let $A$, resp. $B$, be a (flat) connection over $S$, resp. over $Q$, corresponding to $\varphi$, resp. $\psi$. By condition (0.1) there exists a gauge transformation $g$ over $S$, resp. $h$ over $Q$, such that $g * A$ and $h * B$ smoothly match over the $T_{i}$ 's giving rise to a global smooth and flat connection $C=g * A \cup h * B$ and therefore to a representation $\rho: \pi_{1} M \rightarrow G$.

By condition (0.2) $\varphi$ and $\psi$ extend to $\widehat{\varphi}: \pi_{1} S(m) \rightarrow G$ and $\widehat{\psi}: \pi_{1} Q(m) \rightarrow G$ where

$$
S(m)=S \bigcup_{\partial \mathbf{D}^{2}=m_{i}}\left(\cup_{i} \mathbf{D}^{2} \times \mathbf{S}^{1}\right) \text { and } Q(m)=Q \bigcup_{\partial \mathbf{D}^{2}=m_{i}}\left(\cup_{i} \mathbf{D}^{2} \times \mathbf{S}^{1}\right)
$$

In the same way the connections $A$ and $B$ extend to

$$
\widehat{A}=A \cup\left(\cup_{i} A_{i}\right) \text { and } \widehat{B}=B \cup\left(\cup_{i} A_{i}\right)
$$

$$
\begin{array}{r}
\mathfrak{w s}_{M}(C) \equiv \mathfrak{c s}_{S}(A)+\mathfrak{c s}_{Q}(B) \\
\equiv \mathfrak{c s}_{S(m)}(\widehat{A})+\mathfrak{c s}_{Q(m)}(\widehat{B})
\end{array}
$$

Applying the correspondence with the volume we get

$$
\operatorname{vol}_{G}(M, \rho)=\operatorname{vol}_{G}(S(m), \widehat{\varphi})+\operatorname{vol}_{G}(Q(m), \widehat{\psi})
$$

## Seifert volume of graph manifolds

In this section $G=\operatorname{Iso}_{0} \mathrm{SL(2;} \mathrm{\mathbb{R})}$.
Let $M$ be a non-geometric closed graph manifold. Up to a finite covering we may assume:
each component of $\mathcal{T}_{M}$ is shared by two distinct Seifert pieces, each component $Q$ of $M^{*}=M \backslash \mathcal{T}_{M}$ is a product $F \times \mathbf{S}^{1}$, where $F$ is a hyperbolic surface of large genus.
We fix a Seifert piece $S=F_{g} \times \mathbf{S}^{1}$ of $M$ and we suppose for simplicity that $M=S \cup Q$, where $Q=F \times \mathbf{S}^{1}$. If $S$ consists of $p$ boundary components $T_{1}, \ldots, T_{p}$ we denote by $\mu_{i}, \lambda_{i}$ the generators of $H_{1}\left(T_{i} ; \mathbb{Z}\right)$ such that $\lambda_{i}=\partial F \cap T_{i}$ and $\mu_{i}=\mathbf{S}^{1}$.
The space $S(\mu)=S\left(\mu_{1}, \ldots, \mu_{p}\right)$ is a Seifert manifold with geometry $\mathbf{H}^{2} \times \mathbb{R}$ or $\operatorname{SL}(2 ; \mathbb{R})$ depending on whether $e(S(\mu))=0$ or $e(S(\mu)) \neq 0$.
Assume $e(S(\mu)) \neq 0$.

By the Eisendud-Hirsh-Neumann generalization of the Milnor-Wood inequality, if $g \gg e(S(\mu))$ there exists a representation $\varphi: \pi_{1} S \rightarrow \operatorname{SL}(2 ; \mathbb{R}) \subset G$ factorizing through $\widehat{\varphi}: \pi_{1} S(\mu) \rightarrow \mathrm{SL}(2 ; \mathbb{R})$ such that

$$
\varphi(\text { fibre })=\operatorname{sh1} \text { and } \varphi\left(\lambda_{i}\right) \sim \operatorname{sh} \alpha_{i}
$$

and by integration along the fiber just like in the Goldman Brooks paper we get

$$
\operatorname{vol}_{G}(S(\mu), \widehat{\varphi})=2 \pi^{2}|e(S(\mu))|
$$

We have to find a representation $\psi: \pi_{1} Q \rightarrow G$ factorizing through $\widehat{\varphi}: \pi_{1} Q(\mu) \rightarrow \overline{\mathrm{SL}(2 ; \mathbb{R})}$ such that $\psi\left(\lambda_{i}\right) \sim \operatorname{sh} \alpha_{i}$. But since the product $\lambda_{1} \ldots \lambda_{p}$ is a commutator in $F$ of length $I=g(F)$ it is sufficient to know if

$$
\operatorname{sh} \alpha_{1} \ldots \operatorname{sh} \alpha_{p}
$$

can be written as a commutator of length $\leq I$. By a result of Eisendud-Hirsh-Neumann this is true provided $I \gg\left|\alpha_{1}+\ldots+\alpha_{p}\right|$. Again this condition may be assumed up to a finite covering. Notice that

$$
\psi: \pi_{1} Q \rightarrow \widetilde{\mathrm{SL}(2 ; \mathbb{R})}
$$

factors through $\pi_{1} F$ and therefore

$$
\operatorname{vol}_{G}(Q(h), \widehat{\psi})=0
$$

by a cohomological dimension argument.

## Thurston Hyperbolic Dehn filling theorem

Denote by $Q$ a compact manifold whose interior admits a complete finite volume hyperbolic metric. Denote by $T_{1}, \ldots, T_{p}$ the boundary components of $M$ and assume each $T_{i}$ is endowed with a homological basis ( $\mu_{i}, \lambda_{i}$ ).
Using the Thurston's theorem we deform the faithful and discrete representation to $\varphi: \pi_{1} Q \rightarrow \operatorname{PSL}(2 ; \mathbb{C})$ sending $\lambda_{i}$ to a hyperbolic isometry and $\mu_{i}$ to an order $q$ rotation (for $q$ big enough). Next consider a $q \times q$-characteristic covering $p: \widetilde{Q} \rightarrow Q$. The induced representation $\rho=\varphi \mid \pi_{1} \widetilde{Q}$ factorizes through $\widehat{\rho}: \pi_{1} \widetilde{Q}(\widetilde{\mu}) \rightarrow \operatorname{PSL}(2 ; \mathbb{C})$ such that

$$
\operatorname{vol}_{P S L(2 ; \mathbb{C})}(\widetilde{Q}(\widetilde{\mu}), \widehat{\rho})>0
$$

## Hyperbolic volume of 3-manifolds

Suppose $M=Q \cup S$ and $Q$ is hyperbolic.
Suppose $\partial S=\partial Q=T$ is connected. Then
$\operatorname{Rk}\left(H_{1}(\partial S ; \mathbb{Z}) \rightarrow H_{1}(S ; \mathbb{Z})\right)=1$ and we choose the homological basis $(\lambda, \mu)$ in $T$ such that $\mu$ is torsion.
Fix a prime number $q$ (big enough) and a representation
$\rho=\varphi \mid \pi_{1} \widetilde{Q}$ as above. Denote by $\left(x, x^{-1}\right)$ the eigenvalues of $\varphi(\lambda)$.
By construction the elements $\rho\left(\widetilde{\lambda}_{1}\right), \ldots, \rho\left(\widetilde{\lambda}_{p}\right)$ are all conjugated to $\left(\begin{array}{cc}x^{q} & 0 \\ 0 & x^{-q}\end{array}\right)$ whereas $\widetilde{\mu}_{1}, \ldots, \widetilde{\mu}_{p}$ are sent trivially.
Next construct a finite covering $q \times q$-characteristic covering $r: \widetilde{S} \rightarrow S$ that can be glued to $p: \widetilde{Q} \rightarrow Q$ to define a global finite covering $\widetilde{M} \rightarrow M$ and we construct an abelian representation $\psi: \pi_{1} \widetilde{S} \rightarrow \operatorname{PSL}(2 ; \mathbb{C})$ defined by
$\psi\left(\widetilde{\lambda}_{1}\right)=\ldots=\psi\left(\widetilde{\lambda}_{p}\right)=\left(\begin{array}{cc}x^{q} & 0 \\ 0 & x^{-q}\end{array}\right)$ whereas $\widetilde{\mu}_{1}, \ldots, \widetilde{\mu}_{p}$ are sent
trivially. This representation factorizes through
$\widehat{\psi}: \pi_{1} \widetilde{S}(\widetilde{\mu}) \rightarrow \operatorname{PSL}(2 ; \mathbb{C})$ such that $\operatorname{vol}_{\mathrm{PSL}(2 ; \mathbb{C})}(\widetilde{S}(\widetilde{\mu}), \widehat{\psi})=0$.

Suppose $\partial S=\partial Q$ is no longer connected and $S=F \times \mathbf{S}^{1}$ where $F$ is a surface with positive genus. Denote by $h$ the $\mathbf{S}^{1}$-factor of $S$ and by $d_{1}, \ldots, d_{r}$ the boundary component of $F$.
Set $\left(\lambda_{i}, \mu_{i}\right)=\left(d_{i}, h\right)$ for each $i=1, \ldots, r$.
Passing to a finite covering we may assume there is a representation $\rho=\varphi \mid \pi_{1} Q \rightarrow \operatorname{PSL}(2 ; \mathbb{C})$ which factorizes through $\widehat{\rho}: \pi_{1} Q(\mu) \rightarrow \operatorname{PSL}(2 ; \mathbb{C})$ such that

$$
\operatorname{vol}_{\text {PSL }(2 ; \mathbb{C})}(Q(\mu), \rho)>0
$$

Since $d_{1} \ldots d_{r}$ is a commutator in $F$ and since any element of $\operatorname{PSL}(2 ; \mathbb{C})$ is a commutator then there exists a representation $\psi: \pi_{1} S \rightarrow \operatorname{PSL}(2 ; \mathbb{C})$ defined by $\psi\left(d_{1}\right)=\rho\left(d_{1}\right), \ldots, \psi\left(d_{r}\right)=\rho\left(d_{r}\right)$ whereas $h$ is sent trivially. This representation factorizes through $\widehat{\psi}: \pi_{1} S(\mu) \rightarrow \operatorname{PSL}(2 ; \mathbb{C})$ such that

$$
\operatorname{vol}_{\mathrm{PSL}(2 ; \mathrm{C})}(S(\mu), \widehat{\psi})=0
$$

because $\|S(\mu)\|=0$.

## Detecting the sewing involution

The sewing involution can be made explicit by fixing a homological basis for each component of $\partial M^{*}$.
Suppose for instance $M=Q_{1} \cup_{\tau} Q_{2}$ where $\partial Q_{i}$ is connected. In this case we say $M$ is one-edged.
Fix a basis $\left(\lambda_{i}, \mu_{i}\right)$ for $H_{1}\left(\partial Q_{i} ; \mathbb{Z}\right)$ and we denote by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ the matrix of $\tau$ in $\operatorname{SL}(2 ; \mathbb{Z})$ where

$$
\tau_{*}\left(\mu_{2}\right)=a \mu_{1}+c \lambda_{1} \text { and } \tau_{*}\left(\lambda_{2}\right)=b \mu_{1}+d \lambda_{1}
$$

When $Q_{i}$ is a Seifert manifold, we fix a fibration with fibre $h_{i}$, we denote by $\mathcal{O}_{i}$ the 2-orbifold $Q_{i} / h_{i}$ and the basis $\left(\lambda_{i}, \mu_{i}\right)$ is chosen s.t. $\lambda_{i}=h_{i}$ and $\mu_{i}$ is a section of $\partial \mathcal{O}_{i}$ in $\partial Q_{i}$.

## Proposition (DW)

Let $M=Q_{1} \cup_{\tau} Q_{2}$ be an one-edged graph manifold and denote by $G$ the group $\mathrm{IsO}_{e} \mathrm{SL}_{2}(\mathbb{R})$. There exists a $n$-fold $q \times q$-characteristic covering $\widetilde{M} \rightarrow M$, where $n, q$ depend only on $Q_{1}$ and $Q_{2}$, and a representation $\varphi: \pi_{1} \widetilde{M} \rightarrow G$ such that

$$
\begin{aligned}
\frac{\operatorname{vol}_{G}(\widetilde{M}, \varphi)}{n}= & \frac{8 \pi^{2}}{q^{2}} \text { if } a=d=0 \\
& =\frac{4 \pi^{2}}{q^{2}|b|} \text { if } c=0 \\
= & \frac{4 \pi^{2}}{q^{2}|a c|} \text { if } a c \neq 0 \\
= & \frac{4 \pi^{2}}{q^{2}|c d|} \text { if } c d \neq 0
\end{aligned}
$$

If $Q$ is a 3-manifold with connected boundary and hyperbolic interior we denote by $z_{0}$ the shape of the cusp of int $Q$.

## Proposition (DW)

Let $M=Q \cup_{\tau} S$ be an one-edged manifold, where $S$ is Seifert and $Q$ hyperbolic. Then there exists a n-fold q-characteristic covering $\widetilde{M} \rightarrow M$, where $n, q$ depend only on $Q$ and $S$, and a representation
$\varphi: \pi_{1} \widetilde{M} \rightarrow \operatorname{PSL}(2 ; \mathbb{C})$ such that for any
$\|(a, c)\|_{2}>2 \pi\left(1+\left|z_{0}\right|^{2}\right) / \Im z_{0}$ then

$$
\frac{\operatorname{vol}_{\text {PSL }(2 ; \mathbb{C})}(\tilde{M}, \varphi)}{n}=\operatorname{vol} Q_{+}(a, c)+\frac{\pi(q-1)}{2 q} \operatorname{length}(\gamma)
$$

where $\gamma$ is the geodesic added to $Q_{+}$to complete the cusp with respect to the ( $a, c$ )-Dehn filling. The same statement is true for $(b, d)$.
Using the computation of Neumann and Zagier we get

$$
\frac{\operatorname{vol}_{\mathrm{PSL}(2 ; \mathbb{C})}(\widetilde{M}, \varphi)}{n}=\operatorname{vol} Q_{+}-\pi^{2} \frac{\Im z_{0}}{q\left|a+z_{0} c\right|^{2}}+O\left(\frac{1}{a^{4}+c^{4}}\right)
$$

