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Volume of representations

Let (G, X) be either the 3-dimensional hyperbolic geometry
(PSL(2; C), H?)

or the Seifert geometry

e~ e~ e~

(ISO(JSLQ(R), SL2(R)) where ISOosLQ(R) =R X7 SLQ(R)

In either case denote by wx the G-invariant volume form on X.
Let M be a closed, connected, oriented 3-manifold. For each
p: miM — G, there is a developing map D,: M — X which is
equivariant. Then a volume can be defined by

volg(M, p) = ’ | Djeox
M




Maximal volumes

According to Reznikov in case G = PSL(2;C) and
Goldman-Brooks in case G = Isog(SL2(RR)) the set

vol(M, G) = {volg(M, p), p: mM — G}

is always finite. Therefore it makes sense to define the hyperbolic
volume

HV(M) = maxvol(M,PSL(2; C))

and the Seifert volume

—_~—

SV (M) = maxvol(M, IsogSL2(R))



Maximal volumes

The hyperbolic and Seifert volume satisfy the following functorial
property: for any non-zero degree map f: N — M (and in
particular for any finite covering)

SV(N) > |degf|SV(M) and HV(N) > |degf|HV (M)

It is unclear whether these inequalities turn to equalities in the case
of finite covering maps.



Volumes of geometric manifolds

Let M be a closed oriented geometric 3-manifold.

Theorem (Reznikov)

If M is hyperbolic then HV (M) is reached by the volume of a
representation iff it is faithful and discrete and HV(M) is the
volume of M for the hyperbolic metric.

If M is geometric but not hyperbolic then HV(M) = 0.

Theorem (Goldman-Brooks)
The same statement is true if M is an SLy(IR)-manifold and
— *(Om)
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If M is geometric but neither hyperbolic nor SLy(R) then
SV(M) = 0.



Volumes of geometric manifolds

Describing the set vol(M, G) when M is hyperbolic seems a very
hard question. However when M is a Seifert manifold this set can
be made explicit, using the works of Goldman-Brooks and
Eisendud-Hirsh-Neumann.

Suppose M supports the SLa(R)-geometry and that its base
2-orbifold has a positive genus g. Then
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vol (M. 1soSLa(R)) = ¢ o7y (Zg ) n)
i=1 "'

where n1, ..., n,, n are integers such that

r

.
Zl_n;/a,-_n —n<2g-—2, z:rn;/a;j —n>2-2g
i=1 i=1

and ai, ..., a, are the indices of the singular points of Oy,.



Geometric decomposition of 3-manifolds

Let M be a closed oriented and irreducible 3-manifold.

The geometrization of 3-manifolds implies that M can be
decomposed along a family of tori and Klein bottles Ty such that
each component of M\ Ty is geometric.

When M is non-geometric, i.e. Ty # (), we write

M* = M\ Ty = S(M) UH(M)

where the components of S(M) are H? x R and those of H(M)
are hyperbolic. When H(M) = (), then M is a graph manifold.
Denote by 7: OM* — OM* the sewing involution such that
M~ M*/T.



Seifert volume of graph manifolds

Proposition (DW)
Any closed oriented non-geometric graph manifold has a virtually
positive Seifert Volume.

Remark

It is not clear whether the hypothesis "virtually” is needed because
we don't know if there are examples of non-geometric graph
manifolds with SV = 0.

The geometric pieces of M* are virtual product so they don't
contribute to the volume. The volume is positive rather because
they are glued together in a non-trivial way (so that their
geometries do not extend). Therefore one can expect that the
volume of representations detects the sewing involution of M.



Hyperbolic volume of 3-manifolds

Conjecture (M. Boileau)
A closed 3-manifold has a virtually positive HV iff |[M]| > 0.

By Reznikov HV(M) < u3||M|| therefore manifolds with virtually
positive hyperbolic volume must contain some hyperbolic pieces in
their geometric decomposition.

Proposition (DW)

There are one-edged manifolds M with ||M|| > 0 but HV(M) = 0.
Meanwhile

Proposition (DW)

If the dual graph of M is a tree (in particular if M is a QHS) with
|IM|| > 0 then M has a virtually positive hyperbolic volume.

Notice that in this case the term "virtually” cannot be dropped.



Basic gauge theory
Let M be a closed oriented 3-manifold and denote by p: M — M
its universal covering.
Given a representation p: mM — G we get a principal G-bundle

& P=MxG/mM— M

defined by

£([x, 81) = p(x)
and endowed with a G-invariant horizontal foliation , which is
the image of the trivial foliation on M x G.
Denote by A € Q(P; g) a 1-form connection such that
ker A= TF,. Chern and Simons associated to any connection A a
closed 3-form Tf(A) € Q3(P;C) based on a degree 2 invariant
polynomial f: g® g — C. If moreover P — M is trivial, the

Chern-Simons invariant of A is defined after choosing a section §
of P— M by

csm(A, ) = /M 5* TF(A)



The volume as a Chern-Simons invariant

When G = PSL(2; C) choose
1
F(A® A) = Pi(A® A) = ———trA> € C
8
and using a computation of Yoshida we get

1
Sesm (A, 0) = ——volg(M, p)

—_—

when G = Is0pSL(2;R) = R xz SLp(R) choose

fFA® A) =trX?+t> e R

where A= X + t in the Lie algebra s[(2;R) & R and we get

2
csp(A,0) = gvolg(l\/l, )



Additivity Principle

Suppose M = S Ugs—gg @ with base points x € intS and

y € intQ. For each component T; of 9S N OQ fix a basis (A, )
for Hi(Ti;Z). Let p: m1(S,x) = G and ¢: 71(Q,y) — G denote
two representations such that

p(A) 2 () and @) 2 (u;) (0.1)

ker o|H1(Ti; Z) = ker |Hy(Ti Z) ~= Z (0.2)

and generated by a primitive curve denoted m; in T;. Denote

m = (my, ..., mp).

Let A, resp. B, be a (flat) connection over S, resp. over Q,
corresponding to ¢, resp. 1. By condition (0.1) there exists a
gauge transformation g over S, resp. h over @, such that g x A
and h* B smoothly match over the T;'s giving rise to a global
smooth and flat connection C = g« AU h*x B and therefore to a
representation p: mM — G.



By condition (0.2) ¢ and 7 extend to $: m1S(m) — G and
P: m1Q(m) — G where

S(m=5 |J (UD?*xS"and Qm)=@Q |J (uUiD?xS")

8D2:m,- 8D2:m,-
In the same way the connections A and B extend to

A= AU (U;iA;) and B = BU (U;jA;)

Applying the correspondence with the volume we get

volg(M, p) = volg(S(m), p) + volg(Q(m), @E)



Seifert volume of graph manifolds

In this section G = ISOOSL( ' R).

Let M be a non-geometric closed graph manifold. Up to a finite
covering we may assume:

each component of Ty, is shared by two distinct Seifert pieces,
each component Q of M* = M\ Ty is a product F x S!, where F
is a hyperbolic surface of large genus.

We fix a Seifert piece S = F; x S of M and we suppose for
simplicity that M = SU Q, where Q = F x S!. If S consists of p
boundary components Ti,..., T, we denote by p;, A; the generators
of Hi(T;;Z) such that \; = OF N T; and p; = S*.

The space S(p) = S(pa, - ,,up) is a Seifert manifold with

geometry H2 x R or SL(2 R) depending on whether e(5(u)) =0

or e(5(n)) # 0.
Assume e(S(u)) # 0.



By the Eisendud-Hirsh-Neumann generalization of the

Milnor-Wood inequality, if g > e(S(u)) there exists a
representation ¢: mS — SL(2;R) C G factorizing through

P

@: mS(pn) — SL(2; R) such that
o(fibre) = shl and ¢(\;) ~ sha;

and by integration along the fiber just like in the Goldman Brooks
paper we get
volg(S(u), 3) = 2m2le(S ()|



We have to find a/rfBresentation 1. mQ — G factorizing through
@: mQ(p) — SL(2; R) such that ¢)();) ~ sha;. But since the
product A1....\p, is a commutator in F of length / = g(F) it is
sufficient to know if

shay....shayp

can be written as a commutator of length < /. By a result of
Eisendud-Hirsh-Neumann this is true provided / >> |a1 + ... + .
Again this condition may be assumed up to a finite covering.
Notice that

—_—

Y: mQ — SL(2;R)

factors through 71 F and therefore
volg(Q(h), ) = 0

by a cohomological dimension argument.



Thurston Hyperbolic Dehn filling theorem

Denote by @ a compact manifold whose interior admits a complete
finite volume hyperbolic metric. Denote by Ty, ..., T, the boundary
components of M and assume each T; is endowed with a
homological basis (i, A;).

Using the Thurston’s theorem we deform the faithful and discrete
representation to ¢: w1 Q — PSL(2; C) sending \; to a hyperbolic
isometry and j; to an order g rotation (for g big enough).

Next consider a q x g-characteristic covering p: @ — Q. The
induced representation p = ¢|m Q factorizes through

p: mQ(p) — PSL(2; C) such that

VOlPSL(Z;C)(é(ﬁ)7 p) >0



Hyperbolic volume of 3-manifolds

Suppose M = QU S and @ is hyperbolic.

Suppose 05 = 9Q = T is connected. Then

Rk(H1(0S;Z) — H1(S;Z)) = 1 and we choose the homological
basis (A, ) in T such that u is torsion.

Fix a prime number g (big enough) and a representation

p = ©|T1Q as above. Denote by (x,x 1) the eigenvalues of ¢()).
By construction the elements p(xl), s p(Xp) are all conjugated to

x4 0 ~ ~ .
0 x—¢ whereas i1, ..., i, are sent trivially.

Next construct a finite covering g X g-characteristic covering
r: § — S that can be glued to p: Q — Q to define a global finite
covering M — M and we construct an abelian representation
: mS — PSL(2; C) defined by
~ ~ q
P(A) = ... =P(Xp) = (E x0q> whereas [i1, ..., [ip are sent
trivially. This representation factorizes through R
Y mS(u) — PSL(2; C) such that volpgy,2.c)(S(1), ¥) = 0.



Suppose 9S = 9Q is no longer connected and S = F x S where
F is a surface with positive genus. Denote by h the S!-factor of S
and by di, ..., d, the boundary component of F.

Set (A, i) = (di, h) foreach i=1,...,r.

Passing to a finite covering we may assume there is a
representation p = ¢|m1 Q@ — PSL(2; C) which factorizes through
p: m1Q(p) — PSL(2; C) such that

volpgr,2:c)(Q(), p) > 0

Since di...d, is a commutator in F and since any element of
PSL(2; C) is a commutator then there exists a representation

¥: mS — PSL(2; C) defined by v(d1) = p(di), ..., (dr) = p(d;)
whereas h is sent trivially. This representation factorizes through
P mS(p) — PSL(2; C) such that

volpgr,(2;c) (S(w), $) =0

because [|S(u)|| = 0.



Detecting the sewing involution

The sewing involution can be made explicit by fixing a homological
basis for each component of OM*.

Suppose for instance M = Q1 U, Q> where 0Q; is connected.

In this case we say M is one-edged.

Fix a basis (A, ptj) for H1(0Q;i; Z) and we denote by (i 2) the
matrix of 7 in SL(2;Z) where

Te(p2) = ap + cA1 and 7. (A2) = bug + dAg

When Q; is a Seifert manifold, we fix a fibration with fibre h;, we
denote by O; the 2-orbifold Q;/h; and the basis (Aj, ;) is chosen
s.t. A; = h; and p; is a section of 90; in 0Q;.



Proposition (DW)
Let M = Q1 U, Q2 be an one-edged graph manifold and denote by

G the group IsoeSL2(R). There exists a n-fold q x q-characteristic
covering M — M, where n, q depend only on Q1 and Q2, and a
representation p: m M — G such that

N 2
vole(M.p) _ BT 4 o _ g =0
n q2
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If Q is a 3-manifold with connected boundary and hyperbolic
interior we denote by zg the shape of the cusp of intQ.
Proposition (DW)
Let M = Q U, S be an one-edged manifold, where S is Seifert and
Q hyperbolic. Then there exists a n-fold q-characteristic covering
M — M, where n, q depend only on Q and S, and a representation
¢: mM — PSL(2; C) such that for any
I(a, c)|l2 > 27(1 + |20|2)/Sz0 then

VO]PSL(2;(C)(A~/Ia ©)

n

=volQ+(a, c) + 7T(C12;1)

length(~y)
where 7y is the geodesic added to Q. to complete the cusp with
respect to the (a, c)-Dehn filling. The same statement is true for
(b, d).

Using the computation of Neumann and Zagier we get

volps2;c) (M, ¢) — volQs — 2 Sz9 1
n + gla+ zoc|? a*t + ¢t




