Unified quantum invariants of integral homology spheres associated to simple Lie algebras

> Kazuo Habiro RIMS, Kyoto University

November 6, 2012,Carry-le-Rouet CNRS/JSPS joint seminar

This work is joint with Thang Le.

The Witten–Reshetikhin–Turaev invariants

Let \mathfrak{g} be a finite dimensional, simple Lie algebra over \mathbb{C} .

Let $\mathcal{Z} \subset \mathbb{C}$ denote the set of roots of unity.

For a closed 3-manifold M, the WRT invariant of M associated to \mathfrak{g} is a partial map

$$\tau^{\mathfrak{g}}_{M}: \mathcal{Z} \dashrightarrow \mathbb{C}.$$

Set $\mathcal{Z}_{\mathfrak{g}} = \{\zeta \in \mathcal{Z} \mid \tau_{\mathcal{M}}^{\mathfrak{g}}(\zeta) \text{ is defined}\}$. We have a map $\tau_{\mathcal{M}}^{\mathfrak{g}} \colon \mathcal{Z}_{\mathfrak{g}} \longrightarrow \mathbb{C}.$

Remark

In the construction of $\tau_{M}^{\mathfrak{g}}(\zeta)$, we have to choose a certain root of ζ , but we ignore this choice in this talk for simplicity. Our result implies that, for $\mathbb{Z}HS$'s, $\tau_{M}^{\mathfrak{g}}(\zeta)$ does not depend on this choice.

Quantum link invariants

Let $L = L_1 \cup \cdots \cup L_n \subset S^3$ be a framed link of *n*-components.

Let V_1, \ldots, V_n be finite dimensional representations of the quantum group $U_h(\mathfrak{g})$.

Let $J_L(V_1, \ldots, V_n) \in \mathbb{Z}[q^{1/2\mathcal{D}}, q^{-1/2\mathcal{D}}]$ denote the quantum invariant of the framed link *L* colored by V_1, \ldots, V_n .

This notation extends to $J_L(x_1, ..., x_n)$, where each x_i is a *color*, i.e., a linear combination (with coefficients in a certain ring) of finite dimensional representations.

Kirby colors

A color Ω is called a *Kirby color* at a root of unity $\zeta \in \mathcal{Z}$ if

• $J_L(\Omega, ..., \Omega)|_{q=\zeta}$ is invariant under handle slides,

$$J_{U_{\pm}}(\Omega)|_{q=\zeta} \neq 0.$$

If Ω is a Kirby color at ζ , then it is well-known that for a closed 3-manifold $M = S_L^3$, surgery on S^3 along a framed link L

$$\tau_{\mathcal{M}}^{\mathfrak{g},\Omega}(\zeta) = \left. \frac{J_{L}(\Omega,\ldots,\Omega)}{J_{U_{+}}(\Omega)^{\sigma_{+}}J_{U_{-}}(\Omega)^{\sigma_{-}}} \right|_{q=\zeta}$$

is an invariant of M. Here σ_{\pm} is the number of eigenvalues of the linking matrix of L of sign \pm .

ション ふゆ アメリア メリア しょうめん

The WRT invariant

At $\zeta \in \mathbb{Z}$ with $r = \operatorname{order}(\zeta)$ sufficiently large $(r > d(h^{\vee} - 1))$, there is a Kirby color either $\Omega^{\mathfrak{g}}$ or $\Omega^{P\mathfrak{g}}$, which gives the \mathfrak{g} WRT invariant or the $P\mathfrak{g}$ WRT invariant, respectively.

$$\begin{split} \tau^{\mathfrak{g}}_{M}(\zeta) &= \tau^{\mathfrak{g},\Omega^{\mathfrak{g}}}_{M}(\zeta) \quad \text{for } \zeta \in \mathcal{Z}_{\mathfrak{g}}, \\ \tau^{\mathcal{P}\mathfrak{g}}_{M}(\zeta) &= \tau^{\mathfrak{g},\Omega^{\mathcal{P}\mathfrak{g}}}_{M}(\zeta) \quad \text{for } \zeta \in \mathcal{Z}_{\mathcal{P}\mathfrak{g}} \end{split}$$

(The $P\mathfrak{g}$ WRT invariant $\tau_M^{P\mathfrak{g}}(\zeta)$ is the "projective version" of the WRT invariant.)

At $\zeta = 1$, the color $\Omega = 1$ (the trivial 1-dim. rep.) is a Kirby color. The associated invariant is trivial:

$$\tau^{\mathfrak{g},1}_{M}(1)=1.$$

うして ふゆう ふほう ふほう うらつ

Definition (The completion ring $\widehat{\mathbb{Z}[q]}$)

Define a completion $\widehat{\mathbb{Z}[q]}$ of the polynomial ring $\mathbb{Z}[q]$ by

$$\widehat{\mathbb{Z}[q]} = \varprojlim_n \mathbb{Z}[q]/((q-1)(q^2-1)\cdots(q^n-1)).$$

Definition (Evaluation maps)

For each root of unity $\zeta \in \mathcal{Z}$, the evaluation map

$$\operatorname{ev}_{\zeta} \colon \mathbb{Z}[q] \longrightarrow \mathbb{Z}[\zeta], \quad f(q) \mapsto f(\zeta)$$

induces a ring homomorphism

$$\operatorname{ev}_{\zeta} \colon \widehat{\mathbb{Z}[q]} \longrightarrow \mathbb{Z}[\zeta].$$

うして ふゆう ふほう ふほう うらつ

Main result

Theorem (H ($\mathfrak{g} = \mathfrak{sl}_2$), Le–H (general \mathfrak{g}))

Let \mathfrak{g} be a finite dimensional, simple complex Lie algebra. Then there is a (unique) invariant $J_M \in \widehat{\mathbb{Z}[q]}$ of an integral homology sphere M such that, for each $\zeta \in \mathcal{Z}_{\mathfrak{g}}$, we have

$$\operatorname{ev}_{\zeta}(J_M) = \tau^{\mathfrak{g}}_M(\zeta).$$

Remark

For $\mathfrak{g} = \mathfrak{sl}_2$, the above result has been generalized to rational homology spheres by Beliakova-Blanchet-Le, Le, Beliakova-Le, Beliakova-Bühler-Le.

Problem

Generalize the theorem to rational homology spheres for general g.

Corollaries

Corollary

 J_M gives an extension of $\tau^{\mathfrak{g}}_M$ to the whole $\mathcal{Z}.$ I.e., we may extend $\tau^{\mathfrak{g}}_M$ by

$$\tau^{\mathfrak{g}}_{M}(\zeta) = \operatorname{ev}_{\zeta}(J_{M}) \text{ for all } \zeta \in \mathcal{Z}.$$

Corollary

For all
$$\zeta \in \mathcal{Z}$$
, we have $\tau^{\mathfrak{g}}_{\mathcal{M}}(\zeta) = \operatorname{ev}_{\zeta}(J_{\mathcal{M}}) \in \mathbb{Z}[\zeta]$.

Remark

Some special cases (with order(ζ) being prime) of the above corollary has been obtained by H. Murakami, Masbaum–Roberts, Masbaum–Wenzl, Takata–Yokota and Le.

Determination of J_M by WRT invariants

Definition (A topology on \mathcal{Z})

Define a topology on the set \mathcal{Z} as follows. For a subset $S \subset \mathcal{Z}$, a point $\zeta \in \mathcal{Z}$ is a limit point of S in \mathcal{Z} if and only if there are infinitely many elements $\zeta' \in S$ such that $\operatorname{order}(\zeta'\zeta^{-1})$ is a prime power.

Examples

(1) The set $\{\exp \frac{2\pi\sqrt{-1}}{p} \mid p = 2, 3, 5, 7, ...\}$ has a limit point 1. (2) If *p* is a prime, then the set $\{\exp \frac{2\pi\sqrt{-1}}{p^e} \mid e = 0, 1, 2, ...\}$ has limit points $\exp \frac{2\pi\sqrt{-1}a}{p^e}$, $a \in \mathbb{Z}$, $e \ge 0$. (3) The set $\{\exp \frac{2\pi\sqrt{-1}}{6^e} \mid e = 0, 1, 2, ...\}$, has no limit points.

Determination of J_M

Proposition (H)

If $S \subset \mathcal{Z}$ has at least one limit point in \mathcal{Z} , then the homomorphism

$$\widehat{\mathbb{Z}[q]} \longrightarrow \prod_{\zeta \in S} \mathbb{Z}[\zeta], \quad f(q) \mapsto (f(\zeta))_{\zeta \in S}$$

is injective.

Corollary

The invariant J_M is uniquely determined by the values of $\tau^{\mathfrak{g}}_M(\zeta)$ for ζ in a subset $S \subset \mathcal{Z}$ with a limit point in \mathcal{Z} .

Corollary

The invariant J_M is uniquely determined by the values of $\tau_M^{\mathfrak{g}}(\zeta)$ for $\zeta \in \mathcal{Z}_{\mathfrak{g}}$.

The WRT invariant at roots of unity at the same order

The WRT invariant at two roots of unity $\zeta, \zeta' \in \mathbb{Z}$ of the same order are related as follows. Note that there is a unique ring automorphism $\alpha \colon \mathbb{Z}[\zeta] \longrightarrow \mathbb{Z}[\zeta]$ such that $\alpha(\zeta) = \zeta'$.

Proposition

Let $\zeta \in \mathcal{Z}$, and let $\alpha \colon \mathbb{Z}[\zeta] \longrightarrow \mathbb{Z}[\zeta]$ be a ring automorphism. Then we have

$$\tau^{\mathfrak{g}}_{\mathcal{M}}(\alpha(\zeta)) = \alpha(\tau^{\mathfrak{g}}_{\mathcal{M}}(\zeta))$$

Proof.

$$\tau_{\mathcal{M}}^{\mathfrak{g}}(\alpha(\zeta)) = \operatorname{ev}_{\alpha(\zeta)}(J_{\mathcal{M}}) = \alpha(\operatorname{ev}_{\zeta}(J_{\mathcal{M}})) = \alpha(\tau_{\mathcal{M}}^{\mathfrak{g}}(\zeta)).$$

(ロ) (同) (目) (日) (日) (0) (0)

Relation between $\tau_M^{\mathfrak{g}}$ at two different roots of unity Let $\zeta, \zeta' \in \mathbb{Z}$. For $f(q) \in \widehat{\mathbb{Z}[q]}$, we have

$$f(q) = f(\zeta) + (q - \zeta)g(q),$$

for some $g(q) \in \widehat{\mathbb{Z}[\zeta][q]}$.

Here $\widehat{\mathbb{Z}}[\zeta][q] = \varprojlim_n \mathbb{Z}[\zeta][q]/((q-1)(q^2-1)\cdots(q^n-1)).$

Evaluating with $q = \zeta'$, we obtain

$$f(\zeta') = f(\zeta) + (\zeta' - \zeta)g(\zeta')$$
 in $\mathbb{Z}[\zeta, \zeta']$.

Hence we have the following result.

Proposition

Let $\zeta, \zeta' \in \mathcal{Z}$. Then we have

$$\tau^{\mathfrak{g}}_{M}(\zeta) \equiv \tau^{\mathfrak{g}}_{M}(\zeta') \pmod{(\zeta - \zeta')}.$$

Remark

We have $(\zeta - \zeta') \subsetneq (1)$ if and only if order $(\zeta' \zeta^{-1})$ is a prime power.

$au_M^{\mathfrak{g}}(1) = 1$

Proposition For every integral homology sphere M, we have $\tau_M^{\mathfrak{g}}(1) = \operatorname{ev}_1(J_M) = 1.$

Corollary For $\zeta \in \mathcal{Z}$, we have

$$\tau_{\mathcal{M}}^{\mathfrak{g}}(\zeta) \equiv 1 \pmod{(\zeta-1)}.$$

Remark

The above corollary has been known for the special case where $\mathfrak{g} = \mathfrak{sl}_2$ and $\operatorname{order}(\zeta)$ a prime by H. Murakami.

Remark

Presumably, one can prove that $\tau_M^{\mathfrak{g}}(\zeta) = 1$ for some other $\zeta \in \mathcal{Z}$. It is well-known that $\tau_M^{\mathfrak{sl}_2}(\zeta) = 1$ if $\operatorname{order}(\zeta) = 1, 2, 3, 6$.

Taylor expansions

Let $\zeta \in \mathcal{Z}$. The inclusion $\mathbb{Z}[q] \longrightarrow \mathbb{Z}[\zeta][q]$ induces $T_{\zeta} \colon \widehat{\mathbb{Z}[q]} \longrightarrow \mathbb{Z}[\zeta][[q - \zeta]]$ since $(q - \zeta)^n$ divides $(q - 1)(q^2 - 1) \cdots (q^{nr} - 1)$, $r = \text{order}(\zeta)$. For $f(q) \in \widehat{\mathbb{Z}[q]}$, $T_{\zeta}(f(q))$ may be regarded as the *Taylor expansion* of f(q) at ζ .

For $\zeta = 1$, we have

$$T_1: \ \widehat{\mathbb{Z}[q]} \longrightarrow \mathbb{Z}[[q-1]].$$

Proposition

The Taylor expansion $T_1(J_M) \in \mathbb{Z}[[q-1]]$ is equal to the \mathfrak{g} Ohtsuki series of M.

Remark

The existence of the Ohtsuki series of integral homology spheres are proved by for $\mathfrak{g} = \mathfrak{sl}_2$, and by Le for the general \mathfrak{g} .

Injectivity of the Taylor expansion

Proposition (H)

For $\zeta \in \mathcal{Z}$, the homomorphism

$$T_{\zeta} \colon \widehat{\mathbb{Z}[q]} \longrightarrow \mathbb{Z}[\zeta][[q-\zeta]]$$

is injective.

Corollary

The unified WRT invariant J_M , and hence the WRT invariants $\tau_M^{\mathfrak{g}}(\zeta), \zeta \in \mathcal{Z}_{\mathfrak{g}}$, determined by the Ohtsuki series.

Corollary

The unified WRT invariant J_M , and hence the WRT invariants $\tau_M^{\mathfrak{g}}(\zeta)$, $\zeta \in \mathcal{Z}_{\mathfrak{g}}$ is determined by the Le–Murakami–Ohtsuki invariant.

Outline of proof

- The first step is to construct the invariant J_M ∈ Z[q] using the universal quantum invariant of bottom tangles associated to the quantum group U_h = U_h(g). Here we use neither the definition of τ^g_M(ζ) nor the quantum link invariants associated to finite-dimensional representations
 - of U_h.
- The second step is to show that $ev_{\zeta}(J_M) = \tau_M^{\mathfrak{g}}(\zeta)$ for $\zeta \in \mathcal{Z}_{\mathfrak{g}}$.

Fact

Every integral homology sphere M can be obtained from S^3 by surgery along an algebraically-split, ± 1 -framed link L.

Theorem (H)

Two algebraically-split ± 1 -framed links L and L' in S³ gives the same result of surgery if and only if they are related by a sequence of Hoste moves.

うして ふゆう ふほう ふほう うらつ

Here a *Hoste move* on an algebraically-split, ± 1 -framed link is either surgery on an unknotted component or its inverse move.

Universal quantum invariants of bottom tangles

Definition

A *bottom tangle* is a framed tangle in a cube cosisiting of arc components, the endpoints of each of whose component are located side-by-side on a line in the bottom face of the cube.

Definition

Using the ribbon Hopf algebra structure of the quantum group U_h , one can define the universal quantum invariant J_T of an *n*-component bottom tangle T, which takes values in the *n*-fold completed tensor power $U_h^{\hat{\otimes}n}$ of U_h .

Full-twist forms

To define J_M , we need *full-twist forms* on U_h , which are partially-defined linear functionals on U_h

$$t_{\pm} \colon U_h \dashrightarrow \mathbb{C}[[h]]$$

which play the role of "performing $\pm 1\mbox{-}framed$ surgery on the closure of the component".

The full-twist form t_{\pm} is defined by

$$t_{\pm}(x) = \langle x, r^{\pm 1} \rangle.$$

Here $\mathbf{r}^{\pm 1} \in U_h$ is the ribbon element, which is the universal invariant of the "twist tangle".

 \langle,\rangle is a partially defined bilinear map

$$\langle,\rangle: U_h \hat{\otimes} U_h \dashrightarrow \mathbb{C}[[h]],$$

Definition of J_M

Let M be an integral homology sphere. Let L be an *n*-component, algebraically-split, ± 1 -framed link in S^3 such that $S_L^3 \cong M$. Take a 0-framed bottom tangle T whose closure is isotopic to L, ignoring the framings.

Set

$$J_M = (t_{\epsilon_1} \otimes \cdots \otimes t_{\epsilon_n})(J_T) \in \mathbb{C}[[h]].$$

We can prove that

- ► J_M is well defined,
- ► J_M is invariant under the Hoste moves, hence gives an invariant of an integral homology sphere,

►
$$J_M \in \widehat{\mathbb{Z}}[q] (\subset \mathbb{Z}[[q-1]] \subset \mathbb{C}[[h]])$$
, where $q = \exp h$.