On the topology of the space of Kleinian once-punctured torus groups

Kentaro Ito

Nagoya University, Japan

November 7, 2012 CNRS/JSPS joint seminar at Marseille

・ロト ・個ト ・ヨト ・ヨト

Spaces of Kleinian surface groups

Let $\boldsymbol{\Sigma}$ be a compact, oriented surface with negative Euler characteristics.

$$\begin{array}{lll} R(\Sigma) & := & \operatorname{Hom}^{TP}(\pi_1(\Sigma), \operatorname{PSL}(2, \mathbb{C})) / \operatorname{PSL}(2, \mathbb{C}) & (\text{with alg. top.}) \\ AH(\Sigma) & := & \{\rho \in R(\Sigma) : \operatorname{faitiful}, \operatorname{discrete}\} \end{array}$$

$$= \{ \text{hyperbolic manifold} \cong \text{int}(\Sigma \times [0, 1]) \}$$

- (Quasi-Fuchsian space) $QF(\Sigma) := int(AH(\Sigma)) \cong T(\Sigma) \times T(\Sigma)$.
- (Density Theorem) $AH(\Sigma) = \overline{QF(\Sigma)}$.
- (McMullen, Anderson-Canary) QF(Σ) self-bumps. i.e. ∃ρ ∈ ∂QF(Σ), ∀U: small nbd. of ρ, U ∩ QF(Σ) is disconnected.
- (Bromberg, Magid) AH(Σ) is not locally connected. i.e.
 ∃ρ ∈ ∂AH(Σ), ∀U: small nbd. of ρ, U ∩ AH(Σ) is disconnected.

・ロト ・回ト ・ヨト ・ヨト

Let S be a once-punctured torus with $\pi_1(S) = \langle a, b \rangle$. Teichmüller space T(S) of S can be identified with the upper half-plane $\mathbf{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}.$

(日) (同) (三) (三)

$$T(S) \quad \longleftrightarrow \quad \mathbf{H}$$

$$\partial T(S) = PML(S) \quad \longleftrightarrow \quad \hat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$$

$$\mathcal{S} = \{\text{s.c.c. on } S\} \quad \longleftrightarrow \quad \hat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$$

Especially $a \leftrightarrow \infty$, $b \leftrightarrow 0$ and $a^{-1}b \leftrightarrow 1$.

The space of Kleinan punctured-torus groups

$$R(S) = \{\rho : \pi_1(S) \to PSL(2, \mathbb{C}) \text{ with } tr\rho([a, b]) = -2\}/PSL(2, \mathbb{C}) \\ AH(S) = \{\rho \in R(S) : faitiful, discrete\}$$

Theorem 1 (Minsky's Ending Lamination Theorem)

The canonical homeomorphism

$$Q: T(S) \times T(S) \rightarrow QF(S)$$

extends continuous bijection

$$Q: \left(\overline{T(S)} \times \overline{T(S)}\right) \setminus \Delta \to AH(S),$$

where $\overline{T(S)} = T(S) \cup \partial T(S)$, and Δ is the diagonal of $\partial T(S) \times \partial T(S)$.

(McMullen, Anderson-Canary) Q^{-1} is not continuous.

ヘロン 人間 とうほう うほうし

Wrapping construction (Anderson-Canary)

Let

- G be a Kleinian group s.t. $\mathbf{H}^3/G \cong S imes (0,1) c imes \{1/2\}$ for some $c \in \mathcal{S}$,
- $f: S \to \mathbf{H}^3/G$ be the immersed surface as in the figure,
- $g_n: \mathbf{H}^3/G \to M_n$ be the (1, n)-Dehn filling map at the rank-2 cusp.

Then we have

$$\rho_n := (g_n \circ f)_* = Q(\tau_c^n X, \tau_c^{2n} Y),$$

where τ_c is the Dehn twist around $c \in S$. Since

$$Q(\tau_c^n X, \tau_c^{2n} Y) \to f_* \in AH(S) \quad \text{and} \quad (\tau_c^n X, \tau_c^{2n} Y) \to (c,c) \in \Delta,$$

 Q^{-1} is not continuous. Simillary, $Q(\tau_c^{pn}X, \tau_c^{(p+1)n}Y)$ converges as $n \to \infty$ for every $p \in \mathbb{Z}$.

Question

Suppose $(X_n, Y_n) \to (X_\infty, X_\infty) \in \Delta$. When does $Q(X_n, Y_n)$ converge or diverge in AH(S)?

(Ohshika) If $X_{\infty} \in PML(S) - S$, then $Q(X_n, Y_n) \to \infty$.

Theorem 2 (I.)

Suppose $(X_n, Y_n) \rightarrow (c, c) \in \Delta$ and $c \in S$.

- If either {X_n} or {Y_n} converge horocyclically to c, then Q(X_n, Y_n) → ∞.
- ② Suppose that both {*X_n*} and {*Y_n*} converge tangentially to *c*. We symplify the situation as follows: $X_n = \tau_c^{k_n} X$, $Y_n = \tau_c^{l_n} Y$ for some (*X*, *Y*). Then $Q(\tau_c^{k_n} X, \tau_c^{l_n} Y)$ converges ⇔ $\exists p \in \mathbb{Z}$ s.t. $(p+1)k_n pl_n \equiv \text{const.}$ for all large *n*. (Especially $\frac{k_n}{l_n} \rightarrow \frac{p}{p+1}$)

cf. Ohshika generalize this theorem to general hyperbolic surfaces.

 $T(S) \cong \mathbf{H}$

(ロ) (四) (三) (三) (三)

Complex length

For a loxodromic element $g \in \mathsf{PSL}(2,\mathbb{C})$, its complex length $\lambda(g) \in \mathbb{C}$ is defined as

$$\lambda(g) = l + i heta \quad (l > 0, \ heta \in (-\pi, \pi]) \quad ext{ s.t. } g \sim (e^{\lambda(g)}z).$$

Note that

$$T_g := (\hat{\mathbb{C}} - \mathrm{fix}(g))/\langle g
angle \ \cong \ \mathbb{C}^{ imes}/\langle e^{\lambda(g)} z
angle \ \cong \ \mathbb{C} \left/ \left\langle z + 1, \ z + rac{2\pi i}{\lambda(g)}
ight
angle
ight
angle$$

i.e. $\frac{2\pi i}{\lambda(g)}$ is the Teichmüller parameter of the quotient torus T_g .

Let Γ_n , G be Kleinian groups. We say $\Gamma_n \to G$ geometrically if $\Gamma_n \to G$ in the sence of Hausdorff as closed subsets of PSL(2, \mathbb{C}), or, $(\mathbf{H}^3, *)/\Gamma_n \to (\mathbf{H}^3, *)/G$ in the sense of Gromov.

Geometric limits of cyclic groups

Lemma

Suppose loxodromic γ_n converges to $\delta = (z + 1)$ in $PSL(2, \mathbb{C})$.

- If $\lambda(\gamma_n) \to 0$ horocyclically, $\langle \gamma_n \rangle \to \langle \delta \rangle$ geometrically.
- **2** If $\lambda(\gamma_n) \to 0$ tangeitially, and if $\exists m_n \in \mathbb{Z}$ and $\exists \xi \in \mathbb{C}$ s.t.

$$rac{2\pi i}{\lambda(\gamma_n)}-m_n
ightarrow \xi\quad (n
ightarrow\infty),$$

then
$$\lim_{n\to\infty} \gamma_n^{-m_n} = \hat{\delta} = (z + \xi)$$
 and $\langle \gamma_n \rangle \to \langle \delta, \hat{\delta} \rangle$ geometrically.

Note that

- $\lambda(\gamma_n) \to 0$ horocyclically $\Leftrightarrow \operatorname{Im}(2\pi i/\lambda(\gamma_n)) \to \infty.$
- ② $\lambda(\gamma_n) \rightarrow 0$ tangentially ⇔ Im $(2\pi i/\lambda(\gamma_n)) < \exists C$ and Re $(2\pi i/\lambda(\gamma_n)) \rightarrow \infty$.

イロト 不得 トイヨト イヨト

Proof of Lemma

Since
$$\frac{2\pi i}{\lambda(\gamma_n)} - m_n \to \zeta$$
 and $|m_n| \to \infty$, we have $\frac{2\pi i}{m_n\lambda(\gamma_n)} \to 1$.
Let $g_n := (e^{\lambda(\gamma_n)}z) \sim \gamma_n$. Then $g_n(1) = e^{\lambda(\gamma_n)} \approx 1$ and $g_n^{m_n}(1) = e^{m_n\lambda(\gamma_n)} \approx 1$.
From the figure below, we see that if $\gamma_n \to (z+1)$ then $\gamma_n^{m_n} \to (z-\xi)$.

2

イロン イ団と イヨン イヨン

Theorem 2 (I.)

Let $X, Y \in T(S)$ and $k_n, l_n \in \mathbb{Z}$ be divergent sequences. Then $Q(\tau_c^{k_n}X, \tau_c^{l_n}Y)$ converges $\Leftrightarrow \exists p \in \mathbb{Z}$ s.t. $(p+1)k_n - pl_n \equiv \text{const.} (\forall n \gg 0)$

proof

We regard $T(S) \cong \mathbf{H}$ and assume $c = a \leftrightarrow \infty \in \partial \mathbf{H}$. Then $\tau_a : X \mapsto X + 1$ in \mathbf{H} . Let $m_n := l_n - k_n$. Then $Q(\tau_a^{k_n}X, \tau_a^{l_n}Y) = \tau_a^{k_n} \cdot Q(X, \tau_a^{m_n}Y)$. By setting $\rho_n := Q(\tau_a^{k_n}X, \tau_a^{l_n}Y)$ and $\eta_n := Q(X, \tau_a^{m_n}Y)$, we have

$$ho_n({\sf a})=\eta_n({\sf a}) \quad {
m and} \quad
ho_n({\sf b})=\eta_n({\sf a})^{k_n}\eta_n({\sf b}).$$

Since $\eta_n \to Q(X, a)$, ρ_n converges $\Leftrightarrow \eta_n(a)^{k_n}$ converges. On the other hand, by Minsky's Pivot Theorem, we have

$$\frac{2\pi i}{\lambda(\eta_n(a))} ~~\underset{\mathbf{H}}{\sim} ~~ X - \overline{\tau_a^{m_n}Y} + i ~~ (= X - \overline{Y} - m_n + i).$$

Thus we may assume that $\frac{2\pi i}{\lambda(\eta_n(a))} + m_n \to \exists \xi$. Therefore $\lim \eta_n(a)^{m_n}$ is primitive in the geometric limit of $\langle \eta_n(a) \rangle = \langle \rho_n(a) \rangle$. $\eta_n(a)^{k_n}$ converges \Leftrightarrow $\exists p \in \mathbb{Z}$ s.t. $k_n \equiv pm_n + \text{const.} \equiv p(k_n - l_n) + \text{consts.} (\forall n \gg 0)$.

Theorem 3

Given $\rho \in \partial AH(S)$, the followings are equivalent:

- QF(S) self-bumps at $\rho \in \partial AH(S)$.
- $\textbf{@} \ \rho \text{ is the limit of the sequence}$

$$Q(\tau_c^{pn}X,\tau_c^{(p+1)n}Y)$$

for some $c \in S$, $X, Y \in \overline{T(S)} \setminus \{c\}$, and $p \in \mathbb{Z}$.

 $(2) \Rightarrow (1)$ is due to McMullen for general surfaces. I don't know whether $(1) \Rightarrow (2)$ is true or not for general surfaces. (It seems not to be true...)

・ロト ・回ト ・ヨト ・ヨト

Bromberg's theory (1)

Bromberg's theory tells us the local topology of AH(S) near the Maskit slice $\mathbf{M} := \{ \rho \in AH(S) : \rho(a) \text{ is parabolic} \}.$

The Maskit slice $\boldsymbol{\mathsf{M}}$ can be enbedded into $\mathbb C$ as follows:

Let us define $\sigma_{\mu} : \pi_1(S) \to \mathsf{PSL}(2,\mathbb{C})$ by $\sigma_{\mu}(a) = (z+2), \quad \sigma_{\mu}(b) = (1/z + \mu).$

Then the map

$$f: \mathbb{C} \to \{ \rho \in R(S) : \rho(a) \text{ is parabolic} \}, \quad \mu \mapsto \sigma_{\mu}$$

is bijective.

Set

$$\mathcal{M} := \{ \mu \in \mathbb{C} : \sigma_{\mu} \in AH(S) \} = f^{-1}(\mathbf{M}).$$

- \mathcal{M} is also called the Maskit slice.
- \mathcal{M} is $\langle z+2 \rangle$ -invariant.

Bromberg's theory (2)

Let $\rho \in AH(S)$ with $\lambda(\rho(a)) \approx 0$. Then the geodesic γ in $\mathbf{H}^3/\rho(\pi_1(S))$ associated to $\rho(a)$ is short. By Drilling Theorem, there exist a complete hyp 3-mfd \hat{M} and a $(1 + \epsilon)$ - bi-Lipschitz map

$$\mathbf{H}^3/
ho(\pi_1(S)) - \mathcal{N}(\gamma) \longrightarrow \hat{M} - \mathcal{N}(\mathsf{rank-2 cusp})$$

where • \hat{M} is homeomorphic to $\hat{N} := S \times (0, 1) - \{a\} \times \{1/2\}.$

- $\hat{M} = \mathbf{H}^3/\langle z+2, 1/z+\mu, z+\zeta \rangle$ $(\mu, \zeta \in \mathbb{C}).$
- $\rho(a) \leftrightarrow z+2$, $\rho(b) \leftrightarrow 1/z + \mu$, $id \leftrightarrow z + \zeta$.

Let us define $\sigma_{\mu,\zeta}: \pi_1(\hat{N}) = \langle a, b, c : [a, c] = id \rangle \rightarrow \mathsf{PSL}(2, \mathbb{C})$ by

$$\sigma_{\mu,\zeta}(a)=(z+2), \quad \sigma_{\mu,\zeta}(b)=(1/z+\mu), \quad \sigma_{\mu,\zeta}(c)=(z+\zeta).$$

Bromberg's theory (3)

Bromberg' idea is to use (μ,ζ) as parameters of AH(S) near the Maskit slice. Let

$$\mathcal{B} := \{(\mu, \zeta) \in \mathbb{C}^2 : \sigma_{\mu, \zeta} : \mathsf{discrete}, \mathsf{faithful}\}.$$

It is known by Bromberg that

$$(\mu,\zeta) \in \mathcal{B} \iff \mu + k\zeta \in \mathcal{M}$$
 for all $k \in \mathbb{Z}$.

Set

$$\mathcal{A} := \{(\mu, \zeta) \in \mathcal{B} : \mathsf{Im}(\zeta) > \mathsf{0}\} \cup \{(\mu, \infty) : \mu \in \mathcal{M}\}$$

and define a map $\Phi: \mathcal{A} \to \mathcal{AH}(S)$ by

$$\Phi(\mu,\zeta) = \begin{cases} \rho = (\zeta - \text{filling of } \sigma_{\mu,\zeta}) & (\text{ if } \zeta \neq \infty), \\ \sigma_{\mu} & (\text{ if } \zeta = \infty). \end{cases}$$

$$\begin{array}{c} \mathcal{K} & \mathcal{M} \times \{\infty\} \\ \hline \\ \infty \\ \hline \\ 0 \\ \hline \\ 0 \\ \mu \\ \end{array}$$

سار

Theorem 4 (Bromberg)

 $\Phi: \mathcal{A} \to \mathcal{AH}(S)$ is a local homeomorphism at (μ, ∞) for any $\mu \in int(\mathcal{M})$.

Bromberg's theory (4)

Theorem 5 (Bromberg)

AH(S) is not locally connected.

Sketch of proof There is an open set $U \subset \mathcal{M}$ such that vertical slices

 $\mathcal{A}_{\mu} := \{ \zeta : (\mu, \zeta) \in \mathcal{A} \}$

of ${\mathcal A}$ is not locally conected at ∞ for all $\mu\in {\it U}.$ This can be seen from

$$\zeta \in \mathcal{A}_{\mu} \iff \zeta \in \bigcap_{k \in \mathbb{Z}, k \neq 0} \frac{1}{k} (\mu + \mathcal{M})$$

and the figure on the right. Therefore A, and hence AH(S), is not locally connected.

イロン イヨン イヨン イヨン

Given $\lambda \in \mathbb{C}_+ = \{z \in \mathbb{C} : \operatorname{Re}(z) \ge 0\}$, we define the linear slice $L(\lambda) \subset AH(S)$ for λ by

$$\mathbf{L}(\lambda) = \{ \rho \in AH(S) : \lambda(\rho(a)) = \lambda \}.$$

Note that L(0) is nothing but the Maskit slice; i.e.

 $\mathbf{L}(\mathbf{0}) = \mathbf{M} = \{ \rho \in AH(S) : \rho(a) \text{ is palabolic} \}.$

Question

When $\lambda_n \in \mathbb{C}_+$, $\lambda_n \to 0$, does $L(\lambda_n)$ converge to L(0) = M?

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Let consider the trace coordinate map

$$\Psi: R(S) \to \mathbb{C}_+ imes \mathbb{C}, \quad
ho \mapsto (\lambda(
ho(a)), \operatorname{tr}(
ho(b))).$$

This map is well defined and is a homeomorphism on a domain of R(S) consists of ρ with small $\lambda(\rho(a))$.

Let us define a subset $\mathcal{L}(\lambda) \subset \mathbb{C}$ (which is also called the Linear slice for λ) by

$$\mathcal{L}(\lambda) := \{ tr(\rho(b)) : \rho \in L(\lambda) \}.$$

Then $\Psi|_{L(\lambda)} : L(\lambda) \to {\lambda} \times \mathcal{L}(\lambda)$ is a homeomorphism.

Recall that L(0) = M, and for $\sigma_{\mu} \in M$, we have $tr(\sigma_{\mu}(b)) = tr(1/z + \mu) = i\mu$. Thus we have

$$\mathcal{L}(\mathbf{0})=i\mathcal{M}=\{i\mu:\mu\in\mathcal{M}\}.$$

Question

When $\lambda_n \in \mathbb{C}_+$, $\lambda_n \to 0$, does $\mathcal{L}(\lambda_n)$ converge to $\mathcal{L}(0) = i\mathcal{M}$?

イロン イボン イヨン イヨン

Relation between Bromberg's coordinate and trace coordinate

Let us consider the map $\Psi \circ \Phi$:

$$\mathcal{A} \stackrel{\Phi}{\longrightarrow} \mathcal{AH}(\mathcal{S}) \stackrel{\Psi}{\longrightarrow} \mathbb{C}_+ \times \mathbb{C}, \qquad (\mu, \zeta) \mapsto \rho \mapsto (\lambda, \beta).$$

Then we have

$$4\pi i/\lambda \approx \zeta, \quad \beta \approx i\mu.$$

Especially λ fix $\approx \zeta$ fix. Let consider horizontal slices of \mathcal{A} ;

$$\mathcal{M}(\zeta) := \{ \mu \in \mathbb{C} : (\mu, \zeta) \in \mathcal{A} \}.$$

Then we can expect that $\mathcal{L}(\lambda) \approx i\mathcal{M}(\zeta)$.

イロト イポト イヨト イヨト

Hausdorff limits of linear slices

Since
$$\mu \in \mathcal{M}(\zeta) \Leftrightarrow \mu \in k\zeta + \mathcal{M} \ (\forall k \in \mathbb{Z})$$
, we obtain the picture of $\mathcal{M}(\zeta)$.
• $\mathcal{M}(\zeta)$ is $\langle z + 2, z + \zeta \rangle$ -invariant.
• $\mathcal{M}(\zeta) = \mathcal{M}(\zeta)$ for all $k \in \mathbb{Z}$.

•
$$\mathcal{M}(\zeta + 2k) = \mathcal{M}(\zeta)$$
 for all $k \in \mathbb{Z}$.

$\mathcal{M} \underbrace{ \begin{array}{c} \mathcal{M} \\ \mathcal{M} \\ \mathcal{M} \end{array}}_{\mathcal{M}} \\ \mathcal{M} \\ \mathcal{M}$

Theorem 6 (I.)

Suppose that $\lambda_n \in \mathbb{C}_+$, $\lambda_n \to 0$.

• If $\lambda_n \to 0$ horocyclically, then

$$\mathcal{L}(\lambda_n) \to \mathcal{L}(0) = i\mathcal{M}$$
 (Hausdorff)

• Suppose that $\lambda_n \to 0$ tangentially, and that $\exists m_n \in \mathbb{Z}$ s.t. $\frac{2\pi i}{\lambda_n} - m_n \to \exists \xi \in \mathbb{C}$. Then

$$\mathcal{L}(\lambda_n) \to i\mathcal{M}(2\xi)$$
 (Hausdorff)

cf. The case of $\lambda_n \in \mathbb{R}_+$, $\lambda_n \to 0$ was observed by Parker-Parkkonen.

Linear slices $\mathcal{L}(\lambda_n)$ as $\lambda_n \to 0$

Complex Fenchel-Nielsen coordinate

Real Fencel-Nielsen coordinate is:

 $FN: \mathbb{R}_{>0} \times \mathbb{R} \to \{ \rho \in R(S) : \rho(\pi_1(S)) \text{ is Fuchsian} \} \ (\subset R(S) \xrightarrow{\Psi} \mathbb{C}_+ \times \mathbb{C})$

We have

$$\Psi \circ \mathit{FN}(\lambda, au) = \left(\lambda, rac{2\cosh(au/2)}{\tanh(\lambda/2)}
ight).$$

By analitic continuation, we obtain the complex Fencel-Nielsen coordinate map

$$FN: (\mathbb{C} \setminus 2\pi i\mathbb{Z}) \times \mathbb{C} \to R(S).$$

Geometric meaning of complex FN deformation

Assume that $\eta_0 := FN(\lambda, 0) \in QF(S)$. Then $\eta_\tau := FN(\lambda, \tau)$ for $\tau \in \mathbb{C}$ is obtained as follows (In the case of $\lambda \in \mathbb{R}_+$, this deformation is known as complex earthquake) :

Let Ω_0 be a component of $\Omega(\eta_0(\pi_1(S)))$. Then a component Ω_{τ} of $\Omega(\eta_{\tau}(\pi_1(S)))$ is obtained from Ω_0 by cutting and sliding along the axis of $\eta_0(a)$ (and its all conjugations) and inserting domains at cut loci.

Linear slices in τ -plane

Given $\lambda \in \mathbb{C}_+$, we set

$$\widetilde{\mathcal{L}}(\lambda) := \{ \tau \in \mathbb{C} : FN(\lambda, \tau) \in AH(S) \}.$$

Then $\widetilde{\mathcal{L}}(\lambda)$ is a (branched) covering of $\mathcal{L}(\lambda)$:

$$\begin{array}{cccc} \mathbb{C}_+ \times \mathbb{C} & \xrightarrow{FN} & R(S) & \stackrel{\Psi}{\longrightarrow} & \mathbb{C}_+ \times \mathbb{C}, \\ \\ \{\lambda\} \times \widetilde{\mathcal{L}}(\lambda) & \longrightarrow & \mathsf{L}(\lambda) & \longrightarrow & \{\lambda\} \times \mathcal{L}(\lambda). \end{array}$$

 $\mathcal{L}(\lambda)$ is $\langle z + \lambda, z + 2\pi i \rangle$ -invariant, where the action $z \mapsto z + \lambda$ corresponds to the Dehn twist about *a*.

$$\widetilde{\mathcal{L}}(\lambda)$$

 $\mathcal{L}(\lambda)$

イロン イロン イヨン イヨン 三日

Linear slices $\widetilde{\mathcal{L}}(\lambda_n)$ as $\lambda_n \to 0$

Let us consider the normalization

$$\frac{2}{\lambda}(\widetilde{\mathcal{L}}(\lambda) - \pi i)$$

of $\widetilde{\mathcal{L}}(\lambda)$, which is $\langle z+2, z+4\pi i/\lambda \rangle$ -invariant.

イロン イ団 と イヨン イヨン

Corollary of Theorem 6 (I.)

Suppose that $\lambda_n \in \mathbb{C}_+, \lambda_n \to 0$ as $n \to \infty$.

 $If \lambda_n \to 0 \text{ horocyclically, then}$

$$rac{2}{\lambda_n}(\widetilde{\mathcal{L}}(\lambda_n)-\pi i)
ightarrow\mathcal{M}.$$
 (Hausdorff)

2 If $\lambda_n \to 0$ tangentially and $2\pi i/\lambda_n - {}^{\exists}m_n \to {}^{\exists}\xi \in \mathbb{C}$, then

$$\frac{2}{\lambda_n}(\widetilde{\mathcal{L}}(\lambda_n) - \pi i) \to \mathcal{M}(2\xi). \quad (Hausdorff)$$

3

The previous corollary can be rephrased as follows:

Corollary of Theorem 6 (I.)

Suppose that
$$\lambda_n \in \mathbb{C}_+, \lambda_n \to 0$$
 as $n \to \infty$.

• If $\lambda_n \rightarrow 0$ horocyclically, then

$$(\mathbb{C}, \widetilde{\mathcal{L}}(\lambda_n), \pi i)/\langle z + \lambda, z + 2\pi i \rangle \rightarrow (\mathbb{C}, \mathcal{M}, 0)/\langle z + 2 \rangle.$$

2 If $\lambda_n \to 0$ tangentially and $2\pi i / \lambda_n - {}^{\exists} m_n \to {}^{\exists} \xi \in \mathbb{C}$, then

 $(\mathbb{C}, \widetilde{\mathcal{L}}(\lambda_n), \pi i)/\langle z + \lambda, z + 2\pi i \rangle \rightarrow (\mathbb{C}, \mathcal{M}(2\xi), 0)/\langle z + 2, z + 2\xi \rangle.$

イロン イロン イヨン イヨン 三日