On the topology of the space of Kleinian once-punctured torus groups

Kentaro Ito

Nagoya University, Japan

November 7, 2012
CNRS/JSPS joint seminar at Marseille

Spaces of Kleinian surface groups

Let Σ be a compact, oriented surface with negative Euler characteristics.

$$
\begin{aligned}
R(\Sigma) & :=\operatorname{Hom}^{T P}\left(\pi_{1}(\Sigma), \operatorname{PSL}(2, \mathbb{C})\right) / \operatorname{PSL}(2, \mathbb{C}) \quad \text { (with alg. top.) } \\
A H(\Sigma) & :=\{\rho \in R(\Sigma): \text { faitiful, discrete }\} \\
& =\{\text { hyperbolic manifold } \cong \operatorname{int}(\Sigma \times[0,1])\}
\end{aligned}
$$

- (Quasi-Fuchsian space) $Q F(\Sigma):=\operatorname{int}(A H(\Sigma)) \cong T(\Sigma) \times T(\Sigma)$.
- (Density Theorem) $A H(\Sigma)=\overline{Q F(\Sigma)}$.
- (McMullen, Anderson-Canary) $Q F(\Sigma)$ self-bumps. i.e. $\exists \rho \in \partial Q F(\Sigma), \forall U$: small nbd. of $\rho, U \cap Q F(\Sigma)$ is disconnected.
- (Bromberg, Magid) $A H(\Sigma)$ is not locally connected. i.e. $\exists \rho \in \partial A H(\Sigma), \forall U$: small nbd. of $\rho, U \cap A H(\Sigma)$ is disconnected.

Teichmuller space of once-punctured torus

Let S be a once-punctured torus with $\pi_{1}(S)=\langle a, b\rangle$. Teichmüller space $T(S)$ of S can be identified with the upper half-plane $\mathbf{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$.

$$
\begin{aligned}
T(S) & \longleftrightarrow \mathbf{H} \\
\partial T(S)=P M L(S) & \longleftrightarrow \hat{\mathbb{R}}=\mathbb{R} \cup\{\infty\} \\
\mathcal{S}=\{\text { s.c.c. on } S\} & \longleftrightarrow \hat{\mathbb{Q}}=\mathbb{Q} \cup\{\infty\}
\end{aligned}
$$

Especially $a \leftrightarrow \infty, b \leftrightarrow 0$ and $a^{-1} b \leftrightarrow 1$.

The space of Kleinan punctured-torus groups

$$
\begin{aligned}
R(S) & =\left\{\rho: \pi_{1}(S) \rightarrow \operatorname{PSL}(2, \mathbb{C}) \text { with } \operatorname{tr} \rho([a, b])=-\right\} / \operatorname{PSL}(2, \mathbb{C}) \\
A H(S) & =\{\rho \in R(S): \text { faitiful, discrete }\}
\end{aligned}
$$

Theorem 1 (Minsky's Ending Lamination Theorem)

The canonical homeomorphism

$$
Q: T(S) \times T(S) \rightarrow Q F(S)
$$

extends continuous bijection

$$
Q:(\overline{T(S)} \times \overline{T(S)}) \backslash \Delta \rightarrow A H(S)
$$

where $\overline{T(S)}=T(S) \cup \partial T(S)$, and Δ is the diagonal of $\partial T(S) \times \partial T(S)$.
(McMullen, Anderson-Canary) Q^{-1} is not continuous.

Wrapping construction (Anderson-Canary)

Let

- G be a Kleinian group s.t. $\mathbf{H}^{3} / G \cong S \times(0,1)-c \times\{1 / 2\}$ for some $c \in \mathcal{S}$,
- $f: S \rightarrow \mathbf{H}^{3} / G$ be the immersed surface as in the figure,
- $g_{n}: \mathbf{H}^{3} / G \rightarrow M_{n}$ be the ($1, n$)-Dehn filling map at the rank-2 cusp.

Then we have

$$
\rho_{n}:=\left(g_{n} \circ f\right)_{*}=Q\left(\tau_{c}^{n} X, \tau_{c}^{2 n} Y\right),
$$

where τ_{c} is the Dehn twist around $c \in \mathcal{S}$. Since

$$
Q\left(\tau_{c}^{n} X, \tau_{c}^{2 n} Y\right) \rightarrow f_{*} \in A H(S) \quad \text { and } \quad\left(\tau_{c}^{n} X, \tau_{c}^{2 n} Y\right) \rightarrow(c, c) \in \Delta
$$

Q^{-1} is not continuous.
Simillary, $Q\left(\tau_{c}^{p n} X, \tau_{c}^{(p+1) n} Y\right)$ converges as $n \rightarrow \infty$ for every $p \in \mathbb{Z}$.

Question

Suppose $\left(X_{n}, Y_{n}\right) \rightarrow\left(X_{\infty}, X_{\infty}\right) \in \Delta$. When does $Q\left(X_{n}, Y_{n}\right.$ $A H(S)$?
(Ohshika) If $X_{\infty} \in \operatorname{PML}(S)-\mathcal{S}$, then $Q\left(X_{n}, Y_{n}\right) \rightarrow \infty$.

Theorem 2 (I.)

Suppose $\left(X_{n}, Y_{n}\right) \rightarrow(c, c) \in \Delta$ and $c \in \mathcal{S}$.
(1) If either $\left\{X_{n}\right\}$ or $\left\{Y_{n}\right\}$ converge horocyclically to c, then $Q\left(X_{n}, Y_{n}\right) \rightarrow \infty$.
(2) Suppose that both $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ converge tangentially to c. We symplify the situation as

$$
T(S) \cong \mathbf{H}
$$

 follows: $X_{n}=\tau_{c}^{k_{n}} X, Y_{n}=\tau_{c}^{l_{n}} Y$ for some (X, Y). Then $Q\left(\tau_{c}^{k_{n}} X, \tau_{c}^{l_{n}} Y\right)$ converges \Leftrightarrow $\exists p \in \mathbb{Z}$ s.t. $(p+1) k_{n}-p l_{n} \equiv$ const. for all large n. (Especially $\frac{k_{n}}{I_{n}} \rightarrow \frac{p}{p+1}$)
cf. Ohshika generalize this theorem to general

$$
\Leftrightarrow l_{X_{n}}(c)>\epsilon>0
$$ hyperbolic surfaces.

Complex length

For a loxodromic element $g \in \operatorname{PSL}(2, \mathbb{C})$, its complex length $\lambda(g) \in \mathbb{C}$ is defined as

$$
\lambda(g)=I+i \theta \quad(I>0, \theta \in(-\pi, \pi]) \quad \text { s.t. } g \sim\left(e^{\lambda(g)} z\right)
$$

Note that

$$
T_{g}:=(\hat{\mathbb{C}}-\operatorname{fix}(g)) /\langle g\rangle \cong \mathbb{C}^{\times} /\left\langle e^{\lambda(g)} z\right\rangle \cong \mathbb{C} /\left\langle z+1, z+\frac{2 \pi i}{\lambda(g)}\right\rangle
$$

i.e. $\frac{2 \pi i}{\lambda(g)}$ is the Teichmüller parameter of the quotient torus T_{g}.

Let Γ_{n}, G be Kleinian groups. We say $\Gamma_{n} \rightarrow G$ geometrically if $\Gamma_{n} \rightarrow G$ in the sence of Hausdorff as closed subsets of $\operatorname{PSL}(2, \mathbb{C})$, or, $\left(\mathbf{H}^{3}, *\right) / \Gamma_{n} \rightarrow\left(\mathbf{H}^{3}, *\right) / G$ in the sense of Gromov.

Geometric limits of cyclic groups

Lemma

Suppose loxodromic γ_{n} converges to $\delta=(z+1)$ in $\operatorname{PSL}(2, \mathbb{C})$.
(1) If $\lambda\left(\gamma_{n}\right) \rightarrow 0$ horocyclically, $\left\langle\gamma_{n}\right\rangle \rightarrow\langle\delta\rangle$ geometrically.
(2) If $\lambda\left(\gamma_{n}\right) \rightarrow 0$ tangeitially, and if $\exists m_{n} \in \mathbb{Z}$ and $\exists \xi \in \mathbb{C}$ s.t.

$$
\frac{2 \pi i}{\lambda\left(\gamma_{n}\right)}-m_{n} \rightarrow \xi \quad(n \rightarrow \infty)
$$

then $\lim _{n \rightarrow \infty} \gamma_{n}^{-m_{n}}=\hat{\delta}=(z+\xi)$ and $\left\langle\gamma_{n}\right\rangle \rightarrow\langle\delta, \hat{\delta}\rangle$
 geometrically.

Note that
(1) $\lambda\left(\gamma_{n}\right) \rightarrow 0$ horocyclically
$\Leftrightarrow \operatorname{Im}\left(2 \pi i / \lambda\left(\gamma_{n}\right)\right) \rightarrow \infty$.
(2) $\lambda\left(\gamma_{n}\right) \rightarrow 0$ tangentially
$\Leftrightarrow \operatorname{Im}\left(2 \pi i / \lambda\left(\gamma_{n}\right)\right)<\exists C$ and $\operatorname{Re}\left(2 \pi i / \lambda\left(\gamma_{n}\right)\right) \rightarrow \infty$.

Proof of Lemma

Since $\frac{2 \pi i}{\lambda\left(\gamma_{n}\right)}-m_{n} \rightarrow \zeta$ and $\left|m_{n}\right| \rightarrow \infty$, we have $\frac{2 \pi i}{m_{n} \lambda\left(\gamma_{n}\right)} \rightarrow 1$.
Let $g_{n}:=\left(e^{\lambda\left(\gamma_{n}\right)} z\right) \sim \gamma_{n}$. Then $g_{n}(1)=e^{\lambda\left(\gamma_{n}\right)} \approx 1$ and $g_{n}^{m_{n}}(1)=e^{m_{n} \lambda\left(\gamma_{n}\right)} \approx 1$. From the figure below, we see that if $\gamma_{n} \rightarrow(z+1)$ then $\gamma_{n}^{m_{n}} \rightarrow(z-\xi)$.

Theorem 2 (I.)

Let $X, Y \in T(S)$ and $k_{n}, I_{n} \in \mathbb{Z}$ be divergent sequences. Then $Q\left(\tau_{c}^{k_{n}} X, \tau_{c}^{l_{n}} Y\right)$ converges $\Leftrightarrow \exists p \in \mathbb{Z}$ s.t. $(p+1) k_{n}-p l_{n} \equiv$ const. $(\forall n \gg 0)$

proof

We regard $T(S) \cong \mathbf{H}$ and assume $c=a \leftrightarrow \infty \in \partial \mathbf{H}$. Then $\tau_{a}: X \mapsto X+1$ in \mathbf{H}. Let $m_{n}:=I_{n}-k_{n}$. Then $Q\left(\tau_{a}^{k_{n}} X, \tau_{a}^{l_{n}} Y\right)=\tau_{a}^{k_{n}} \cdot Q\left(X, \tau_{a}^{m_{n}} Y\right)$.
By setting $\rho_{n}:=Q\left(\tau_{a}^{k_{n}} X, \tau_{a}^{l_{n}} Y\right)$ and $\eta_{n}:=Q\left(X, \tau_{a}^{m_{n}} Y\right)$, we have

$$
\rho_{n}(a)=\eta_{n}(a) \quad \text { and } \quad \rho_{n}(b)=\eta_{n}(a)^{k_{n}} \eta_{n}(b)
$$

Since $\eta_{n} \rightarrow Q(X, a), \rho_{n}$ converges $\Leftrightarrow \eta_{n}(a)^{k_{n}}$ converges.
On the other hand, by Minsky's Pivot Theorem, we have

$$
\frac{2 \pi i}{\lambda\left(\eta_{n}(a)\right)} \tilde{\mathbf{H}} X-\overline{\tau_{a}^{m_{n}} Y}+i \quad\left(=X-\bar{Y}-m_{n}+i\right) .
$$

Thus we may assume that $\frac{2 \pi i}{\lambda\left(\eta_{n}(a)\right)}+m_{n} \rightarrow{ }^{\exists} \xi$. Therefore $\lim \eta_{n}(a)^{m_{n}}$ is primitive in the geometric limit of $\left\langle\eta_{n}(a)\right\rangle=\left\langle\rho_{n}(a)\right\rangle$.
$\eta_{n}(a)^{k_{n}}$ converges \Leftrightarrow
$\exists p \in \mathbb{Z}$ s.t. $k_{n} \equiv p m_{n}+$ const. $\equiv p\left(k_{n}-I_{n}\right)+$ consts. $(\forall n \gg 0)$.

Self-bumping of $Q F(S)$

Theorem 3

Given $\rho \in \partial A H(S)$, the followings are equivalent:
(1) $Q F(S)$ self-bumps at $\rho \in \partial A H(S)$.
(2) ρ is the limit of the sequence

$$
Q\left(\tau_{c}^{p n} X, \tau_{c}^{(p+1) n} Y\right)
$$

for some $c \in \mathcal{S}, X, Y \in \overline{T(S)} \backslash\{c\}$, and $p \in \mathbb{Z}$.
$(2) \Rightarrow(1)$ is due to McMullen for general surfaces.
I don't know whether $(1) \Rightarrow(2)$ is true or not for general surfaces. (It seems not to be true...)

Bromberg's theory (1)

Bromberg's theory tells us the local topology of $A H(S)$ near the Maskit slice

$$
\mathbf{M}:=\{\rho \in A H(S): \rho(a) \text { is parabolic }\} .
$$

The Maskit slice \mathbf{M} can be enbedded into \mathbb{C} as follows:
Let us define $\sigma_{\mu}: \pi_{1}(S) \rightarrow \operatorname{PSL}(2, \mathbb{C})$ by

$$
\sigma_{\mu}(a)=(z+2), \quad \sigma_{\mu}(b)=(1 / z+\mu) .
$$

Then the map

$$
f: \mathbb{C} \rightarrow\{\rho \in R(S): \rho(a) \text { is parabolic }\}, \quad \mu \mapsto \sigma_{\mu}
$$

is bijective.
Set

$$
\mathcal{M}:=\left\{\mu \in \mathbb{C}: \sigma_{\mu} \in A H(S)\right\}=f^{-1}(\mathbf{M})
$$

- \mathcal{M} is also called the Maskit slice.
- \mathcal{M} is $\langle z+2\rangle$-invariant.

Bromberg's theory (2)

Let $\rho \in A H(S)$ with $\lambda(\rho(a)) \approx 0$. Then the geodesic γ in $\mathbf{H}^{3} / \rho\left(\pi_{1}(S)\right)$ associated to $\rho(a)$ is short. By Drilling Theorem, there exist a complete hyp $3-\mathrm{mfd} \hat{M}$ and a $(1+\epsilon)$ - bi-Lipschitz map

$$
\mathbf{H}^{3} / \rho\left(\pi_{1}(S)\right)-\mathcal{N}(\gamma) \quad \longrightarrow \quad \hat{M}-\mathcal{N}(\text { rank }-2 \text { cusp })
$$

where - \hat{M} is homeomorphic to $\hat{N}:=S \times(0,1)-\{a\} \times\{1 / 2\}$.

- $\hat{M}=\mathbf{H}^{3} /\langle z+2,1 / z+\mu, z+\zeta\rangle \quad(\mu, \zeta \in \mathbb{C})$.
- $\rho(a) \leftrightarrow z+2, \quad \rho(b) \leftrightarrow 1 / z+\mu, \quad i d \leftrightarrow z+\zeta$.

Let us define $\sigma_{\mu, \zeta}: \pi_{1}(\hat{N})=\langle a, b, c:[a, c]=i d\rangle \rightarrow \operatorname{PSL}(2, \mathbb{C})$ by

$$
\sigma_{\mu, \zeta}(a)=(z+2), \quad \sigma_{\mu, \zeta}(b)=(1 / z+\mu), \quad \sigma_{\mu, \zeta}(c)=(z+\zeta) .
$$

Bromberg's theory (3)

Bromberg' idea is to use (μ, ζ) as parameters of $A H(S)$ near the Maskit slice. Let

$$
\mathcal{B}:=\left\{(\mu, \zeta) \in \mathbb{C}^{2}: \sigma_{\mu, \zeta}: \text { discrete, faithful }\right\}
$$

It is known by Bromberg that

$$
(\mu, \zeta) \in \mathcal{B} \Leftrightarrow \mu+k \zeta \in \mathcal{M} \text { for all } k \in \mathbb{Z}
$$

Set

$$
\mathcal{A}:=\{(\mu, \zeta) \in \mathcal{B}: \operatorname{Im}(\zeta)>0\} \cup\{(\mu, \infty): \mu \in \mathcal{M}\}
$$

and define a map $\Phi: \mathcal{A} \rightarrow A H(S)$ by

$$
\Phi(\mu, \zeta)= \begin{cases}\rho=\left(\zeta \text {-filling of } \sigma_{\mu, \zeta}\right) & (\text { if } \zeta \neq \infty) \\ \sigma_{\mu} & (\text { if } \zeta=\infty)\end{cases}
$$

Theorem 4 (Bromberg)

$\Phi: \mathcal{A} \rightarrow A H(S)$ is a local homeomorphism at (μ, ∞) for any $\mu \in \operatorname{int}(\mathcal{M})$.

Bromberg's theory (4)

Theorem 5 (Bromberg)

$A H(S)$ is not locally connected.
Sketch of proof There is an open set $U \subset \mathcal{M}$ such that vertical slices

$$
\mathcal{A}_{\mu}:=\{\zeta:(\mu, \zeta) \in \mathcal{A}\}
$$

of \mathcal{A} is not locally conected at ∞ for all $\mu \in U$. This can be seen from

$$
\zeta \in \mathcal{A}_{\mu} \Leftrightarrow \zeta \in \bigcap_{k \in \mathbb{Z}, k \neq 0} \frac{1}{k}(\mu+\mathcal{M})
$$

and the figure on the right.
Therefore \mathcal{A}, and hence $A H(S)$, is not locally connected.

$$
\mu+\mathcal{M}
$$

Linear slices

Given $\lambda \in \mathbb{C}_{+}=\{z \in \mathbb{C}: \operatorname{Re}(z) \geq 0\}$, we define the linear slice $\mathbf{L}(\lambda) \subset A H(S)$ for λ by

$$
\mathbf{L}(\lambda)=\{\rho \in A H(S): \lambda(\rho(a))=\lambda\} .
$$

Note that $\mathbf{L}(0)$ is nothing but the Maskit slice; i.e.

$$
\mathbf{L}(0)=\mathbf{M}=\{\rho \in A H(S): \rho(a) \text { is palabolic }\} .
$$

Question

When $\lambda_{n} \in \mathbb{C}_{+}, \lambda_{n} \rightarrow 0$, does $\mathbf{L}\left(\lambda_{n}\right)$ converge to $\mathbf{L}(0)=\mathbf{M}$?

Trace coordinate

Let consider the trace coordinate map

$$
\Psi: R(S) \rightarrow \mathbb{C}_{+} \times \mathbb{C}, \quad \rho \mapsto(\lambda(\rho(a)), \operatorname{tr}(\rho(b)))
$$

This map is well defined and is a homeomorphism on a domain of $R(S)$ consists of ρ with small $\lambda(\rho(a))$.
Let us define a subset $\mathcal{L}(\lambda) \subset \mathbb{C}$ (which is also called the Linear slice for λ) by

$$
\mathcal{L}(\lambda):=\{\operatorname{tr}(\rho(b)): \rho \in \mathbf{L}(\lambda)\}
$$

Then $\left.\Psi\right|_{\mathbf{L}(\lambda)}: \mathbf{L}(\lambda) \rightarrow\{\lambda\} \times \mathcal{L}(\lambda)$ is a homeomorphism.
Recall that $\mathbf{L}(0)=\mathbf{M}$, and for $\sigma_{\mu} \in \mathbf{M}$, we have $\operatorname{tr}\left(\sigma_{\mu}(b)\right)=\operatorname{tr}(1 / z+\mu)=i \mu$. Thus we have

$$
\mathcal{L}(0)=i \mathcal{M}=\{i \mu: \mu \in \mathcal{M}\}
$$

Question

When $\lambda_{n} \in \mathbb{C}_{+}, \lambda_{n} \rightarrow 0$, does $\mathcal{L}\left(\lambda_{n}\right)$ converge to $\mathcal{L}(0)=i \mathcal{M}$?

Relation between Bromberg's coordinate and trace coordinate

Let us consider the map $\Psi \circ \Phi$:

$$
\mathcal{A} \xrightarrow{\Phi} A H(S) \xrightarrow{\psi} \mathbb{C}_{+} \times \mathbb{C}, \quad(\mu, \zeta) \mapsto \rho \mapsto(\lambda, \beta) .
$$

Then we have

$$
4 \pi i / \lambda \approx \zeta, \quad \beta \approx i \mu
$$

Especially λ fix $\approx \zeta$ fix. Let consider horizontal slices of \mathcal{A};

$$
\mathcal{M}(\zeta):=\{\mu \in \mathbb{C}:(\mu, \zeta) \in \mathcal{A}\}
$$

Then we can expect that $\mathcal{L}(\lambda) \approx i \mathcal{M}(\zeta)$.

Hausdorff limits of linear slices

Since $\mu \in \mathcal{M}(\zeta) \Leftrightarrow \mu \in k \zeta+\mathcal{M}(\forall k \in \mathbb{Z})$, we obtain the picture of $\mathcal{M}(\zeta)$.

- $\mathcal{M}(\zeta)$ is $\langle z+2, z+\zeta\rangle$-invariant.
- $\mathcal{M}(\zeta+2 k)=\mathcal{M}(\zeta)$ for all $k \in \mathbb{Z}$.

Theorem 6 (I.)

Suppose that $\lambda_{n} \in \mathbb{C}_{+}, \lambda_{n} \rightarrow 0$.

- If $\lambda_{n} \rightarrow 0$ horocyclically, then

$$
\left.\mathcal{L}\left(\lambda_{n}\right) \rightarrow \mathcal{L}(0)=i \mathcal{M} \quad \text { (Hausdorff }\right)
$$

- Suppose that $\lambda_{n} \rightarrow 0$ tangentially, and that ${ }^{\exists} m_{n} \in \mathbb{Z}$ s.t.

$$
\frac{2 \pi i}{\lambda_{n}}-m_{n} \rightarrow{ }^{\exists} \xi \in \mathbb{C} \text {. Then }
$$

$$
\mathcal{L}\left(\lambda_{n}\right) \rightarrow i \mathcal{M}(2 \xi) \quad \text { (Hausdorff) }
$$

cf. The case of $\lambda_{n} \in \mathbb{R}_{+}, \lambda_{n} \rightarrow 0$ was observed by Parker-Parkkonen.

Linear slices $\mathcal{L}\left(\lambda_{n}\right)$ as $\lambda_{n} \rightarrow 0$

$$
\lambda_{n} \rightarrow 0: \text { tang } .
$$

(Drawn by K. Sakugawa)

Complex Fenchel-Nielsen coordinate

Real Fencel-Nielsen coordinate is:

$$
F N: \mathbb{R}_{>0} \times \mathbb{R} \rightarrow\left\{\rho \in R(S): \rho\left(\pi_{1}(S)\right) \text { is Fuchsian }\right\}\left(\subset R(S) \xrightarrow{\Psi} \mathbb{C}_{+} \times \mathbb{C}\right)
$$

We have

$$
\Psi \circ F N(\lambda, \tau)=\left(\lambda, \frac{2 \cosh (\tau / 2)}{\tanh (\lambda / 2)}\right) .
$$

By analitic continuation, we obtain the complex Fencel-Nielsen coordinate map

$$
F N:(\mathbb{C} \backslash 2 \pi i \mathbb{Z}) \times \mathbb{C} \rightarrow R(S)
$$

Geometric meaning of complex FN deformation

Assume that $\eta_{0}:=F N(\lambda, 0) \in Q F(S)$. Then $\eta_{\tau}:=F N(\lambda, \tau)$ for $\tau \in \mathbb{C}$ is obtained as follows (In the case of $\lambda \in \mathbb{R}_{+}$, this deformation is known as complex earthquake) :
Let Ω_{0} be a component of $\Omega\left(\eta_{0}\left(\pi_{1}(S)\right)\right)$. Then a component Ω_{τ} of $\Omega\left(\eta_{\tau}\left(\pi_{1}(S)\right)\right)$ is obtained from Ω_{0} by cutting and sliding along the axis of $\eta_{0}(a)$ (and its all conjugations) and inserting domains at cut loci.

Linear slices in τ-plane

Given $\lambda \in \mathbb{C}_{+}$, we set

$$
\widetilde{\mathcal{L}}(\lambda):=\{\tau \in \mathbb{C}: F N(\lambda, \tau) \in A H(S)\} .
$$

Then $\widetilde{\mathcal{L}}(\lambda)$ is a (branched) covering of $\mathcal{L}(\lambda)$:

$$
\begin{array}{rllll}
\mathbb{C}_{+} \times \mathbb{C} & \xrightarrow{F N} & R(S) & \xrightarrow{\Psi} & \mathbb{C}_{+} \times \mathbb{C}, \\
\{\lambda\} \times \widetilde{\mathcal{L}}(\lambda) & \longrightarrow & \mathbf{L}(\lambda) & \longrightarrow & \{\lambda\} \times \mathcal{L}(\lambda) .
\end{array}
$$

$\widetilde{\mathcal{L}}(\lambda)$ is $\langle z+\lambda, z+2 \pi i\rangle$-invariant, where the action $z \mapsto z+\lambda$ corresponds to the Dehn twist about a.

$\mathcal{L}(\lambda)$

Linear slices $\widetilde{\mathcal{L}}\left(\lambda_{n}\right)$ as $\lambda_{n} \rightarrow 0$

Let us consider the normalization

$$
\frac{2}{\lambda}(\widetilde{\mathcal{L}}(\lambda)-\pi i)
$$

of $\widetilde{\mathcal{L}}(\lambda)$, which is
$\langle z+2, z+4 \pi i / \lambda\rangle$-invariant.

Corollary of Theorem 6 (I.)

Suppose that $\lambda_{n} \in \mathbb{C}_{+}, \lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(1) If $\lambda_{n} \rightarrow 0$ horocyclically, then

$$
\frac{2}{\lambda_{n}}\left(\widetilde{\mathcal{L}}\left(\lambda_{n}\right)-\pi i\right) \rightarrow \mathcal{M} . \quad(\text { Hausdorff })
$$

(2) If $\lambda_{n} \rightarrow 0$ tangentially and $2 \pi i / \lambda_{n}-{ }^{\exists} m_{n} \rightarrow{ }^{\exists} \xi \in \mathbb{C}$, then

$$
\frac{2}{\lambda_{n}}\left(\widetilde{\mathcal{L}}\left(\lambda_{n}\right)-\pi i\right) \rightarrow \mathcal{M}(2 \xi) . \quad(\text { Hausdorff })
$$

The previous corollary can be rephrased as follows:

Corollary of Theorem 6 (I.)

Suppose that $\lambda_{n} \in \mathbb{C}_{+}, \lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(1) If $\lambda_{n} \rightarrow 0$ horocyclically, then

$$
\left(\mathbb{C}, \widetilde{\mathcal{L}}\left(\lambda_{n}\right), \pi i\right) /\langle z+\lambda, z+2 \pi i\rangle \rightarrow(\mathbb{C}, \mathcal{M}, 0) /\langle z+2\rangle
$$

(2) If $\lambda_{n} \rightarrow 0$ tangentially and $2 \pi i / \lambda_{n}-{ }^{\exists} m_{n} \rightarrow{ }^{\exists} \xi \in \mathbb{C}$, then

$$
\left(\mathbb{C}, \widetilde{\mathcal{L}}\left(\lambda_{n}\right), \pi i\right) /\langle z+\lambda, z+2 \pi i\rangle \rightarrow(\mathbb{C}, \mathcal{M}(2 \xi), 0) /\langle z+2, z+2 \xi\rangle .
$$

$$
(\mathbb{C}, \widetilde{\mathcal{L}}(\lambda), \pi i) /\langle z+\lambda, z+2 \pi i\rangle
$$

$$
(\mathbb{C}, \mathcal{M}(2 \xi), 0) /\langle z+2, z+\xi\rangle
$$

