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. . . . . .

Spaces of Kleinian surface groups

Let Σ be a compact, oriented surface with negative Euler characteristics.

R(Σ) := HomTP(π1(Σ), PSL(2, C))/PSL(2, C) (with alg. top.)

AH(Σ) := {ρ ∈ R(Σ) : faitiful, discrete}
= {hyperbolic manifold ∼= int(Σ× [0, 1])}

(Quasi-Fuchsian space) QF (Σ) := int(AH(Σ)) ∼= T (Σ)× T (Σ).

(Density Theorem) AH(Σ) = QF (Σ).

(McMullen, Anderson-Canary) QF (Σ) self-bumps. i.e.
∃ρ ∈ ∂QF (Σ), ∀U: small nbd. of ρ, U ∩ QF (Σ) is disconnected.

(Bromberg, Magid) AH(Σ) is not locally connected. i.e.
∃ρ ∈ ∂AH(Σ), ∀U: small nbd. of ρ, U ∩ AH(Σ) is disconnected.
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. . . . . .

Teichmuller space of once-punctured torus

Let S be a once-punctured torus with π1(S) = 〈a, b〉.
Teichmüller space T (S) of S can be identified with
the upper half-plane H = {z ∈ C : Im z > 0}.

a

b

T (S) ←→ H

∂T (S) = PML(S) ←→ R̂ = R ∪ {∞}
S = {s.c.c. on S} ←→ Q̂ = Q ∪ {∞}

Especially a↔∞, b ↔ 0 and a−1b ↔ 1.
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. . . . . .

The space of Kleinan punctured-torus groups

R(S) = {ρ : π1(S)→ PSL(2, C) with trρ([a, b]) = −2}/PSL(2, C)

AH(S) = {ρ ∈ R(S) : faitiful, discrete}

.
Theorem 1 (Minsky’s Ending Lamination Theorem)
..

......

The canonical homeomorphism

Q : T (S)× T (S)→ QF (S)

extends continuous bijection

Q :
(
T (S)× T (S)

)
\∆→ AH(S),

where T (S) = T (S) ∪ ∂T (S), and ∆ is the diagonal of
∂T (S)× ∂T (S).

(McMullen, Anderson-Canary) Q−1 is not continuous.
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. . . . . .

Wrapping construction (Anderson-Canary)

Let
• G be a Kleinian group s.t. H3/G ∼= S × (0, 1)− c × {1/2} for some c ∈ S,
• f : S → H3/G be the immersed surface as in the figure,
• gn : H3/G → Mn be the (1, n)-Dehn filling map at the rank-2 cusp.

Then we have
ρn := (gn ◦ f )∗ = Q(τn

c X , τ 2n
c Y ),

where τc is the Dehn twist around c ∈ S. Since

Q(τn
c X , τ 2n

c Y )→ f∗ ∈ AH(S) and (τn
c X , τ 2n

c Y )→ (c , c) ∈ ∆,

Q−1 is not continuous.
Simillary, Q(τpn

c X , τ
(p+1)n
c Y ) converges as n→∞ for every p ∈ Z.
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. . . . . .

.
Question
..

......

Suppose (Xn, Yn)→ (X∞,X∞) ∈ ∆. When does Q(Xn, Yn) converge or diverge in
AH(S)?

(Ohshika) If X∞ ∈ PML(S)− S, then Q(Xn, Yn)→∞.
.
Theorem 2 (I.)
..

......

Suppose (Xn,Yn)→ (c , c) ∈ ∆ and c ∈ S.
...1 If either {Xn} or {Yn} converge horocyclically to

c , then Q(Xn, Yn)→∞.
...2 Suppose that both {Xn} and {Yn} converge

tangentially to c . We symplify the situation as
follows: Xn = τ kn

c X , Yn = τ ln
c Y for some (X , Y ).

Then Q(τ kn
c X , τ ln

c Y ) converges ⇔
∃p ∈ Z s.t. (p + 1)kn − pln ≡ const. for all large
n. (Especially kn

ln
→ p

p+1 )

cf. Ohshika generalize this theorem to general
hyperbolic surfaces.
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. . . . . .

Complex length

For a loxodromic element g ∈ PSL(2, C), its complex length λ(g) ∈ C is defined
as

λ(g) = l + iθ (l > 0, θ ∈ (−π, π]) s.t. g ∼ (eλ(g)z).

Note that

Tg := (Ĉ− fix(g))/〈g〉 ∼= C×/〈eλ(g)z〉 ∼= C
/〈

z + 1, z +
2πi

λ(g)

〉
.

i.e. 2πi
λ(g) is the Teichmüller parameter of the quotient torus Tg .

0

1

2πi

0 0

1

exp
×

1

λ(g)

λ(g)

e
λ(g) 2πi/λ(g)

Let Γn, G be Kleinian groups. We say Γn → G geometrically if Γn → G in the
sence of Hausdorff as closed subsets of PSL(2, C), or, (H3, ∗)/Γn → (H3, ∗)/G in
the sense of Gromov.

Kentaro Ito (Nagoya University, Japan) On the topology of the space of Kleinian once-punctured torus groups
November 7, 2012 CNRS/JSPS joint seminar at Marseille 7

/ 26



. . . . . .

Geometric limits of cyclic groups

.
Lemma
..

......

Suppose loxodromic γn converges to δ = (z + 1) in PSL(2, C).
...1 If λ(γn)→ 0 horocyclically, 〈γn〉 → 〈δ〉 geometrically.
...2 If λ(γn)→ 0 tangeitially, and if ∃mn ∈ Z and ∃ξ ∈ C s.t.

2πi

λ(γn)
−mn → ξ (n→∞),

then lim
n→∞

γ−mn
n = δ̂ = (z + ξ) and 〈γn〉 → 〈δ, δ̂〉

geometrically.

Note that
...1 λ(γn)→ 0 horocyclically
⇔ Im(2πi/λ(γn))→∞.

...2 λ(γn)→ 0 tangentially
⇔ Im(2πi/λ(γn)) < ∃C and
Re(2πi/λ(γn))→∞.
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. . . . . .

Proof of Lemma

Since 2πi
λ(γn)

−mn → ζ and |mn| → ∞, we have 2πi
mnλ(γn)

→ 1.

Let gn := (eλ(γn)z) ∼ γn. Then gn(1) = eλ(γn) ≈ 1 and gmn
n (1) = emnλ(γn) ≈ 1.

From the figure below, we see that if γn → (z + 1) then γmn
n → (z − ξ).
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. . . . . .

.
Theorem 2 (I.)
..

......

Let X , Y ∈ T (S) and kn, ln ∈ Z be divergent sequences. Then
Q(τ kn

c X , τ ln
c Y ) converges⇔ ∃p ∈ Z s.t. (p + 1)kn − pln ≡ const. (∀n� 0)

proof

We regard T (S) ∼= H and assume c = a↔∞ ∈ ∂H. Then τa : X 7→ X + 1 in H.
Let mn := ln − kn. Then Q(τ kn

a X , τ ln
a Y ) = τ kn

a · Q(X , τmn
a Y ).

By setting ρn := Q(τ kn
a X , τ ln

a Y ) and ηn := Q(X , τmn
a Y ), we have

ρn(a) = ηn(a) and ρn(b) = ηn(a)
knηn(b).

Since ηn → Q(X , a), ρn converges ⇔ ηn(a)
kn converges.

On the other hand, by Minsky’s Pivot Theorem, we have

2πi

λ(ηn(a))
∼
H

X − τmn
a Y + i ( = X − Y −mn + i).

Thus we may assume that 2πi
λ(ηn(a))

+ mn → ∃ξ. Therefore lim ηn(a)
mn is primitive

in the geometric limit of 〈ηn(a)〉 = 〈ρn(a)〉.
ηn(a)

kn converges ⇔
∃p ∈ Z s.t. kn ≡ pmn + const. ≡ p(kn − ln) + consts. (∀n� 0).
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. . . . . .

Self-bumping of QF (S)

.
Theorem 3
..

......

Given ρ ∈ ∂AH(S), the followings are equivalent:
...1 QF (S) self-bumps at ρ ∈ ∂AH(S).
...2 ρ is the limit of the sequence

Q(τpn
c X , τ (p+1)n

c Y )

for some c ∈ S, X , Y ∈ T (S) \ {c}, and p ∈ Z.

(2)⇒ (1) is due to McMullen for general surfaces.
I don’t know whether (1)⇒ (2) is true or not for general surfaces. (It seems not
to be true...)
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. . . . . .

Bromberg’s theory (1)

Bromberg’s theory tells us the local topology of AH(S) near the Maskit slice

M := {ρ ∈ AH(S) : ρ(a) is parabolic}.
The Maskit slice M can be enbedded into C as follows:

Let us define σµ : π1(S)→ PSL(2, C) by

σµ(a) = (z + 2), σµ(b) = (1/z + µ).

Then the map

f : C→ {ρ ∈ R(S) : ρ(a) is parabolic}, µ 7→ σµ

is bijective.

Set

M := {µ ∈ C : σµ ∈ AH(S)} = f −1(M).

M is also called the Maskit slice.

M is 〈z + 2〉-invariant.

0

2-2

2i

-2i
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. . . . . .

Bromberg’s theory (2)

Let ρ ∈ AH(S) with λ(ρ(a)) ≈ 0. Then the geodesic γ in H3/ρ(π1(S)) associated
to ρ(a) is short. By Drilling Theorem, there exist a complete hyp 3-mfd M̂ and a
(1 + ε)- bi-Lipschitz map

H3/ρ(π1(S))−N (γ) −→ M̂ −N (rank-2 cusp)

where • M̂ is homeomorphic to N̂ := S × (0, 1)− {a} × {1/2}.
• M̂ = H3/〈z + 2, 1/z + µ, z + ζ〉 (µ, ζ ∈ C).
• ρ(a)↔ z + 2, ρ(b)↔ 1/z + µ, id ↔ z + ζ.

Let us define σµ,ζ : π1(N̂) = 〈a, b, c : [a, c] = id〉 → PSL(2, C) by

σµ,ζ(a) = (z + 2), σµ,ζ(b) = (1/z + µ), σµ,ζ(c) = (z + ζ).
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. . . . . .

Bromberg’s theory (3)

Bromberg’ idea is to use (µ, ζ) as parameters of AH(S) near the Maskit slice. Let

B := {(µ, ζ) ∈ C2 : σµ,ζ : discrete, faithful}.

It is known by Bromberg that

(µ, ζ) ∈ B ⇔ µ + kζ ∈M for all k ∈ Z.

Set

A := {(µ, ζ) ∈ B : Im(ζ) > 0} ∪ {(µ,∞) : µ ∈M}

and define a map Φ : A → AH(S) by

Φ(µ, ζ) =

{
ρ = (ζ–filling of σµ,ζ) ( if ζ 6=∞),

σµ ( if ζ =∞).

.
Theorem 4 (Bromberg)
..
......Φ : A → AH(S) is a local homeomorphism at (µ,∞) for any µ ∈ int(M).

Kentaro Ito (Nagoya University, Japan) On the topology of the space of Kleinian once-punctured torus groups
November 7, 2012 CNRS/JSPS joint seminar at Marseille 14

/ 26



. . . . . .

Bromberg’s theory (4)

.
Theorem 5 (Bromberg)
..
......AH(S) is not locally connected.

Sketch of proof There is an open set U ⊂M
such that vertical slices

Aµ := {ζ : (µ, ζ) ∈ A}

of A is not locally conected at ∞ for all µ ∈ U.
This can be seen from

ζ ∈ Aµ ⇔ ζ ∈
∩

k∈Z,k 6=0

1

k
(µ +M)

and the figure on the right.
Therefore A, and hence AH(S), is not locally
connected.
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. . . . . .

Linear slices

Given λ ∈ C+ = {z ∈ C : Re(z) ≥ 0}, we define the linear slice L(λ) ⊂ AH(S) for
λ by

L(λ) = {ρ ∈ AH(S) : λ(ρ(a)) = λ}.

Note that L(0) is nothing but the Maskit slice; i.e.

L(0) = M = {ρ ∈ AH(S) : ρ(a) is palabolic}.

.
Question
..
......When λn ∈ C+, λn → 0, does L(λn) converge to L(0) = M?
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. . . . . .

Trace coordinate

Let consider the trace coordinate map

Ψ : R(S)→ C+ × C, ρ 7→ (λ(ρ(a)), tr(ρ(b))).

This map is well defined and is a homeomorphism on a domain of R(S) consists
of ρ with small λ(ρ(a)).
Let us define a subset L(λ) ⊂ C (which is also called the Linear slice for λ) by

L(λ) := {tr(ρ(b)) : ρ ∈ L(λ)}.

Then Ψ|L(λ) : L(λ)→ {λ} × L(λ) is a homeomorphism.

Recall that L(0) = M, and for σµ ∈M, we have tr(σµ(b)) = tr(1/z + µ) = iµ.
Thus we have

L(0) = iM = {iµ : µ ∈M}.

.
Question
..
......When λn ∈ C+, λn → 0, does L(λn) converge to L(0) = iM?
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. . . . . .

Relation between Bromberg’s coordinate and trace
coordinate

Let us consider the map Ψ ◦ Φ:

A Φ−→ AH(S)
Ψ−→ C+ × C, (µ, ζ) 7→ ρ 7→ (λ, β).

Then we have
4πi/λ ≈ ζ, β ≈ iµ.

Especially λ fix ≈ ζ fix. Let consider horizontal slices of A;

M(ζ) := {µ ∈ C : (µ, ζ) ∈ A}.

Then we can expect that L(λ) ≈ iM(ζ).
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. . . . . .

Hausdorff limits of linear slices

Since µ ∈M(ζ)⇔ µ ∈ kζ +M (∀k ∈ Z),
we obtain the picture of M(ζ).
• M(ζ) is 〈z + 2, z + ζ〉-invariant.
• M(ζ + 2k) =M(ζ) for all k ∈ Z.

.
Theorem 6 (I.)
..

......

Suppose that λn ∈ C+, λn → 0.

If λn → 0 horocyclically, then

L(λn)→ L(0) = iM (Hausdorff )

Suppose that λn → 0 tangentially, and that ∃mn ∈ Z s.t.
2πi

λn
−mn → ∃ξ ∈ C. Then

L(λn)→ iM(2ξ) (Hausdorff )

cf. The case of λn ∈ R+, λn → 0 was observed by Parker-Parkkonen.
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. . . . . .

Linear slices L(λn) as λn → 0

(Drawn by K. Sakugawa)

Kentaro Ito (Nagoya University, Japan) On the topology of the space of Kleinian once-punctured torus groups
November 7, 2012 CNRS/JSPS joint seminar at Marseille 20

/ 26



. . . . . .

Complex Fenchel-Nielsen coordinate

Real Fencel-Nielsen coordinate is:

FN : R>0 × R→ {ρ ∈ R(S) : ρ(π1(S)) is Fuchsian} (⊂ R(S)
Ψ−→ C+ × C)

We have

Ψ ◦ FN(λ, τ) =

(
λ,

2 cosh(τ/2)

tanh(λ/2)

)
.

By analitic continuation, we obtain the complex Fencel-Nielsen coordinate map

FN : (C \ 2πiZ)× C→ R(S).
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. . . . . .

Geometric meaning of complex FN deformation

Assume that η0 := FN(λ, 0) ∈ QF (S). Then ητ := FN(λ, τ) for τ ∈ C is obtained
as follows (In the case of λ ∈ R+, this deformation is known as complex
earthquake) :
Let Ω0 be a component of Ω(η0(π1(S))). Then a component Ωτ of Ω(ητ (π1(S)))
is obtained from Ω0 by cutting and sliding along the axis of η0(a) (and its all
conjugations) and inserting domains at cut loci.
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. . . . . .

Linear slices in τ -plane

Given λ ∈ C+, we set

L̃(λ) := {τ ∈ C : FN(λ, τ) ∈ AH(S)}.

Then L̃(λ) is a (branched) covering of L(λ):

C+ × C FN−→ R(S)
Ψ−→ C+ × C,

{λ} × L̃(λ) −→ L(λ) −→ {λ} × L(λ).

L̃(λ) is 〈z + λ, z + 2πi〉-invariant, where the action z 7→ z + λ corresponds to the
Dehn twist about a.
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. . . . . .

Linear slices L̃(λn) as λn → 0

(Drawn by K. Sakugawa)
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. . . . . .

Let us consider the normalization

2

λ
(L̃(λ)− πi)

of L̃(λ), which is
〈z + 2, z + 4πi/λ〉-invariant.

πi λ

2πi

2

0

0

4πi/λ

.
Corollary of Theorem 6 (I.)
..

......

Suppose that λn ∈ C+, λn → 0 as n→∞.
...1 If λn → 0 horocyclically, then

2

λn
(L̃(λn)− πi)→M. (Hausdorff )

...2 If λn → 0 tangentially and 2πi/λn − ∃mn → ∃ξ ∈ C, then

2

λn
(L̃(λn)− πi)→M(2ξ). (Hausdorff )
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. . . . . .

The previous corollary can be rephrased as follows:

.
Corollary of Theorem 6 (I.)
..

......

Suppose that λn ∈ C+, λn → 0 as n→∞.
...1 If λn → 0 horocyclically, then

(C, L̃(λn), πi)/〈z + λ, z + 2πi〉 → (C,M, 0)/〈z + 2〉.

...2 If λn → 0 tangentially and 2πi/λn − ∃mn → ∃ξ ∈ C, then

(C, L̃(λn), πi)/〈z + λ, z + 2πi〉 → (C,M(2ξ), 0)/〈z + 2, z + 2ξ〉.
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