Heegaard splittings with large subsurface distance

Joint with Jesse Johnson and Yair Minsky

- A Heegaard splitting is a triple: (Σ, H^-, H^+) ,
- $\Sigma = \partial H^+ = \partial H^- = H^+ \cap H^-$ Heegaard surface so that $M = H^+ \cup_{\Sigma} H^-$.
- Curve complexes and Hempel distance: For Σ simplicial complex $C(\Sigma)$ called the *curve complex*.
- *i*-simplex $\in C(\Sigma)$ collection $([\gamma_0], \ldots, [\gamma_i])$ of isotopy classes of mutually disjoint essential simple closed curves in Σ .
- On 1-skeleton $\mathcal{C}^1(\Sigma) \subset \mathcal{C}(\Sigma)$ there is a natural path metric d defined by assigning length 1 to every edge.

• Sub-collection $\mathcal{D}(H^{\pm})$, of isotopy classes of curves in Σ , that bound disks in H^{\pm} (called *meridians*) is *handlebody set* associated with H^{\pm} respectively. $\mathcal{D}(H^{\pm})$ are subcomplexes.

• Given (Σ, H^-, H^+) we define the Hempel distance $d(\Sigma)$:

$$d(\Sigma) = d_{\mathcal{C}^1(\Sigma)}(\mathcal{D}(H^+), \mathcal{D}(H^-))$$

• If $\partial F \neq \emptyset$ define the *arc and curve complex* $\mathcal{AC}(F)$, by isotopy classes of essential (non-peripheral) s. c. c. and properly embedded arcs.

• If F is an annulus, there are no essential closed curves, and the isotopy classes of essential arcs should be taken rel endpoints.

• An *n*-simplex is a collection of n + 1 isotopy classes with disjoint representative loops / arcs. d_F the path metric on the 1-skeleton of $\mathcal{AC}^1(F)$ that assigns length 1 to every edge.

• If F is a connected proper essential subsurface in Σ , there is a map

$$\pi_F: \mathcal{C}^0(\Sigma) \to \mathcal{AC}^0(F) \cup \{\emptyset\}$$

Given a s.c.c. γ in Σ , isotope it to intersect ∂F minimally. If $F \cap \gamma = \emptyset$ set $\pi_F(\gamma) = \emptyset$. Otherwise consider the isotopy classes of components of $F \cap \gamma$ as a simplex in $\mathcal{AC}(F)$, and select (arbitrarily) one vertex to be $\pi_F(\gamma)$.

• If $F \subset \Sigma$ is a connected proper essential subsurface, set $\mathcal{D}_F(H^-) = \pi_F(\mathcal{D}(H^-))$ and $\mathcal{D}_F(H^+) = \pi_F(\mathcal{D}(H^+))$ – the projections to F of all loops that bound essential disks in H^- and H^+ , respectively.

• The *F*-distance of Σ ($d_F(\Sigma)$) - distance between these two sets,

 $d_F(\Sigma) = d_{\mathcal{AC}^1(F)}(\mathcal{D}_F(H^+), \mathcal{D}_F(H^-)).$

Scharlemann and Tomova. If a 3-manifold has a Heegaard surface Σ so that the Hempel distance $d(\Sigma)$ of the splitting is greater than twice its genus $g(\Sigma)$, then any other Heegaard surface Λ of genus $g(\Lambda) < d(\Sigma)/2$ is a stabilization of Σ .

Goal. In this paper, we generalize this theorem to the case where the Heegaard splitting Σ is not necessarily of high distance but has a proper essential subsurface $F \subset \Sigma$ so that the "subsurface distance" measured in F is large: **Theorem 0.1.** Let Σ be a Heegaard surface in a 3-manifold M of genus $g(\Sigma) \geq 2$, and let $F \subset \Sigma$ be a compact essential subsurface. Let Λ be another Heegaard surface for M of genus $g(\Lambda)$. If

 $d_F(\Sigma) > 2g(\Lambda) + c(F),$

then, up to ambient isotopy, the intersection $\Lambda \cap \Sigma$ contains F.

Here c(F) = 0 unless F is an annulus, 4-holed sphere, or 1 or 2-holed torus, in which case c(F) = 2.

This result can be paraphrased as follows:

Result. If the two disk sets of a Heegaard splitting intersect on a subsurface of the Heegaard surface in a relatively "complicated" way, then any other Heegaard surface whose genus is not too large must contain that subsurface.

• Idea of the proof:

• To a Heegaard splitting we associate a "sweepout" by parallel surfaces of the manifold minus a pair of spines.

• Given two surfaces Λ and Σ and associated sweepouts, we examine the way in which they interact. In particular under some natural genericity conditions we can assume that one of two situations occur:

(1) Λ *F*-spans Σ , or (2) Λ *F*-splits Σ .

• *F*-spanning implies that, up to isotopy, there is a moment in the sweepout corresponding to Σ when the subsurface parallel to *F* lies in the "upper" half of $M \smallsetminus \Lambda$, and a moment when it lies in the lower half. It then follows that Λ separates the product region between these two copies of *F*, and it follows fairly easily that it can be isotoped to contain *F*.

• *F*-splitting we show that, for each moment in the sweepout corresponding to Σ , the level surface intersects Λ in curves that have essential intersection with *F*. Studying the way in which these intersections change during the course of the sweepout, we use the topological complexity of Λ to control the subsurface distance of *F*.

• Combining these two results and imposing the condition that $d_F(\Sigma)$ is greater than a suitable function of $g(\Lambda)$ forces the first, i.e. *F*-spanning, case to occur.

• The discussion is complicated by some special cases, where F has particularly low complexity, in which the dichotomy between F-spanning and F-splitting doesn't quite hold. In those cases we obtain slightly different bounds.

We will have use for the following fact, which is a variation on a result of Masur-Schleimer:

Lemma 0.2. Let Σ be the boundary of a handlebody H of genus $g \geq 2$. Let $F \subset \Sigma$ be an essential connected subsurface of Σ . If $\Sigma \setminus F$ is compressible in H then $\pi_F(\mathcal{D}(H))$ comes within distance 2 of every vertex of $\mathcal{AC}(F)$, provided F is not a 4-holed sphere. If it is a 4-holed sphere the distance bound is 3.

Sweepouts. A sweepout of M^3 is a smooth function $f: M \to [-1, 1]$ s.t each $t \in (-1, 1)$ is a regular value, and the level set $f^{-1}(t)$ is a Heegaard surface. Furthermore each of the sets $\Gamma^+ = f^{-1}(1)$ and set $\Gamma^- = f^{-1}(-1)$ are spines of the respective compression bodies. We say the sweepout represents the Heegaard splitting associated to each level surface.

Two sweepouts f and h of M determine a smooth function $f \times h : M \rightarrow [-1,1] \times [-1,1]$. The differential $D(f \times h)$ has rank 2 (or dim $Ker(D(f \times h)) = 1$) wherever the level sets of f and h are transverse. Thus we define the discriminant set Δ to be the set of points of M for which dim $Ker(D(f \times h)) > 1$. The discriminant, and its image in $[-1,1] \times [-1,1]$, therefore encode the configuration of tangencies of the level sets of f and h.

The image $(f \times h)(\Delta)$ is a graph in $[-1,1] \times [-1,1]$ with smooth edges, called the *graphic*, or the *Rubinstein-Scharlemann graphic* We call $f \times h$ generic if it is stable away from the spines and each arc $[-1,1] \times \{s\}$ in the square intersects at most one vertex of the graphic. The following lemma of Kobayashi-Saeki justifies this term:

Lemma 0.3. Any pair of sweepouts can be isotoped to be generic.

• Suppose therefore that $f \times h$ is generic.

• Points in the square are denoted by (t,s), and we define the surfaces $\Lambda_s = h^{-1}(s)$ and $\Sigma_t = f^{-1}(t)$.

• If the vertical line $\{t\} \times [-1, 1]$ meets no vertices of the graphic, then $h|_{\Sigma_t}$ is Morse, and its critical points are $\Sigma_t \cap \Delta$.

Above and below. Let f, h sweepouts representing (Σ, H^-, H^+) and (Λ, V^-, V^+) , respectively.

• For each $s \in (-1,1)$, define $V_s^- = h^{-1}([-1,s])$ and $V_s^+ = h^{-1}([s,1])$. $\Lambda_t = \partial V_s^- = \partial V_s^+$.

• For each $t \in (-1, 1), H_t^- = h^{-1}([-1, t]), H_t^+ = h^{-1}([t, 1])$

•
$$\Sigma_t = \partial H_t^- = \partial H_t^+, \ \Lambda_t = \partial V_s^- = \partial V_s^+.$$

Definition 0.4. Σ_t is mostly above Λ_s with respect to F,

$$\Sigma_t \succ_F \Lambda_s,$$

if $\Sigma_t \cap V_s^-$ is contained in a subsurface of Σ_t that is isotopic into the complement of F_t (or is just contained in a disk, when $F = \Sigma$). Σ_t is mostly below Λ_s with respect to F, or

$$\Sigma_t \prec_F \Lambda_s,$$

if $\Sigma_t \cap V_s^+$ is contained in a subsurface that is isotopic into the complement of F_t (or contained in a disk).

• Here F is a proper subsurface. $F=\Sigma$ was done by Johnson and the definitions agree.

• Define R_a^F (respectively R_b^F) in $(-1, 1) \times (-1, 1)$ to be the set of all values (t, s) such that $\Sigma_t \succ_F \Lambda_s$ (respectively $\Sigma_t \prec_F \Lambda_s$).

• R_a^F and R_b^F are disjoint, open and bounded by arcs of the graphic, so that all interior vertices appearing in ∂R_a^F or ∂R_b^F have valence 4. R_a^F and R_b^F intersect each vertical line in a pair of intervals:

Relative spanning and splitting. Here we extend the notion of spanning and splitting relative to a subsurface F.

Definition 0.5. We say that h F-spans f if there is a horizontal arc $[-1, 1] \times \{s\}$ in $(-1, 1) \times (-1, 1)$ that intersects both R_a^F and R_b^F .

The complementary situation is the following:

Definition 0.6. We say that *h* weakly *F*-splits *f* if there is no horizontal arc $[-1, 1] \times \{s\}$ that meets both R_a^F and R_b^F .

A stronger condition:

Definition 0.7. *h F*-splits *f* if, for some $\{s\} \in (-1, 1)$, the arc $[-1, 1] \times \{s\}$ is disjoint from the closures of both R_a^F and R_b^F .

• *F*-spanning and weak *F*-splitting are complementary conditions.

 \bullet In the other direction: If F is not an annulus, 4-holed sphere or a 1-holed or 2-holed torus, then

h weakly F-splits $f \implies h$ F-splits f.

Equivalently, either h F-spans f, or h F-splits f.

• In the exceptional cases, if h weakly F-splits f but does not F-split, then there exists a unique horizontal line $[-1, 1] \times \{s\}$ which meets both closures $\overline{R_a^F}$ and $\overline{R_b^F}$ in a single point, which is a vertex of the graphic.

Λ F-spans $\Sigma.$

Proposition 0.8. If Λ *F*-spans Σ then after isotoping Λ we obtain a surface whose intersection with Σ contains *F*.

Sketch of Proof. There is a level surface Λ_s and values $t_-, t_+ \in (-1, 1)$, $t_- < t_+$ such that $\Sigma_{t_-} \prec_F \Lambda_s$ and $\Sigma_{t_+} \succ_F \Lambda_s$.

Identify $f^{-1}((-1,1))$, with $\Sigma \times (-1,1)$. Set $J = [t_-,t_+]$ and consider $F \times J \subset M$.

 $\Sigma_{t_-} \prec_F \Lambda_s \implies V_s^+ = h^{-1}([s, 1])$ intersects $\Sigma \times \{t_-\}$ in a set that can be isotoped outside of $F \times \{t_-\}$; equivalently:

 $F \times \{t_{-}\}$ can be isotoped within $\Sigma \times \{t_{-}\}$ so that it is contained in V_s^{-} .

Similarly $\Sigma_{t_+} \succ_F \Lambda_s \implies$ after isotopy the surface $F \times \{t_+\} \subset V_s^+$

Hence, after a level-preserving isotopy of $\Sigma \times (-1, 1)$, we may assume that $F \times \{t_{-}\}$ and $F \times \{t_{+}\}$ are contained in V_{s}^{-} and V_{s}^{+} , respectively.

Since Λ_s separates V_s^- from V_s^+ the surface $S = \Lambda_s \cap F \times J$ separates $F \times \{t_-\}$ from $F \times \{t_+\}$ within $F \times J$, so $0 \neq [S] \in H_2(F \times J, \partial F \times J)$.

Compress S if necessary to S^{*}. Let S' be a connected component which is still nonzero in $H_2(F \times J, \partial F \times J)$.

Then S' separates $F \times \{t_{-}\}$ from $F \times \{t_{+}\}$ and hence (up to orientation) must be homologous to $F \times \{t_{-}\}$.

So the projection of S' to $F \times \{t_{-}\}$ is a proper, π_1 -injective and of degree ± 1 . Hence it must also be π_1 -surjective, and thus S' is isotopic to a level surface $F \times \{t\}$.

Make the isotopy ambient and keeping track of the 1-handles corresponding to the compressions we obtain an isotopic copy of Λ which contains $F \times \{t\}$ minus attaching disks for the 1-handles. Now we can slide these disks outside of $F \times \{t\}$. Hence Λ itself is isotopic to a surface containing $F \times \{t\}$, as claimed.

 Λ *F*-splits (weakly splits) Σ . The intersections $\Lambda \cap \Sigma_t$ are the level sets of $f|_{\Lambda}$. Consider them as curves on Σ . The *F*-splitting property implies that they intersect *F* essentially. Now use the topological complexity of Λ to bound the diameter in $\mathcal{AC}(F)$ of the corresponding set. First show:

Lemma 0.9. If $d_F(\Sigma) > 3$, then there is some non-trivial interval $[u, v] \subset (-1, 1)$ such that for each regular $t \in [u, v]$, every loop of $\Sigma_t \cap \Lambda$ that is trivial in Λ is trivial in Σ_t .

For $t \in (-1, 1)$ (a regular value) of $f|_{\Lambda}$, \mathcal{L}_t denotes the set of nontrivial isotopy classes in Σ of the images of the curves of $(f|_{\Lambda})^{-1}(t)$. For an interval $J \subset (-1, 1)$ let \mathcal{L}_J denote the union of \mathcal{L}_t over regular $t \in J$.

Lemma 0.10. Let [u, v] be an interval as above If $(u, v) \times \{s\}$ encounters no vertices of the graphic then

 $\operatorname{diam}_F(\mathcal{L}_{[u,v]}) \le 2g(\Lambda) - 2.$

If $(u, v) \times \{s\}$ meets the weak splitting vertex then

 $\operatorname{diam}_F(\mathcal{L}_{[u,v]}) \le 2g(\Lambda) - 1.$

Proposition 0.11. Let Σ and Λ be Heegaard surfaces for M, and let $F \subset \Sigma$ be a proper connected essential subsurface. If Λ F-splits Σ then

 $d_F(\Sigma) \le 2g(\Lambda).$

If Λ weakly F-splits Σ then

 $d_F(\Sigma) \le 2g(\Lambda) + 2.$

The End