Heegaard splittings with large subsurface distance

Joint with Jesse Johnson and Yair Minsky

- A Heegaard splitting is a triple: $\left(\Sigma, H^{-}, H^{+}\right)$,
- $\Sigma=\partial H^{+}=\partial H^{-}=H^{+} \cap H^{-}$- Heegaard surface so that $M=H^{+} \cup_{\Sigma} H^{-}$.
- Curve complexes and Hempel distance: For Σ - simplicial complex $\mathcal{C}(\Sigma)$ called the curve complex.
- i-simplex $\in \mathcal{C}(\Sigma)$ collection $\left(\left[\gamma_{0}\right], \ldots,\left[\gamma_{i}\right]\right)$ of isotopy classes of mutually disjoint essential simple closed curves in Σ.
- On 1-skeleton $\mathcal{C}^{1}(\Sigma) \subset \mathcal{C}(\Sigma)$ there is a natural path metric d defined by assigning length 1 to every edge.
- Sub-collection $\mathcal{D}\left(H^{ \pm}\right)$, of isotopy classes of curves in Σ, that bound disks in $H^{ \pm}$(called meridians) is handlebody set associated with $H^{ \pm}$respectively. $\mathcal{D}\left(H^{ \pm}\right)$are subcomplexes.
- Given $\left(\Sigma, H^{-}, H^{+}\right)$we define the Hempel distance $d(\Sigma)$:

$$
d(\Sigma)=d_{\mathcal{C}^{1}(\Sigma)}\left(\mathcal{D}\left(H^{+}\right), \mathcal{D}\left(H^{-}\right)\right)
$$

- If $\partial F \neq \emptyset$ define the arc and curve complex $\mathcal{A C}(F)$, by isotopy classes of essential (non-peripheral) s. c. c. and properly embedded arcs.
- If F is an annulus, there are no essential closed curves, and the isotopy classes of essential arcs should be taken rel endpoints.
- An n-simplex is a collection of $n+1$ isotopy classes with disjoint representative loops / arcs. d_{F} the path metric on the 1 -skeleton of $\mathcal{A C}^{1}(F)$ that assigns length 1 to every edge.
- If F is a connected proper essential subsurface in Σ, there is a map

$$
\pi_{F}: \mathcal{C}^{0}(\Sigma) \rightarrow \mathcal{A C}^{0}(F) \cup\{\emptyset\}
$$

Given a s.c.c. γ in Σ, isotope it to intersect ∂F minimally. If $F \cap \gamma=\emptyset$ set $\pi_{F}(\gamma)=\emptyset$. Otherwise consider the isotopy classes of components of $F \cap \gamma$ as a simplex in $\mathcal{A C}(F)$, and select (arbitrarily) one vertex to be $\pi_{F}(\gamma)$.

- If $F \subset \Sigma$ is a connected proper essential subsurface, set $\mathcal{D}_{F}\left(H^{-}\right)=$ $\pi_{F}\left(\mathcal{D}\left(H^{-}\right)\right)$and $\mathcal{D}_{F}\left(H^{+}\right)=\pi_{F}\left(\mathcal{D}\left(H^{+}\right)\right)$- the projections to F of all loops that bound essential disks in H^{-}and H^{+}, respectively.
- The F-distance of $\Sigma\left(d_{F}(\Sigma)\right)$ - distance between these two sets,

$$
d_{F}(\Sigma)=d_{\mathcal{A C}^{1}(F)}\left(\mathcal{D}_{F}\left(H^{+}\right), \mathcal{D}_{F}\left(H^{-}\right)\right)
$$

Scharlemann and Tomova. If a 3 -manifold has a Heegaard surface Σ so that the Hempel distance $d(\Sigma)$ of the splitting is greater than twice its genus $g(\Sigma)$, then any other Heegaard surface Λ of genus $g(\Lambda)<d(\Sigma) / 2$ is a stabilization of Σ.

Goal. In this paper, we generalize this theorem to the case where the Heegaard splitting Σ is not necessarily of high distance but has a proper essential subsurface $F \subset \Sigma$ so that the "subsurface distance" measured in F is large:

Theorem 0.1. Let Σ be a Heegaard surface in a 3-manifold M of genus $g(\Sigma) \geq 2$, and let $F \subset \Sigma$ be a compact essential subsurface. Let Λ be another Heegaard surface for M of genus $g(\Lambda)$. If

$$
d_{F}(\Sigma)>2 g(\Lambda)+c(F),
$$

then, up to ambient isotopy, the intersection $\Lambda \cap \Sigma$ contains F.
Here $c(F)=0$ unless F is an annulus, 4-holed sphere, or 1 or 2-holed torus, in which case $c(F)=2$.

This result can be paraphrased as follows:
Result. If the two disk sets of a Heegaard splitting intersect on a subsurface of the Heegaard surface in a relatively "complicated" way, then any other Heegaard surface whose genus is not too large must contain that subsurface.

- Idea of the proof:
- To a Heegaard splitting we associate a "sweepout" by parallel surfaces of the manifold minus a pair of spines.
- Given two surfaces Λ and Σ and associated sweepouts, we examine the way in which they interact. In particular under some natural genericity conditions we can assume that one of two situations occur:
(1) ΛF-spans Σ, or
(2) ΛF-splits Σ.
- F-spanning implies that, up to isotopy, there is a moment in the sweepout corresponding to Σ when the subsurface parallel to F lies in the "upper" half of $M \backslash \Lambda$, and a moment when it lies in the lower half. It then follows that Λ separates the product region between these two copies of F, and it follows fairly easily that it can be isotoped to contain F.
- F-splitting we show that, for each moment in the sweepout corresponding to Σ, the level surface intersects Λ in curves that have essential intersection with F. Studying the way in which these intersections change during the course of the sweepout, we use the topological complexity of Λ to control the subsurface distance of F.
- Combining these two results and imposing the condition that $d_{F}(\Sigma)$ is greater than a suitable function of $g(\Lambda)$ forces the first, i.e. F-spanning, case to occur.
- The discussion is complicated by some special cases, where F has particularly low complexity, in which the dichotomy between F-spanning and F-splitting doesn't quite hold. In those cases we obtain slightly different bounds.

We will have use for the following fact, which is a variation on a result of Masur-Schleimer:

Lemma 0.2. Let Σ be the boundary of a handlebody H of genus $g \geq 2$. Let $F \subset \Sigma$ be an essential connected subsurface of Σ. If $\Sigma \backslash F$ is compressible in H then $\pi_{F}(\mathcal{D}(H))$ comes within distance 2 of every vertex of $\mathcal{A C}(F)$, provided F is not a 4-holed sphere. If it is a 4-holed sphere the distance bound is 3.

Sweepouts. A sweepout of M^{3} is a smooth function $f: M \rightarrow[-1,1]$ s.t each $t \in(-1,1)$ is a regular value, and the level set $f^{-1}(t)$ is a Heegaard surface. Furthermore each of the sets $\Gamma^{+}=f^{-1}(1)$ and set $\Gamma^{-}=f^{-1}(-1)$ are spines of the respective compression bodies. We say the sweepout represents the Heegaard splitting associated to each level surface.

Two sweepouts f and h of M determine a smooth function $f \times h: M \rightarrow$ $[-1,1] \times[-1,1]$. The differential $D(f \times h)$ has rank 2 (or $\operatorname{dim} \operatorname{Ker}(D(f \times h))$ $=1$) wherever the level sets of f and h are transverse. Thus we define the discriminant set Δ to be the set of points of M for which $\operatorname{dim} \operatorname{Ker}(D(f \times$ $h))>1$. The discriminant, and its image in $[-1,1] \times[-1,1]$, therefore encode the configuration of tangencies of the level sets of f and h.

The image $(f \times h)(\Delta)$ is a graph in $[-1,1] \times[-1,1]$ with smooth edges, called the graphic, or the Rubinstein-Scharlemann graphic

We call $f \times h$ generic if it is stable away from the spines and each arc $[-1,1] \times\{s\}$ in the square intersects at most one vertex of the graphic.

The following lemma of Kobayashi-Saeki justifies this term:

Lemma 0.3. Any pair of sweepouts can be isotoped to be generic.

- Suppose therefore that $f \times h$ is generic.
- Points in the square are denoted by (t, s), and we define the surfaces $\Lambda_{s}=h^{-1}(s)$ and $\Sigma_{t}=f^{-1}(t)$.
- If the vertical line $\{t\} \times[-1,1]$ meets no vertices of the graphic, then $\left.h\right|_{\Sigma_{t}}$ is Morse, and its critical points are $\Sigma_{t} \cap \Delta$.

Above and below. Let f, h sweepouts representing $\left(\Sigma, H^{-}, H^{+}\right)$and $\left(\Lambda, V^{-}, V^{+}\right)$, respectively.

- For each $s \in(-1,1)$, define $V_{s}^{-}=h^{-1}([-1, s])$ and $V_{s}^{+}=h^{-1}([s, 1])$. $\Lambda_{t}=\partial V_{s}^{-}=\partial V_{s}^{+}$.
- For each $t \in(-1,1), H_{t}^{-}=h^{-1}([-1, t]), H_{t}^{+}=h^{-1}([t, 1])$
- $\Sigma_{t}=\partial H_{t}^{-}=\partial H_{t}^{+}, \Lambda_{t}=\partial V_{s}^{-}=\partial V_{s}^{+}$.

Definition 0.4. Σ_{t} is mostly above Λ_{s} with respect to F,

$$
\Sigma_{t} \succ_{F} \Lambda_{s}
$$

if $\Sigma_{t} \cap V_{s}^{-}$is contained in a subsurface of Σ_{t} that is isotopic into the complement of F_{t} (or is just contained in a disk, when $F=\Sigma$). Σ_{t} is mostly below Λ_{s} with respect to F, or

$$
\Sigma_{t} \prec_{F} \Lambda_{s},
$$

if $\Sigma_{t} \cap V_{s}^{+}$is contained in a subsurface that is isotopic into the complement of F_{t} (or contained in a disk).

- Here F is a proper subsurface. $F=\Sigma$ was done by Johnson and the definitions agree.
- Define R_{a}^{F} (respectively R_{b}^{F}) in $(-1,1) \times(-1,1)$ to be the set of all values (t, s) such that $\Sigma_{t} \succ_{F} \Lambda_{s}$ (respectively $\Sigma_{t} \prec_{F} \Lambda_{s}$).
- R_{a}^{F} and R_{b}^{F} are disjoint, open and bounded by arcs of the graphic, so that all interior vertices appearing in ∂R_{a}^{F} or ∂R_{b}^{F} have valence 4. R_{a}^{F} and R_{b}^{F} intersect each vertical line in a pair of intervals:

Relative spanning and splitting. Here we extend the notion of spanning and splitting relative to a subsurface F.

Definition 0.5. We say that $h F$-spans f if there is a horizontal arc $[-1,1] \times$ $\{s\}$ in $(-1,1) \times(-1,1)$ that intersects both R_{a}^{F} and R_{b}^{F}.

The complementary situation is the following:

Definition 0.6. We say that h weakly F-splits f if there is no horizontal arc $[-1,1] \times\{s\}$ that meets both R_{a}^{F} and R_{b}^{F}.

A stronger condition:

Definition 0.7. $h F$-splits f if, for some $\{s\} \in(-1,1)$, the $\operatorname{arc}[-1,1] \times\{s\}$ is disjoint from the closures of both R_{a}^{F} and R_{b}^{F}.

Figure 1

- F-spanning and weak F-splitting are complementary conditions.
- In the other direction: If F is not an annulus, 4 -holed sphere or a 1-holed or 2-holed torus, then

$$
h \text { weakly } F \text {-splits } f \Longrightarrow h F \text {-splits } f \text {. }
$$

Equivalently, either $h F$-spans f, or $h F$-splits f.

- In the exceptional cases, if h weakly F-splits f but does not F-split, then there exists a unique horizontal line $[-1,1] \times\{s\}$ which meets both closures $\overline{R_{a}^{F}}$ and $\overline{R_{b}^{F}}$ in a single point, which is a vertex of the graphic.

ΛF-spans Σ.

Proposition 0.8. If ΛF-spans Σ then after isotoping Λ we obtain a surface whose intersection with Σ contains F.

Sketch of Proof. There is a level surface Λ_{s} and values $t_{-}, t_{+} \in(-1,1)$, $t_{-}<t_{+}$such that $\Sigma_{t_{-}} \prec_{F} \Lambda_{s}$ and $\Sigma_{t_{+}} \succ_{F} \Lambda_{s}$.

Identify $f^{-1}((-1,1))$, with $\Sigma \times(-1,1)$. Set $J=\left[t_{-}, t_{+}\right]$and consider $F \times J \subset M$.
$\Sigma_{t_{-}} \prec_{F} \Lambda_{s} \Longrightarrow V_{s}^{+}=h^{-1}([s, 1])$ intersects $\Sigma \times\left\{t_{-}\right\}$in a set that can be isotoped outside of $F \times\left\{t_{-}\right\}$; equivalently:
$F \times\left\{t_{-}\right\}$can be isotoped within $\Sigma \times\left\{t_{-}\right\}$so that it is contained in V_{s}^{-}.
Similarly $\Sigma_{t_{+}} \succ_{F} \Lambda_{s} \Longrightarrow$ after isotopy the surface $F \times\left\{t_{+}\right\} \subset V_{s}^{+}$
Hence, after a level-preserving isotopy of $\Sigma \times(-1,1)$, we may assume that $F \times\left\{t_{-}\right\}$and $F \times\left\{t_{+}\right\}$are contained in V_{s}^{-}and V_{s}^{+}, respectively.

Since Λ_{s} separates V_{s}^{-}from V_{s}^{+}the surface $S=\Lambda_{s} \cap F \times J$ separates $F \times\left\{t_{-}\right\}$ from $F \times\left\{t_{+}\right\}$within $F \times J$, so $0 \neq[S] \in H_{2}(F \times J, \partial F \times J)$.

Compress S if necessary to S^{*}. Let S^{\prime} be a connected component which is still nonzero in $H_{2}(F \times J, \partial F \times J)$.

Then S^{\prime} separates $F \times\left\{t_{-}\right\}$from $F \times\left\{t_{+}\right\}$and hence (up to orientation) must be homologous to $F \times\left\{t_{-}\right\}$.

So the projection of S^{\prime} to $F \times\left\{t_{-}\right\}$is a proper, π_{1}-injective and of degree ± 1. Hence it must also be π_{1}-surjective, and thus S^{\prime} is isotopic to a level surface $F \times\{t\}$.

Make the isotopy ambient and keeping track of the 1-handles corresponding to the compressions we obtain an isotopic copy of Λ which contains $F \times\{t\}$ minus attaching disks for the 1-handles. Now we can slide these disks outside of $F \times\{t\}$. Hence Λ itself is isotopic to a surface containing $F \times\{t\}$, as claimed.
ΛF-splits (weakly splits) Σ. The intersections $\Lambda \cap \Sigma_{t}$ are the level sets of $\left.f\right|_{\Lambda}$. Consider them as curves on Σ. The F-splitting property implies that they intersect F essentially. Now use the topological complexity of Λ to bound the diameter in $\mathcal{A C}(F)$ of the corresponding set.

First show:
Lemma 0.9. If $d_{F}(\Sigma)>3$, then there is some non-trivial interval $[u, v] \subset$ $(-1,1)$ such that for each regular $t \in[u, v]$, every loop of $\Sigma_{t} \cap \Lambda$ that is trivial in Λ is trivial in Σ_{t}.

For $t \in(-1,1)$ (a regular value) of $\left.f\right|_{\Lambda}, \mathcal{L}_{t}$ denotes the set of nontrivial isotopy classes in Σ of the images of the curves of $\left(\left.f\right|_{\Lambda}\right)^{-1}(t)$. For an interval $J \subset(-1,1)$ let \mathcal{L}_{J} denote the union of \mathcal{L}_{t} over regular $t \in J$.

Lemma 0.10. Let $[u, v]$ be an interval as above If $(u, v) \times\{s\}$ encounters no vertices of the graphic then

$$
\operatorname{diam}_{F}\left(\mathcal{L}_{[u, v]}\right) \leq 2 g(\Lambda)-2
$$

If $(u, v) \times\{s\}$ meets the weak splitting vertex then

$$
\operatorname{diam}_{F}\left(\mathcal{L}_{[u, v]}\right) \leq 2 g(\Lambda)-1
$$

Proposition 0.11. Let Σ and Λ be Heegaard surfaces for M, and let $F \subset \Sigma$ be a proper connected essential subsurface. If ΛF-splits Σ then

$$
d_{F}(\Sigma) \leq 2 g(\Lambda)
$$

If Λ weakly F-splits Σ then

$$
d_{F}(\Sigma) \leq 2 g(\Lambda)+2
$$

The End

