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e A Heegaard splitting is a triple: (X, H—,H™),
oY =0H" =0H = H"NH™ - Heegaard surface so that M = HTUx, H .

e Curve complexes and Hempel distance: For X - simplicial complex
C(X) called the curve complex.

e i-simplex € C(X) collection ([o],...,[v]) of isotopy classes of mutually
disjoint essential simple closed curves in ..

e On 1-skeleton C*(X) C C(X) there is a natural path metric d defined by
assigning length 1 to every edge.

e Sub-collection D(H™), of isotopy classes of curves in X, that bound disks
in H* (called meridians) is handlebody set associated with H™ respectively.

D(H?) are subcomplexes.

e Given (3, H—, H") we define the Hempel distance d(X):

d(X) = devs)(D(H™), D(H™))




o If OF # () define the arc and curve complex AC(F'), by isotopy classes of
essential (non-peripheral) s. c. c¢. and properly embedded arcs.

e If /' is an annulus, there are no essential closed curves, and the isotopy
classes of essential arcs should be taken rel endpoints.

e An n-simplex is a collection of n + 1 isotopy classes with disjoint repre-
sentative loops / arcs. dp the path metric on the 1-skeleton of AC!(F) that

assigns length 1 to every edge.

e If F'is a connected proper essential subsurface in >, there is a map
mr: CO(%) — ACU(F) U {0}

Given a s.c.c. v in X, isotope it to intersect OF minimally. If FN~ = () set
wr(y) = (. Otherwise consider the isotopy classes of components of F' N~y
as a simplex in AC(F'), and select (arbitrarily) one vertex to be wp(7).

o If ¥ C X is a connected proper essential subsurface, set Dp(H™) =
nr(D(H™)) and Dp(H') = np(D(H™)) — the projections to F' of all loops
that bound essential disks in H~ and H™, respectively.




e The F-distance of ¥ (dp(X)) - distance between these two sets,

dp(2) = d 01y (Dr(H "), Dp(H™)).

Scharlemann and Tomova. If a 3-manifold has a Heegaard surface X
so that the Hempel distance d(32) of the splitting is greater than twice its
genus ¢(X), then any other Heegaard surface A of genus g(A) < d(X)/2 is a
stabilization of .

Goal. In this paper, we generalize this theorem to the case where the Hee-
gaard splitting > is not necessarily of high distance but has a proper essential
subsurface F' C X so that the “subsurface distance” measured in F' is large:




Theorem 0.1. Let X be a Heegaard surface in a 3-manifold M of genus
g(X) > 2, and let FF C ¥ be a compact essential subsurface. Let A be
another Heegaard surface for M of genus g(A). If

dp(X) > 2g(A) + c(F),

then, up to ambient isotopy, the intersection AN X contains F.
Here ¢(F) = 0 unless F is an annulus, 4-holed sphere, or 1 or 2-holed
torus, in which case c¢(F) = 2.

This result can be paraphrased as follows:

Result. If the two disk sets of a Heegaard splitting intersect on a subsurface
of the Heegaard surface in a relatively “complicated” way, then any other
Heegaard surface whose genus is not too large must contain that subsurface.

e Idea of the proof:

e To a Heegaard splitting we associate a “sweepout” by parallel surfaces of
the manifold minus a pair of spines.




e Given two surfaces A and X and associated sweepouts, we examine the
way in which they interact. In particular under some natural genericity
conditions we can assume that one of two situations occur:

(1) A F-spans X, or
(2) A F-splits 3.

e ['-spanning implies that, up to isotopy, there is a moment in the sweepout
corresponding to ¥ when the subsurface parallel to F' lies in the “upper”
half of M ~ A, and a moment when it lies in the lower half. It then follows
that A separates the product region between these two copies of F', and it
follows fairly easily that it can be isotoped to contain F'.

e ['-splitting we show that, for each moment in the sweepout corresponding
to X, the level surface intersects A in curves that have essential intersection
with F. Studying the way in which these intersections change during the
course of the sweepout, we use the topological complexity of A to control
the subsurface distance of F.

e Combining these two results and imposing the condition that dp(X) is
greater than a suitable function of g(A) forces the first, i.e. F-spanning,

case to occur.




e The discussion is complicated by some special cases, where F' has par-
ticularly low complexity, in which the dichotomy between F'-spanning and

F-splitting doesn’t quite hold. In those cases we obtain slightly different
bounds.

We will have use for the following fact, which is a variation on a result of
Masur-Schleimer:

Lemma 0.2. Let X be the boundary of a handlebody H of genus g > 2. Let
F C X be an essential connected subsurface of 2. If >~ F is compressible
in H then wp(D(H)) comes within distance 2 of every vertex of AC(F),

provided F' is not a 4-holed sphere. If it is a 4-holed sphere the distance
bound 1is 3.

Sweepouts. A sweepout of M? is a smooth function f : M — [—1,1] s.t
each t € (—1,1) is a regular value, and the level set f~1(¢) is a Heegaard sur-
face. Furthermore each of the sets I'" = f~1(1) and set '™ = f~1(—~1) are
spines of the respective compression bodies. We say the sweepout represents
the Heegaard splitting associated to each level surface.




Two sweepouts f and h of M determine a smooth function f x h: M —
[—1,1] x [=1,1]. The differential D(f x h) has rank 2 (or dim Ker(D(f x h))
= 1) wherever the level sets of f and h are transverse. Thus we define the
discriminant set A to be the set of points of M for which dim Ker(D(f x
h)) > 1. The discriminant, and its image in [—1, 1] x [—1, 1], therefore encode
the configuration of tangencies of the level sets of f and A.

The image (f x h)(A) is a graph in [—1, 1] x [—1, 1] with smooth edges,
called the graphic, or the Rubinstein-Scharlemann graphic

We call f x h generic if it is stable away from the spines and each arc
[—1,1] x {s} in the square intersects at most one vertex of the graphic.

The following lemma of Kobayashi-Saeki justifies this term:

Lemma 0.3. Any pair of sweepouts can be isotoped to be generic.

e Suppose therefore that f x h is generic.




e Points in the square are denoted by (¢,s), and we define the surfaces

As = h71(s) and ; = f71(2).

e If the vertical line {t} x [—1, 1] meets no vertices of the graphic, then h|y,
is Morse, and its critical points are >; N A.

Above and below. Let f, h sweepouts representing (X, H ,H™') and
(A, V=, V1), respectively.

e For each s € (—1,1), define V, = h71([-1,s]) and V;F = h~1([s, 1]).
Ay =0V, =0V,

e For each t € (—1,1), H; = h~([-1,1]), H;" = h=([t, 1])

oY, =0H, =0H,", Ay=0V, =90V .

Definition 0.4. X; is mostly above Ag with respect to F,
Zt ~F AS7

it >, NV, is contained in a subsurface of ¥; that is isotopic into the com-
plement of F; (or is just contained in a disk, when F' = X). ¥ is mostly
below As with respect to F, or

Et =<F A37

if ¥; NVt is contained in a subsurface that is isotopic into the complement
of F} (or contained in a disk).




e Here F' is a proper subsurface. F' = X was done by Johnson and the
definitions agree.

e Define R (respectively RY") in (—1,1) x (—1,1) to be the set of all values
(t,s) such that ¥ = A (respectively ¥y <p Ag).

e R and Rf are disjoint, open and bounded by arcs of the graphic, so that

all interior vertices appearing in ORI or 8R£ have valence 4. R and Rf
intersect each vertical line in a pair of intervals:

Relative spanning and splitting. Here we extend the notion of spanning
and splitting relative to a subsurface F'.

Definition 0.5. We say that h F-spans f if there is a horizontal arc [—1, 1] x
{s} in (—1,1) x (=1,1) that intersects both RY and R

The complementary situation is the following:

Definition 0.6. We say that h weakly F-splits f if there is no horizontal
arc [—1,1] x {s} that meets both R and R}

A stronger condition:




Definition 0.7. h F-splits f if, for some {s} € (—1,1), the arc [-1, 1] x {s}
is disjoint from the closures of both Rf and R}".

FIGURE 1




e ['-spanning and weak F'-splitting are complementary conditions.

e In the other direction: If F' is not an annulus, 4-holed sphere or a 1-holed
or 2-holed torus, then

h weakly F-splits f = h F-splits f.
Equivalently, either A F-spans f, or h F-splits f.

e In the exceptional cases, if h weakly F'-splits f but does not F-split, then
there exists a unique horizontal line [—1, 1] x {s} which meets both closures

R—g and R—f in a single point, which is a vertex of the graphic.

A F-spans .

Proposition 0.8. If A F-spans X then after isotoping A we obtain a surface
whose intersection with Y. contains F'.

Sketch of Proof. There is a level surface Ag and values t_,t, € (—1,1),
t_ <ty such that Xy <p Ag and Xy, >p A,.

Identify f_l((—l, 1)), with ¥ x (—=1,1). Set J = [t_,t] and consider F x J C M.




¥ <rpAs = V;5 =h"1([s,1]) intersects ¥ x {t_} in a set that can be
isotoped outside of F' x {t_}; equivalently:

F x {t_} can be isotoped within ¥ x {t_} so that it is contained in V.
Similarly ¥;, =r As = after isotopy the surface F' x {t;} C V;*

Hence, after a level-preserving isotopy of ¥ x (—1,1), we may assume that
F x {t_} and F x {t,} are contained in V;~ and V', respectively.

Since A separates V™ from V the surface S = A;NF x J separates F'x {t_}
from F' x {t4} within F' x J, so 0 # [S] € Ha(F x J,0F x J).

Compress S if necessary to S*. Let S’ be a connected component which is
still nonzero in Ho(F x J,0F x J).

Then S’ separates F' x {t_} from F x {t1} and hence (up to orientation)
must be homologous to F' x {t_}.

So the projection of S” to F' x {t_} is a proper, mi-injective and of degree
+1. Hence it must also be mi-surjective, and thus S’ is isotopic to a level
surface F' x {t}.




Make the isotopy ambient and keeping track of the 1-handles corresponding
to the compressions we obtain an isotopic copy of A which contains F x {t}
minus attaching disks for the 1-handles. Now we can slide these disks outside
of F x {t}. Hence A itself is isotopic to a surface containing F' x {t}, as

claimed.
[]

A F-splits (weakly splits) Y. The intersections A N Y, are the level sets
of f|o. Consider them as curves on ¥X. The F-splitting property implies
that they intersect F' essentially. Now use the topological complexity of A
to bound the diameter in AC(F’) of the corresponding set.




First show:

Lemma 0.9. If dp(X) > 3, then there is some non-trivial interval [u,v] C

(—1,1) such that for each requlart € |u,v|, every loop of X:NA that is trivial
mn A s trivial in ;.

For t € (—1,1) (a regular value) of f|p, £; denotes the set of nontrivial
isotopy classes in ¥ of the images of the curves of (f|s)~1(¢). For an interval
J C (—1,1) let L; denote the union of L; over regular t € J.

Lemma 0.10. Let [u,v] be an interval as above If (u,v) x {s} encounters
no vertices of the graphic then

diamp(ﬁ[ujv]) < QQ(A) — 2.
If (u,v) x {s} meets the weak splitting vertex then
diamp(ﬁ[u,v]) < QQ(A) — 1.

Proposition 0.11. Let X and A be Heegaard surfaces for M, and let F' C X
be a proper connected essential subsurface. If A F-splits 3 then

dr(%) < 2g(0).
If A weakly F-splits 33 then

drp(X) <2g(A) + 2.




The End




