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• A Heegaard splittings is a triple: (Σ,H
−
,H

+),

• Σ = ∂H
+ = ∂H

− = H
+∩H

− - Heegaard surface so that M = H
+∪ΣH

−.

• Curve complexes and Hempel distance: For Σ - simplicial complex

C(Σ) called the curve complex.

• i-simplex ∈ C(Σ) collection ([γ0], . . . , [γi]) of isotopy classes of mutually

disjoint essential simple closed curves in Σ.

• On 1-skeleton C1(Σ) ⊂ C(Σ) there is a natural path metric d defined by

assigning length 1 to every edge.

• Sub-collection D(H±), of isotopy classes of curves in Σ, that bound disks

in H
± (called meridians) is handlebody set associated with H

± respectively.

D(H±) are subcomplexes.

• Given (Σ,H
−
,H

+) we define the Hempel distance d(Σ):

d(Σ) = dC1(Σ)(D(H
+
),D(H

−
))

(where distance between sets is always minimal distance)

• If ∂F �= ∅ define the arc and curve complex AC(F ), by isotopy classes of

essential (non-peripheral) s. c. c. and properly embedded arcs.

• If F is an annulus, there are no essential closed curves, and the isotopy

classes of essential arcs should be taken rel endpoints.

• An n-simplex is a collection of n + 1 isotopy classes with disjoint repre-

sentative loops / arcs. dF the path metric on the 1-skeleton of AC1
(F ) that

assigns length 1 to every edge.

• If F is a connected proper essential subsurface in Σ, there is a map

πF : C0
(Σ) → AC0

(F ) ∪ {∅}

Given a s.c.c. γ in Σ, isotope it to intersect ∂F minimally. If F ∩γ = ∅ set

πF (γ) = ∅. Otherwise consider the isotopy classes of components of F ∩ γ
as a simplex in AC(F ), and select (arbitrarily) one vertex to be πF (γ).

• If F ⊂ Σ is a connected proper essential subsurface, set DF (H−) =

πF (D(H−)) and DF (H+) = πF (D(H+)) – the projections to F of all loops

that bound essential disks in H
− and H

+, respectively.
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πF (γ) = ∅. Otherwise consider the isotopy classes of components of F ∩ γ
as a simplex in AC(F ), and select (arbitrarily) one vertex to be πF (γ).

• If F ⊂ Σ is a connected proper essential subsurface, set DF (H−) =

πF (D(H−)) and DF (H+) = πF (D(H+)) – the projections to F of all loops

that bound essential disks in H
− and H

+, respectively.
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Heegaard splittings with large subsurface distances

Joint with Jesse Johnson and Yair Minsky
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−
,H

+),
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− - Heegaard surface so that M = H
+∪ΣH

−.
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• The F -distance of Σ (dF (Σ)) - distance between these two sets,

dF (Σ) = dAC1(F )(DF (H
+
),DF (H

−
)).

Scharlemann and Tomova. If a 3-manifold has a Heegaard surface Σ
so that the Hempel distance d(Σ) of the splitting is greater than twice its

genus g(Σ), then any other Heegaard surface Λ of genus g(Λ) < d(Σ)/2 is a

stabilization of Σ.

Goal. In this paper, we generalize this theorem to the case where the Hee-

gaard splitting Σ is not necessarily of high distance but has a proper essential

subsurface F ⊂ Σ so that the “subsurface distance” measured in F is large:

Theorem 0.1. Let Σ be a Heegaard surface in a 3-manifold M of genus

g(Σ) ≥ 2, and let F ⊂ Σ be a compact essential subsurface. Let Λ be

another Heegaard surface for M of genus g(Λ). If

dF (Σ) > 2g(Λ) + c(F ),

then, up to ambient isotopy, the intersection Λ ∩ Σ contains F .

Here c(F ) = 0 unless F is an annulus, 4-holed sphere, or 1 or 2-holed

torus, in which case c(F ) = 2.

This result can be paraphrased as follows:

Result. If the two disk sets of a Heegaard splitting intersect on a subsurface

of the Heegaard surface in a relatively “complicated” way, then any other

Heegaard surface whose genus is not too large must contain that subsurface.

• Idea of the proof:

• To a Heegaard splitting we associate a “sweepout” by parallel surfaces of

the manifold minus a pair of spines.

• Given two surfaces Λ and Σ and associated sweepouts, we examine the

way in which they interact. In particular under some natural genericity

conditions we can assume that one of two situations occur:

(1) Λ F -spans Σ, or

(2) Λ F -splits Σ.

• F -spanning implies that, up to isotopy, there is a moment in the sweepout

corresponding to Σ when the subsurface parallel to F lies in the “upper”

half of M � Λ, and a moment when it lies in the lower half. It then follows

that Λ separates the product region between these two copies of F , and it

follows fairly easily that it can be isotoped to contain F .
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• F -splitting we show that, for each moment in the sweepout corresponding

to Σ, the level surface intersects Λ in curves that have essential intersection

with F . Studying the way in which these intersections change during the

course of the sweepout, we use the topological complexity of Λ to control

the subsurface distance of F .

• Combining these two results and imposing the condition that dF (Σ) is

greater than a suitable function of g(Λ) forces the first, i.e. F -spanning,

case to occur.

• The discussion is complicated by some special cases, where F has par-

ticularly low complexity, in which the dichotomy between F -spanning and

F -splitting doesn’t quite hold. In those cases we obtain slightly different

bounds.

We will have use for the following fact, which is a variation on a result of

Masur-Schleimer:

Lemma 0.2. Let Σ be the boundary of a handlebody H of genus g ≥ 2. Let
F ⊂ Σ be an essential connected subsurface of Σ. If Σ � F is compressible
in H then πF (D(H)) comes within distance 2 of every vertex of AC(F ),
provided F is not a 4-holed sphere. If it is a 4-holed sphere the distance
bound is 3.

Sweepouts. A sweepout of M
3

is a smooth function f : M → [−1, 1] s.t

each t ∈ (−1, 1) is a regular value, and the level set f
−1

(t) is a Heegaard sur-

face. Furthermore each of the sets Γ+
= f

−1
(1) and set Γ− = f

−1
(−1) are

spines of the respective compression bodies. We say the sweepout represents
the Heegaard splitting associated to each level surface.

Two sweepouts f and h of M determine a smooth function f × h : M →
[−1, 1]× [−1, 1]. The differential D(f×h) has rank 2 (or dim Ker(D(f×h))

= 1) wherever the level sets of f and h are transverse. Thus we define the

discriminant set ∆ to be the set of points of M for which dim Ker(D(f ×
h)) > 1. The discriminant, and its image in [−1, 1]×[−1, 1], therefore encode

the configuration of tangencies of the level sets of f and h.

The image (f × h)(∆) is a graph in [−1, 1] × [−1, 1] with smooth edges,

called the graphic, or the Rubinstein-Scharlemann graphic
We call f × h generic if it is stable away from the spines and each arc

[−1, 1]× {s} in the square intersects at most one vertex of the graphic.

The following lemma of Kobayashi-Saeki justifies this term:

Lemma 0.3. Any pair of sweepouts can be isotoped to be generic.

• Suppose therefore that f × h is generic.
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• Points in the square are denoted by (t, s), and we define the surfaces

Λs = h
−1

(s) and Σt = f
−1

(t).

• If the vertical line {t}× [−1, 1] meets no vertices of the graphic, then h|Σt

is Morse, and its critical points are Σt ∩∆.

Above and below. Let f , h sweepouts representing (Σ,H
−
,H

+
) and

(Λ, V
−
, V

+
), respectively.

• For each s ∈ (−1, 1), define V
−
s = h

−1
([−1, s]) and V

+
s = h

−1
([s, 1]).

Λt = ∂V
−
s = ∂V

+
s .

• For each t ∈ (−1, 1), H
−
t = h

−1
([−1, t]), H

+
t = h

−1
([t, 1])

• Σt = ∂H
−
t = ∂H

+
t Λt = ∂V

−
s = ∂V

+
s .

Definition 0.4. Σt is mostly above Λs with respect to F ,

Σt �F Λs,

if Σt ∩ V
−
s is contained in a subsurface of Σt that is isotopic into the com-

plement of Ft (or is just contained in a disk, when F = Σ). Σt is mostly
below Λs with respect to F , or

Σt ≺F Λs,

if Σt ∩ V
+
s is contained in a subsurface that is isotopic into the complement

of Ft (or contained in a disk).

• Here F is a proper subsurface. F = Σ was done by Johnson and the

definitions agree.

• Define R
F
a (respectively R

F
b ) in (−1, 1)× (−1, 1) to be the set of all values

(t, s) such that Σt �F Λs (respectively Σt ≺F Λs).

• R
F
a and R

F
b are disjoint, open and bounded by arcs of the graphic, so that

all interior vertices appearing in ∂R
F
a or ∂R

F
b have valence 4. R

F
a and R

F
b

intersect each vertical line in a pair of intervals:

Relative spanning and splitting. Here we extend the notion of spanning

and splitting relative to a subsurface F .

Definition 0.5. We say that h F -spans f if there is a horizontal arc [−1, 1]×
{s} in (−1, 1)× (−1, 1) that intersects both R

F
a and R

F
b .

The complementary situation is the following:

Definition 0.6. We say that h weakly F -splits f if there is no horizontal

arc [−1, 1]× {s} that meets both R
F
a and R

F
b .

A stronger condition:
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Definition 0.7. h F -splits f if, for some {s} ∈ (−1, 1), the arc [−1, 1]×{s}
is disjoint from the closures of both RF

a and RF
b .

• F -spanning and weak F -splitting are complementary conditions.

• In the other direction: If F is not an annulus, 4-holed sphere or a 1-holed

or 2-holed torus, then

h weakly F -splits f =⇒ h F -splits f .

Equivalently, either h F -spans f , or h F -splits f .

• In the exceptional cases, if h weakly F -splits f but does not F -split, then

there exists a unique horizontal line [−1, 1]× {s} which meets both closures

RF
a and RF

b in a single point, which is a vertex of the graphic.

Λ F -spans Σ.

Proposition 0.8. If Λ F -spans Σ then after isotoping Λ we obtain a surface
whose intersection with Σ contains F .

Proof. Let f and h be sweepouts representing Σ and Λ, respectively, such

that h F -spans f and f × h is generic. Hence there is a level surface Λs

5

Figure 1

Definition 0.7. h F -splits f if, for some {s} ∈ (−1, 1), the arc [−1, 1]×{s}
is disjoint from the closures of both RF

a and RF
b .

• F -spanning and weak F -splitting are complementary conditions.

• In the other direction: If F is not an annulus, 4-holed sphere or a 1-holed

or 2-holed torus, then

h weakly F -splits f =⇒ h F -splits f .

Equivalently, either h F -spans f , or h F -splits f .

• In the exceptional cases, if h weakly F -splits f but does not F -split, then

there exists a unique horizontal line [−1, 1]× {s} which meets both closures

RF
a and RF

b in a single point, which is a vertex of the graphic.

Λ F -spans Σ.

Proposition 0.8. If Λ F -spans Σ then after isotoping Λ we obtain a surface
whose intersection with Σ contains F .

Proof. Let f and h be sweepouts representing Σ and Λ, respectively, such

that h F -spans f and f × h is generic. Hence there is a level surface Λs



5

Figure 1

Definition 0.7. h F -splits f if, for some {s} ∈ (−1, 1), the arc [−1, 1]×{s}
is disjoint from the closures of both RF

a and RF
b .

• F -spanning and weak F -splitting are complementary conditions.

• In the other direction: If F is not an annulus, 4-holed sphere or a 1-holed

or 2-holed torus, then

h weakly F -splits f =⇒ h F -splits f .

Equivalently, either h F -spans f , or h F -splits f .

• In the exceptional cases, if h weakly F -splits f but does not F -split, then

there exists a unique horizontal line [−1, 1]× {s} which meets both closures

RF
a and RF

b in a single point, which is a vertex of the graphic.

Λ F -spans Σ.

Proposition 0.8. If Λ F -spans Σ then after isotoping Λ we obtain a surface
whose intersection with Σ contains F .

Proof. Let f and h be sweepouts representing Σ and Λ, respectively, such

that h F -spans f and f × h is generic. Hence there is a level surface Λs

5

Figure 1

Definition 0.7. h F -splits f if, for some {s} ∈ (−1, 1), the arc [−1, 1]×{s}
is disjoint from the closures of both RF

a and RF
b .

• F -spanning and weak F -splitting are complementary conditions.

• In the other direction: If F is not an annulus, 4-holed sphere or a 1-holed

or 2-holed torus, then

h weakly F -splits f =⇒ h F -splits f .

Equivalently, either h F -spans f , or h F -splits f .

• In the exceptional cases, if h weakly F -splits f but does not F -split, then

there exists a unique horizontal line [−1, 1]× {s} which meets both closures

RF
a and RF

b in a single point, which is a vertex of the graphic.

Λ F -spans Σ.

Proposition 0.8. If Λ F -spans Σ then after isotoping Λ we obtain a surface
whose intersection with Σ contains F .

Proof. Let f and h be sweepouts representing Σ and Λ, respectively, such

that h F -spans f and f × h is generic. Hence there is a level surface Λs

5

Figure 1

Definition 0.7. h F -splits f if, for some {s} ∈ (−1, 1), the arc [−1, 1]×{s}
is disjoint from the closures of both RF

a and RF
b .

• F -spanning and weak F -splitting are complementary conditions.

• In the other direction: If F is not an annulus, 4-holed sphere or a 1-holed

or 2-holed torus, then

h weakly F -splits f =⇒ h F -splits f .

Equivalently, either h F -spans f , or h F -splits f .

• In the exceptional cases, if h weakly F -splits f but does not F -split, then

there exists a unique horizontal line [−1, 1]× {s} which meets both closures

RF
a and RF

b in a single point, which is a vertex of the graphic.

Λ F -spans Σ.

Proposition 0.8. If Λ F -spans Σ then after isotoping Λ we obtain a surface
whose intersection with Σ contains F .

Proof. Let f and h be sweepouts representing Σ and Λ, respectively, such

that h F -spans f and f × h is generic. Hence there is a level surface Λs

5

Figure 1

Definition 0.7. h F -splits f if, for some {s} ∈ (−1, 1), the arc [−1, 1]×{s}
is disjoint from the closures of both RF

a and RF
b .

• F -spanning and weak F -splitting are complementary conditions.

• In the other direction: If F is not an annulus, 4-holed sphere or a 1-holed

or 2-holed torus, then

h weakly F -splits f =⇒ h F -splits f .

Equivalently, either h F -spans f , or h F -splits f .

• In the exceptional cases, if h weakly F -splits f but does not F -split, then

there exists a unique horizontal line [−1, 1]× {s} which meets both closures

RF
a and RF

b in a single point, which is a vertex of the graphic.

Λ F -spans Σ.

Proposition 0.8. If Λ F -spans Σ then after isotoping Λ we obtain a surface
whose intersection with Σ contains F .

Proof. Let f and h be sweepouts representing Σ and Λ, respectively, such

that h F -spans f and f × h is generic. Hence there is a level surface Λs

5

Figure 1

Definition 0.7. h F -splits f if, for some {s} ∈ (−1, 1), the arc [−1, 1]×{s}
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• F -spanning and weak F -splitting are complementary conditions.

• In the other direction: If F is not an annulus, 4-holed sphere or a 1-holed
or 2-holed torus, then

h weakly F -splits f =⇒ h F -splits f .

Equivalently, either h F -spans f , or h F -splits f .

• In the exceptional cases, if h weakly F -splits f but does not F -split, then
there exists a unique horizontal line [−1, 1]× {s} which meets both closures
RF

a and RF
b in a single point, which is a vertex of the graphic.

Λ F -spans Σ.

Proposition 0.8. If Λ F -spans Σ then after isotoping Λ we obtain a surface
whose intersection with Σ contains F .

Sketch of Proof. There is a level surface Λs and values t−, t+ ∈ (−1, 1),
t− < t+ such that Σt− ≺F Λs and Σt+ �F Λs.

6

Identify f
−1

((−1, 1)), with Σ× (−1, 1).

Set J = [t−, t+] and consider F × J ⊂M .

Σt− ≺F Λs =⇒ V
+
s = h

−1
([s, 1]) intersects Σ× {t−} in a set that can be

isotoped outside of F × {t−}; equivalently:

F × {t−} can be isotoped within Σ× {t−} so that it is contained in V
−
s .

Similarly Σt+ �F Λs =⇒ after isotopy the surface F × {t+} ⊂ V
+
s

Hence, after a level-preserving isotopy of Σ × (−1, 1), we may assume that

F × {t−} and F × {t+} are contained in V
−
s and V

+
s , respectively.

Since Λs separates V
−
s from V

+
s . the surface S = Λs ∩ F × J separates

F × {t−} from F × {t+} within F × J , so 0 �= [S] ∈ H2(F × J, ∂F × J).

Compress S if necessary to S
∗
. Let S

�
be a connected component which is

still nonzero in H2(F × J, ∂F × J).

Then S
�
separates F × {t−} from F × {t+} and hence (up to orientation)

must be homologous to F × {t−}.

So the projection of S
�
to F × {t−} is a proper, π1-injective and of degree

±1. Hence it must also be π1-surjective, and thus S
�
is isotopic to a level

surface F × {t}.

Make the isotopy ambient and keeping track of the 1-handles corresponding

to the compressions we obtain an isotopic copy of Λ which contains F × {t}
minus attaching disks for the 1-handles. Now we can slide these disks outside

of F × {t}. Hence Λ itself is isotopic to a surface containing F × {t}, as

claimed.

�

1. Saddle transitions

In this section we examine more carefully the intersections Σt ∩ Λs, and

the relationship between their regular neighborhoods in the two surfaces.

Fix (t, s) for the rest of this section. The interesting case is when (t, s) lies

in the graphic, and hence the surfaces are not transversal, or equivalently, t

is a critical value of f |Λs and s is a critical value of h|Σt . As in the proof of

Lemma ??, take an interval [s−, s+] in which s is the only critical value of

h|Σt (if any), and let

Q = (h|Σt)
−1

([s−, s+]) ⊂ Σt.

Similarly choose an interval [t−, t+] containing t with no other critical values

of f |Λs , and define

Z = (f |Λs)
−1

([t−, t+]) ⊂ Λs.
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Λ F -splits (weakly splits) Σ. The intersections Λ ∩ Σt are the level sets

of f |Λ. Consider them as curves on Σ. The F -splitting property implies

that they intersect F essentially. Now use the topological complexity of Λ
to bound the diameter in AC(F ) of the corresponding set.

First show:

Lemma 0.9. If dF (Σ) > 3, then there is some non-trivial interval [u, v] ⊂
(−1, 1) such that for each regular t ∈ [u, v], every loop of Σt∩Λ that is trivial
in Λ is trivial in Σt.

For t ∈ (−1, 1) (a regular value) of f |Λ, Lt denotes the set of nontrivial

isotopy classes in Σ of the images of the curves of (f |Λ)
−1

(t). For an interval

J ⊂ (−1, 1) let LJ denote the union of Lt over regular t ∈ J .
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Lemma 0.10. Let [u, v] be an interval as above If (u, v) × {s} encounters

no vertices of the graphic then

diamF (L[u,v]) ≤ 2g(Λ)− 2.

If (u, v)× {s} meets the weak splitting vertex then

diamF (L[u,v]) ≤ 2g(Λ)− 1.

Proposition 0.11. Let Σ and Λ be Heegaard surfaces for M , and let F ⊂ Σ
be a proper connected essential subsurface. If Λ F -splits Σ then

dF (Σ) ≤ 2g(Λ).

If Λ weakly F -splits Σ then

dF (Σ) ≤ 2g(Λ) + 2.

Proof. Choose sweepouts h and f with f × h generic, such that h F -splits
f or weakly F -splits f , according to our hypothesis.

In the F -splitting case there is a value s such that [−1, 1]× {s} is disjoint
from the closures of RF

a and RF
b . In particular this means that there is

an interval of such values and we may choose one such that [−1, 1] × {s}
meets no vertices of the graphic. It follows that the function f |Λs is a Morse
function, having at most one critical point per critical value. We fix this s
and henceforth identify Λ with Λs.

In the weak F -splitting case there is a value of s such that [−1, 1] × {s}
intersects the closures of RF

a and RF
b only at their unique intersection point,

which is a vertex (t, s) that we will call the weak splitting vertex. We again
fix this s and let Λ = Λs.

The proof proceeds along the following lines: The intersections Λ ∩ Σt

are the level sets of f |Λ, and the idea is to consider them as curves on Σ,
argue using the F -splitting property that they intersect F essentially, and
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