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Abstract. We present the basics of the colored Jones polynomials and discuss the AJ
conjecture.
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1. Jones polynomial

1.1. Knots and links in R3 ⊂ S3. Fix the standard R3. An oriented link L is a compact
1-dimensional oriented smooth submanifold of R3 ⊂ S3. Denote by #L the number of
connected components of L. A link of 1 component is called a knot. By convention, the
empty set is also considered a link.

A framed oriented link L is a link equipped with a smooth normal vector field V , which
is a function V : L → R3, such that V (x) is not in the tangent space TxL for every x ∈ L.
One should consider V (x) as an element in the tangent space TxR3 of R3 at x.

Two oriented links L1 and L2 are equivalent if there is a smooth isotopy h : R3 → R3 such
that h(L1) = (L2). Here h is a smooth isotopy if there is smooth map H : R3 × [0, 1]→ R3

such that for every t ∈ [0, 1], ht(x) : R3 → R3 defined by ht(x) = H(x, t), is a diffeomorphism
of R3, and h0 = id, h1 = h.

Similarly, two framed oriented links (L1, V1) and (L2, V2) are equivalent if there is a smooth
isotopy h : R3 → R3 such that h(L1) = (L2) and for every x ∈ L1, dhx(V1(x)) = V2(h(x)).
Here dhx is the derivative of h at x.

A (framed) link is ordered if there is an order on the set of its components. Then the
equivalence relation is required to preserve the order.

The framing of a component can be specified by thickening the component to a ribbon in
the direction of the framing vector.

Usually we don’t distinguish between a link and its equivalence class.
Un-oriented links, un-oriented framed links and their equivalence classes are defined sim-

ilarly.
A link invariant is a map

I : {equivalence classes of links} → R,

where R is a set.

Example 1.1. For unoriented unframed links, the link group π1(R3 \L) is a link invariant.

1.2. Link diagram, blackboard framing. One often studies an (oriented or unoriented)
link L by its diagram on R2, which is the projection D of L onto R2 (in general position), to-
gether with the “over/under” information at each crossing point. An (oriented) link diagram
defines an equivalence class of (oriented) links.

A link diagram comes with the blackboard framing, in which the framing vectors are in the
plane R2. If the framed link determined by a link diagram D with the blackboard framing
is isotopic the a framed link L, we say that D is a blackboard diagram of L.

It is known that two unoriented unframed link diagrams define the same class of links
if and only if they are related by a sequence of Reidemeister moves RI, RII, and RIII and
isotopies of the plane. The Reidemeister moves are listed in Figure 1 and 2. For framed
unoriented link diagrams one replaces RI by RIf . For oriented links one allows all possible
orientations of the strands in the figures. For details, see e.g [BZ, Oh].

Thus, the map associating an unoriented unframed link diagram to its link class descends
to an isomorphism of sets

{equiv. classes of links} → {link diagrams}/(RI,RII,RIII, isotopy of R2).



COLORED JONES POLYNOMIAL 3

Figure 1. Reidemeister move RI on the left and RIf on the right.

Figure 2. Reidemeister move RII on the left and RIII on the right.

The mirror image of link diagram D is the result of switching all the crossings of D from
over to under and vice versa.

1.3. Sign of a crossing, linking number, writhe. Up to isotopy there are two types of
crossings of oriented link diagrams, see Figure 3. The crossing on the left is called a positive

Figure 3. A positive crossing and a negative crossing

crossing, while the one on the right is called a negative crossing.
For a 2-component oriented link diagram D = D1 ∪D2, define

lk(D) =
1

2

∑
x

ε(x),

where the sum is over all the crossings between D1 and D2, and ε(x) is the sign of x.
Then lk(D) does not changed under oriented Reidemeister moves and define un invariant of
2-components oriented links, known as the linking number.

Suppose D is the blackboard diagram of a framed oriented link. Define the writhe of L by

w(L) :=
∑

x∈C(D)

ε(x).

Exercise 1.2. (a) Show that w(L) is an invariant of framed oriented links.
(b) Show that the writhe is an invariant of un-oriented knots.
(c) Suppose K is an unframed knot, and fr(K) is the set of all framed knots whose

underlying unframed knot is K. Show that the map fr(K)→ Z, K ′ → w(K ′) is a bijection.
Suppose K ′ ∈ fr(K). Let λ be a parallel of K ′,which is the result of pushing K off itself

along the framed vector field of K ′. Show that w(K ′) = lk(λ,K).
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(d) Suppose L = L1 ∪ L2 be a 2-component oriented link. Define the Gauss map

γ : L1 × L2 → S2 = {z ∈ R3 | ||z|| = 1}, γ(x, y) =
x− y
||x− y||

.

Show that up to sign, lk(L1, L2) is equal to the degree of γ.

The set of all framings of an unframed knot in R3 is naturally identified with Z. For this
reason, we also use integers to denote framing a knot.

1.4. Alexander polynomial. Suppose L is an m-component oriented link, and X = S3\L.
A small loop encircling the j-th component is called a meridian of the component, which is
defined up to isotopy in the link complement. We choose the orientation of the meridians so
that the linking number of the j-th component and its meridian is +1.

From Alexander duality, H1(X,Z) = Zn, with generators being the meridians of the links.
The map H1(X,Z) → Z = ⟨t| ⟩, mapping each meridian to t, gives rise to a surjective
map f : π1(X) → Z. The corresponding covering X̃ → X has Z as the group of deck
transformation. As a result, H1(X̃,Q) is a Q[Z] ≡ Q[t±1]-module. Since Q[t±1] is a PID,
and H1(X̃,Q) is finitely generated over Q[t±1] (prove this!), we have

H1(X̃,Q) ∼=
k⊕

j=1

Q[t±1]/(fj),

where each fj ∈ Q[t±1], fj|fj+1, and some of the fj might be 0. The Alexander polynomial

∆L(t) ∈ Q[t±1] of L is defined to be
∏k

j=1 fk.

The Alexander polynomial is defined up to a unit in Q[t±1]. One can choose the unit
normalization such that ∆L(t) ∈ Z[t±1].

If L is a knot, one can choose a unit normalization of ∆ such that

∆L(t
−1) = ∆L(t)

and ∆L(1) = 1. In particular, for any knot, ∆L(t) ̸= 0.

1.5. Kauffman bracket. The Kauffman bracket was introduced by [Kau1]. For a good
introduction see [Li].

There is a unique function

{unoriented link diagrams} → Z[t±1], D → ⟨D⟩
defined by

L = tL+ + t−1L−(1)

L ⊔ U = −(t2 + t−2)L,(2)

where in the first identity, L,L+, L− are identical except in a ball in which they look like
in Figure 4, and in the second identity, the left hand side stands for the union of a link L
and the trivial framed knot U in a ball disjoint from L. Here L might be the empty link
diagram. In particular, if U is the unknot diagram, the

⟨U⟩ = δ := −(t2 + t−2).
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Figure 4. The links L, L+, and L−

Lemma 1.3. One has

−t3
⟨ ⟩

=
⟨ ⟩

= −t−3
⟨ ⟩

(3) ⟨ ⟩
=

⟨ ⟩
(4) ⟨ ⟩

=

⟨ ⟩
(5)

Exercise 1.4. Prove the lemma.

Corollary 1.5. There exists a unique invariant

{oriented framed links} → Z[q±1/4], L→ VL ∈ Z[q±1/4]
such that

q1/4VL+ − q−1/4VL− = (q1/2 − q−1/2)VL0(6)

VL⊔U = [2]VL(7)

VL+1 = q3/4VL(8)

Here in (6), the links L+, L−, L0 are identical everywhere except for a small balls in which
they look like in Figure 5. In (7), L ⊔ U is the union of L and a trivial 0-framed knot U
which is far away from L. In (8), L+1 is the same as L, with the framing of one of the
components increased by +1.

Figure 5. From left to right: the links L+, L− and L0 in Equation (6)

Here we used the notation [n] for the quantum integer

[n] :=
qn/2 − q−n/2

q1/2 − q−1/2
=
t2n − t−2n

t2 − t−2
.
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Proof. Suppose L is an oriented framed link with blackboard diagram D. Then

VL(q) := (−1)#L⟨D⟩
∣∣∣
t=−q1/4

is an invariant of L, satisfying the requirements of the corollary. �

If we define
◦
V L := q−(3/4)w(L)VL, then

◦
V is an invariant of oriented unframed links satisfying

q
◦
V L+ − q

◦
V L− = (q1/2 − q−1/2)

◦
V L0(9)

◦
V L⊔U = [2]

◦
V L(10)

Remark 1.6. The invariant
◦
V L is a version of the Jones polynomial [Jo]. Jones found his

famous invariant using a special representation of the braid groups which he discovered in
his study of subfactors. Soon after, there are many generalizations, the most comprehensive
one is through the theory of ribbon category, see [RT].

1.6. Examples. The Hopf link

VL = (t4 + t−4)[2] = (q + q−1)[2].

Figure 6. The Hopf link

Right hand trefoil with framing 3.

VL = (−t−7 + t−3 + t5)[2].

Figure 7. The right hand trefoil with framing 3

Exercise 1.7. (Kauffman) The Milnor link is given in Figure 8.
In his famous paper on Milnor’s mu invariants, Milnor challenged us to find more invariants

to distinguish links. He gave this example: at that time he did not know how to show that
this link is not the trivial link.
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Figure 8. Milnor’s link

Show that all the Milnor invariants are 0 (each component is contracted within the com-
plement of the other component).

Calculate the Jones polynomial of the Milnor link and show that it is not the trivial link.

We see that the Jones polynomial captures very ”fine” topology of knots and links which
we don’t fully understand yet.

1.7. Some properties of the Jones polynomial.

Proposition 1.8. (0) One has

VL(q)
∣∣∣
q1/4=1

= 2#L.

In particular, VL ̸= 0.
(1) Suppose L! is the mirror image of L, then

VL!(q) = VL(q
−1).

(2) Suppose L is a connected sum of L1 and L2. Then

[2]VL = VL1VL2 .

(3) Suppose L′ is a Conway mutation of L, then

VL = VL′ .

(4) Suppose L has n components. Then
◦
V L(q) ∈ qn/2Z[q±1].

Exercise 1.9. Prove the proposition.

Thus, if L is an knot and
◦
V L(q) ̸=

◦
V L(q

−1), then L is not amphichiral. For example, the
right hand trefoil is not amphichiral.

1.8. State sum of Kauffman bracket. Let D be a c-crossing link diagram. Denote by C
the set of crossings.

At a crossing x, the two strands of L divide a small neighborhood of x into four regions,
two of them are marked + and two are marked − as in the middle part of Figure 9. The
rule is: if one rotates the over-crossing strand counterclockwise slightly, the over-crossing
strand will be in the two plus regions. There are two ways to resolve the singularity: the
plus-resolution and the minus-resolution, see Figure 9. In the plus resolution, the two plus
regions become connected (forget the dashed line). Similarly, in the minus resolution, the
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+

+

--

+

+

--

+

+

--+ -

Figure 9. Positive resolution on the left and negative resolution on the right

two minus regions become connected (forget the dashed line). In each resolution, we use a
dashed line to connect the two resulting (solid) arcs.

A state for D is a function s : C → {1,−1}. There are in total 2c states. For a state
s let sD be the diagram constructed from D by doing s(x)-resolution at every crossing x
(without dashed lines). Then sD consists of disjoint simple closed curves on R2. Let |sD|
be the number of connected components of sD, and σ(s) =

∑
c∈C s(c).

Exercise 1.10. Show that one always has σ(s) ≡ c := |C| (mod 2), for any state σ.

Let Gs denote the graph whose vertices are connected components of sD and whose edges
are the dashed arcs constructed above. Thus, Gs has |sD| vertices and c = |C| edges.

For a state s define

⟨s⟩ = tσ(s)(−t2 − t−2)|sD|.
Then clearly

⟨D⟩ =
∑
s

⟨s⟩.

1.9. Maximal degree and minimal degree. For a non-zero polynomial f ∈ Z[t±1] let
deg+(f) and deg−(f) be respectively the maximal degree and the minimal degree non-zero
monomials of f . The difference br := deg+− deg− is called the breadth of the Laurent
polynomial.

For non-zero f, g ∈ Z[t±1] one has

deg+(fg) = deg+(f) + deg+(g), deg−(fg) = deg−(f) + deg−(g),(11)

br(fg) = br(f) + br(g)(12)

deg+(f + g) ≤ max(deg+(f), deg+(g), if f + g ̸= 0.(13)

Define a partial ordering on the set of states by: s ≥ s′ if s′ is obtained from s by switching
some +1 to −1. We say that s′ is one step below s if s′ is obtained from s by switching exactly
one +1 to −1.

If s′ is one step below s, then σ(s′) = σ(s)− 2, and |s′D| is either |sD| − 1 or |sD|+ 1.

Lemma 1.11. (a) Suppose s ≥ s′. Then deg+(s) ≥ deg+(s
′).

(b) Suppose s′ is one step below s and |sD| > |s′D|. Then deg+(s) > deg+(s
′).

Exercise 1.12. Prove the lemma.
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1.10. Adequate diagrams and breadth of Jones polynomial. One of the best known
applications of the Jones polynomial is a proof (Kauffman, Murasugi, and Thistlethwaite) of
the Tait conjecture on the crossing number of alternating links, based on an exact estimate of
the crossing number using the breadth of the Jones polynomial. We will need a generalization
of this estimate for the colored Jones polynomial.

Let s+ : C → {1,−1} be the map s+(c) = 1 for every c ∈ C. Similarly, s−(c) = −1
for every c ∈ C. In other words, s+ is the only s such that σ(s) = n, which is the largest
possible. In our ordering of states, s+ is the largest, and s− is the smallest.

Definition 1. A link diagram D is plus-adequate if |s+D| > |sD| for any state s one step
below s+. A link diagram D is minus-adequate if |s−D| > |sD| for any state s one step above
s−. If both conditions hold, then D is called adequate.

A link is plus-adequate (minus-adequate, adequate) if it has a plus-adequate (minus-adequate,
adequate) diagram.

Warning: There are knots which are both plus-adequate and minus-adequate, but not
adequate.

Exercise 1.13. Suppose D is a link diagram. Show that the following are equivalent.
(a) D is plus-adequate
(b) The mirror image of D is minus adequate.
(c) At every crossing of D, the two arcs resulted in the positive resolution do not belong

to the same connected component of s+D.
(d) The graph Gs+ does not have one-loop edge.

Theorem 1.14. Let D be a c-crossing link diagram. Then
(i) deg+(⟨D⟩) ≤ c+ 2|s+D|, with equality if D is plus-adequate.
(ii) deg−(⟨D⟩) ≥ −c− 2|s−D|, with equality if D is minus-adequate.

Corollary 1.15. Suppose L is a link with a c-crossing adequate diagram D. Then br(VL) =
2c+ 2|s+D|+ 2|s−D|. Consequently, c+ |s+D|+ |s−D| is an invariant of L.

Note that if L and L′ differ by framings, then br(VL) = br(VL′).
A link diagram is called alternating if along any component, the over/under nature of

crossings is alternate. A link diagram D is reduced if it has a removable crossing, i.e. a
crossing c for which there is an embedded disk in R2 whose boundary intersects D at exactly
2 points, both are near the c and belong to different strands, see Figure 10.

Disk

Figure 10. Removable crossing

Lemma 1.16. (a) Suppose D is a connected link diagram with c crossings. Then |s+D| +
|s−D| ≤ c+ 2, with equality if D is alternating.

(b) If an alternating link diagram D is reduced, then D is adequate.
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Proof. (a) Induction on the number of crossings.
(b) Exercise. �

Corollary 1.17. Suppose a link L has a connected, reduced, alternating diagram of c cross-
ing, then it has no diagram of less than c crossings, and any alternating reduced diagram of
L has c crossings.

Thus, if L is a link possessing an alternating diagram, then any two reduced alternating
diagrams of L have the same number c of crossings, and this number c is minimum among
all crossing numbers of diagram of L. With a little more efforts one can also show that any
non-alternating diagram of L has more than c crossings.

Exercise 1.18. Suppose D is a link diagram which does not have a trivial component, i.e.
a component without crossing. Then the complement of D in S2 consists of polygons. Each
corner of every polygon is marked by + or −, see Figure 9. Show that D is alternative if
and only if the markings of all the corner of each region are the same.
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2. Colored Jones polynomial

2.1. Chebyshev polynomials. Define Tn(z), Sn(z) ∈ Z[z±1] inductively by

T0 = 2, T1(z) = z, Tn(z) = zTn−1(z)− Tn−2(z)(14)

S0 = 1, S1(z) = z, Sn(z) = zSn−1(z)− Sn−2(z).(15)

One can also extend the definition of Sn, Tn to n ∈ Z, using the same recursion formula.
Then

S−1−n = −S−1+n, T−n = Tn(16)

Tn = Sn − Sn−2.(17)

The Tn are known as Chebyshev’s polynomials of type 1, and Sn are Chebyshev’s polynomials
of type 2.

Exercise 2.1. (a) If z = trM , where M is a 2× 2 matrix. Then tr(Mn) = Tn(z).
(b) If z = q1/2 + q−1/2 = [2]. Then Sn−1(z) = [n].

2.2. Polynomials in framed links. If L is an ordered k-component framed oriented link
and n = (n1, . . . , nk) ∈ Nk, then let Ln be the framed link obtained from L by replacing the
j-th component of L with nj of its parallels.

Let L⃗ be the free Z[t±1]-module with basis the set of all framed oriented links. For
P1(z), . . . , Pk(z) ∈ Z[t±1][z], let ⟨P1 ⊗ . . . ⊗ Pk, L⟩ ∈ L be the result of applying Pj to the
j-th component of L, for all j. In other words, if∏

Pj(zj) =
∑

anz
n, where zn = zn1

1 . . . znk
k if n = (n1, . . . , nk),

then

⟨P1 ⊗ . . .⊗ Pk, L⟩ =
∑
n

anL
n.

We consider VL as a function from the set of framed oriented links to Z[t±1]. Linearly
extend this function to a function from L to Z[t±1].

Suppose L is a k-component framed link, and n = (n1, . . . , nk) ∈ Nk. Define the colored
Jones polynomial of L by

JL(n1, . . . , nk; q) = V⟨Sn1−1⊗...⊗Snk−1,L⟩(q).

(Recall that q1/4 = −t.)
If all the colors are 2, then one recovers the Jones polynomial,

JL(2, . . . , 2; q) = VL(q).

One can remove any component with color 1 without affecting the value of the colored
Jones polynomial. If a component has color 0, then the colored Jones polynomial of the link
is 0.

Exercise 2.2. Show that
JU(n) = [n],

JH(n,m) = [nm],
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where U is the unknot and H is the Hopf link.

2.3. Properties. Let K be a framed oriented knot. Define

J ′K(n) :=
JK(n)

[n]
.

Proposition 2.3. Suppose K,K ′ are framed oriented knots.
(1) If K has 0 framing, then J ′K(n) ∈ Z[q±1] = Z[t±4].
(2) J ′K#K′(n; q) = J ′K(n) JK′(n; q), where K#K ′ is the connected sum of K and K ′.

(3) J ′K!(n; q) = J ′K(n; q
−1). Here K! is the mirror image of K.

(4) JK(n; q) = J←−
K
(n; q), where

←−
K is the same knot K with reverse orientation.

(5) If K ′ is obtained from K by increasing the framing by 1,

JK′(n) = q(n
2−1)/4JK(n).

Exercise 2.4. Prove parts (1), (3), and (4) of the proposition.

Remark 2.5. Property (2), showing that J ′K behaves well under connected sum, explains
why cabling using the Chebyshev polynomials is interesting. This property can be proved
using the Jones-Wenzl idempotent, see e.g. [Li]. This property, as well as property (5), is best
understood in the frame work of links invariant coming from ribbon categories, as cabling by
the Chebyshev polynomials corresponds to coloring by simple objects in the ribbon category,
see [Tu3].

Recall that w(K) is the writhe, or the integer value framing, of framed knots. Let

◦
JK(n; q) = q−w(K)(n2−1)/4JK(n).

Then
◦
J is an invariant of unframed un-oriented knots.

In general, if one changes the orientation of one component of a link, then the colored
Jones polynomial change. If one reverse the orientation of all the components of a link, then
the colored Jones polynomial does not change.

2.4. Examples. If K is the right handed trefoil with framing 0, then

J ′K(n) = q1−n
∞∑
k=0

q−kn(q1−n; q)k(18)

=
∞∑
k=0

q−k(k+3)/2

k∏
j=1

(qn + q−n − qj − q−j).(19)

Formula (18), see [HL], is valid when n > 0. The sum is actually finite, since if k ≥ n, the
summand is 0. Formula (19), see [Ha1], is valid for any 0 ̸= n ∈ Z, and is a finite sum since
the k-th summand is 0 whenever k ≥ |n|. When n < 0, the right hand side of (18), while
not being a finite sum, can be shown to be an element of the Habiro ring [Ha2], and in the
Habiro ring, it is equal to the element defined by Formula (19). When n = 0, both formulas
are infinite sums and equal in the Habiro ring, and give the Kashaev invariant of the knot.
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If K is the figure 8 knot with 0 framing (see [Ha1])

(20) J ′K(n) =
∞∑
k=0

k∏
j=1

(qn + q−n − qj − q−j).

See[Mas] for a proof of these formulas using skein approach.

2.5. Breadth of colored Jones polynomial of adequate links. The following is easy
to prove.

Lemma 2.6. Suppose D is a plus-adequate (minus-adequate, adequate) link diagram. Then
for any n ≥ 0, Dn is plus-adequate (minus-adequate, adequate).

As a corollary, we have the following.

Proposition 2.7. a) Suppose K is a framed oriented knot with a blackboard diagram D
having c crossings. Then

d+(JK(n)) ≤ c(n− 1)2 + 2(n− 1)s+(D),

d−(JK(n)) ≥ −c(n− 1)2 − 2(n− 1)s−(D).

Equalities hold if D is adequate.
(Hence the breadth of JK(n) grows at most as a quadratic function in n.)
b) If K is a non-trivial alternating knot with c crossings. Then the breadth of JK(n) ∈

Z[t±1] is a quadratic polynomial in n. More precisely,

br(JK(n)) = 2c(n− 1)2 + 2(n− 1)(c+ 2).

Proof. a) The n-parallel Dn of D will have cn2 double points. In addition, it is easy to see
that s±(D

n) = ns±(D). Hence, Theorem 1.14 says

d+⟨Dn⟩ ≤ f(n) := cn2 + 2ns+.

Note that f(n) is a strictly increasing function, f(n + 1) > f(n). Recall that Sn(K) =
Dn + terms of lower degrees in D. Hence one has

d+⟨Sn−1(D)⟩ ≤ f(n− 1) = c(n− 1)2 + 2(n− 1)s+.

The proof for d− is similar.
b) Choose a reduced alternating diagram D of K. Let K ′ be the framed oriented knot

defined by D with blackboard framing. Then K ′ is the same as K with possibly different
framing. Hence, their colored Jones polynomials have the same breadth.

For an alternating diagram one has s+ + s− = c+ 2. By Lemma 2.6 and Theorem 1.14,

d+⟨Dn⟩ = cn2 + 2ns+,

d−⟨Dn⟩ = −cn2 − 2ns−.

It follows that d+(D
n) > d+(D

n−1) and d−(D
n) < d−(D

n−1). We have that

Sn(K) = Dn + terms of lower degrees in K,
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hence d±(⟨Sn(K)⟩) = d±(⟨Dn⟩), and
br JK(n) = br(Sn−1(D)) = d+⟨Dn−1⟩ − d−⟨Dn−1⟩ = 2c(n− 1)2 + 2(n− 1)(c+ 2).

�
Exercise 2.8. Suppose K is an alternating knot with a reduced alternating diagram D
which has c+ positive crossings. Show that c+ is an invariant of K.

By [Tu2, Mur], s+ − c+ = σ + 1, where σ is the signature of the knot.

2.6. Melvin-Morton conjecture and volume conjecture. Fix a 0-framed knot K. We
will look at the colored Jones polynomial J ′K as a function on two variables: q and n, where
n ∈ Z is the color. Suppose u ∈ C is a complex number, with eu = z, or u = log z. For a
fixed z, various values of u differ by a multiple of 2πi.

We will consider u near 0 and u near 2πi. In both case, z is near 1.
Let

fn(u) = J ′K(n, q = exp(u/n)),

which is an analytic function in u ∈ C.
Here is the strong Melvin-Morton conjecture.

Theorem 2.9. [GL2] For every knot K there is a open set SK ⊂ C containing 0 such that

lim
n→∞

J ′K(n; q = exp(u/n)) =
1

∆K(eu)

uniformly on any compact in SK. Here ∆K(z) is the Alexander polynomial of the knot,
normalized so that ∆K(z) = ∆K(z

−1) and ∆K(1) = 1.

The original Melvin-Morton conjecture [MM] (proved by Bar-Natan and Garoufalidis
[BG]) says the Maclaurin series of J ′K(n, q = exp(u/n)) converges coefficient-wise to the
Maclaurin seris of 1

∆K(eu)
.

The (already proved) Melvin-Morton conjecture provides the first connection between the
colored Jones polynomial and the fundamental group.

For the volume conjecture, one looks at u near 2πi.

Conjecture 1 (Volume Conjecture). For any knot K,

lim
n→∞

log |J ′K(n; q = exp(2πi/n))|
n

=
Vol(K)

2π
.

Here Vol(K) is the hyperbolic volume of the knot complement.
For more on the volume conjecture, see [Kas, MuM, Muk].

2.7. Quantum link invariants associated to a simple Lie algebra. Suppose g is a
simple Lie C-algebra, L is a framed, oriented link with k-ordered components. Let V1, . . . , Vk
be finite-dimensional g-module. One can define a quantum invariant

Jg
L(V1, . . . , Vk) ∈ Z[q±1/d]

using the Drinfeld-Jimbo quantized universal enveloping algebra of g and the theory of ribbon
category of Reshetikhin-Turaev, see e.g. [RT, Oh, Tu3]. Here d is twice the determinant of
the Cartan matrix of g, see [Le1].
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Suppose g = sl2(C), the simplest simple Lie algebra, which consists of 2 × 2 traceless
matrices. For every n ≥ 1, there is a unique, up to isomorphism, g-module Vn of dimension
n.

Then
JL(Vn1 , . . . , Vnk

) = JL(n1, . . . , nk).

The invariants associated to slN and their fundamental representation can be used to
define the HOMFLY polynomial. The invariants associated to soN and their fundamental
representation can be used to define the Kauffman polynomial [Kau2], see [Tu3].

2.8. Habiro’s expansion of the colored Jones polynomial. Habiro [Ha2] showed that
for every knot K and non-negative integer k, there exists CK(k) ∈ Z[q±1] such that

(21)
◦
J ′K(n) =

∞∑
k=0

CK(k)
k∏

j=1

(qn + q−n − qj − q−j).

Here

◦
J ′K(n) =

◦
JK(n)

[n]
.

This expression has found applications in many works, see [Ha2, GL2].

2.9. Colored Jones polynomial at roots of 1. In the volume conjecture, we look at the

value of
◦
J ′K(n; q) at q a root of unity. Suppose ξ is a root of unity of order r. Then the

colored Jones polynomial enjoy the following symmetry

Proposition 2.10. For every knot K and every root ξ of unity of order r,
◦
J ′K(n) =

◦
J ′K(r − n) =

◦
J ′K(r + n),

when evaluated at q = ξ.

This type of symmetry was first discovered by Kirby and Melvin [KM] for sl2 quantum
invariants. For general Lie algebra see [Le1] and references therein.

Exercise 2.11. Use expression (21) to prove the above proposition.

In the volume conjecture, one cannot take q = exp(2πi/(n+ 1)).
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3. Recurrence relation: holonomicity

In this section R = Z[t±1].

3.1. Recurrence relation with polynomial coefficients. Here is an example of a recur-
rence relation with constant coefficients:

Fn = Fn−1 + Fn−2, n ≥ 2

We will need two initial values in order to determine Fn. For example, F1 = 1, F2 = 1.
And here is an example of a recurrence relation with polynomial coefficients.

(n− 4)Fn = (n3 − 4n2 − 1)Fn−1 + (n2 − 3n− 2)Fn−2.

In general, two initial values are not enough, but 4 initial values F1 = 1, F2 = 1, F3 = 2, F4 =√
2, are enough to determine the whole sequence.

3.2. q-holonomicity, one variable. We are looking at q-analog of recurrence relations with
polynomial coefficients.

Suppose V is a Z[t±1]-modude. The set Map(Z, V ) of all functions from Z to V is also a
Z[t±1]-module.

There are two operators L,M acting on Map(Z, V ):

(Lf)(n) := f(n+ 1)

(Mf)(n) := t2nf(n).

Their inverses L−1,M−1 exist. One has LM = t2ML.
The algebra

T = Z[t±1]⟨L±1,M±1⟩/(LM = t2ML)

is called the quantum torus. Let T+ ⊂ T be the Z[t±1]-submodule spanned by all monomials
of the form LkMp with k, p ≥ 0. Then T+ is known as the quantum plane. It is easy to see
that the set {MaLb | a, b ∈ Z} is a Z[t±1]-basis of T . Similarly, the set {MaLb | a, b ∈ N} is
a Z[t±1]-basis of T+.

With the above actions, Map(Z, V ) becomes a left module of T .
A function f ∈ Map(Z, V ) is called q-holonomic if there is 0 ̸= α ∈ T such that α(f) = 0.
In general, the set Af := {α ∈ T | α(f) = 0} is called the annihilator ideal of f , which is

a left ideal of T . Thus, f is q-holonomic if and only its annihilator ideal is not 0.
An important characterization of q-holomorphic function: If f is q-holonomic, then there

f is totally determined by a finite set of initial values: Suppose 0 ̸= α ∈ T . There exists
n,m ∈ Z, depending on α, such that if α(f) = α(g) = 0 and f(j) = g(j) for n ≤ j ≤ m,
then f = g.

The set of possible images of a fixed f under T is T · f = T /Af . Hence, if f is not
q-holomorphic, then T · f ∼= T is much bigger than T · g = T /Ag for some q-holonomic g.

Exercise 3.1. Show that each of functions n→ t2n and n→ t4n
2
is q-holonomic. However,

n→ t8n
3
is not q-holonomic.
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3.3. q-holonomicity, many variables. For a function f : Zr → V , with r ≥ 2 the def-
inition of q-holonomicity is more complicated. The function must satisfy sufficiently many
recurrence relations in order to be q-holonomic. But how many recurrence relations would
be enough?

Let

Tr = Z[t±1]⟨L±11 , . . . , L±1r , L±11 , . . . , L±1r ⟩/(LiMi = t2MiLi, LiMj =MjLi for i ̸= j).

The algebra Tr acts on Map(Zr, V ), where V is any Z[t±1]-module, by

(Lif)(n1, . . . , ni, . . . , nr) = f(n1, . . . , ni + 1, . . . , nr)

(Mif)(n1, . . . , nr) = t2nif(n1, . . . , nr).

Let Tr,+ be the subalgebra of Tr generated by non-negative powers of Mj, Lj.
Suppose f ̸= 0. From f , by actions of Tr,+, we get other functions, (Tr,+) · f . Intuitively,

the more recurrence relations f satisfies, the smaller (Tr,+) · f is.
Informally, f is q-holonomic if the (Tr,+) · f is as small as possible. A precise definition

is the following. Berstein’s inequality tells us that the dimension of (Tr,+) · f is always ≥ r,
and one says f is q-holonomic if f = 0 or the dimension of (Tr,+) · f is exactly r.

The dimension of (Tr,+) · f can be defined as follows. Let (Tr,+)≤N be the R-span of all
monomials in Mj, Lk with total degree ≤ N . An analog of Hilbert’s theorem for this non-
commutative setting holds true: The C(t)-dimension of (Tr,+)≤N · f is a polynomial in N ,
for big enough N . The degree of this polynomial is called the dimension of T+ · f .

Another way to define the dimension: Suppose W is a non-zero Tr-module. Its co-
dimension and dimension are defined by

codim(W ) = min{j ∈ N | ExtjTr(W, Tr) ̸= 0}, dim(N) = 2r − c(V ).

Then Berstein inequality (proved by Sabbah [Sab] in the q-case) says that if W ̸= 0 is
finitely generated, then dim(N) ≥ r. An Tr-module W is q-holonomic if either W = 0 or
dim(W ) = r. A function f ∈ Map(Zr, V ) is q-hononomic if the module (Tr)·f is q-holonomic.

Exercise 3.2. Show that when r = 1, this definition of q-holonomicity is equivalent to the
one given in Section 3.2.

3.4. Examples of q–holonomic functions. Here are a few examples of q–holonomic func-
tions. In fact, we will encounter only sums, products, extensions, specializations, diagonals,
and multisums of these functions. We use v = t2, q = t4.

Recall that for n ∈ N,

(x; q)n :=
n∏

j=1

(1− xqj−1).

For n, k ∈ Z, let

f(n, k) :=

{
(qn; q−1)k, if k ≥ 0

0 if k < 0

g(n, k) :=

{
(qn;q−1)k
(qk;q−1)k

if k ≥ 0

0 if k < 0
.
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Then both f and g, as well as the delta function δn,k, are q–holonomic. Note that g(n, k) is
the q-binomial and f(n, k) is the q-combination number.

Exercise 3.3. Prove the above statement.

3.5. Properties of q-holonomic functions.

• Sums and products of q–holonomic functions are q–holonomic.
• Specializations and extensions of q–holonomic functions are q–holonomic. In other
words, if f(n1, . . . , nm) is q–holonomic, then so are the functions

g(n2, . . . , nm) :=f(a, n2, . . . , nm) for fixed a

and h(n1, . . . , nm, nm+1) :=f(n1, . . . , nm).

• Diagonals of q–holonomic functions are q–holonomic. In other words, if f(n1, . . . , nm)
is q–holonomic, then so is the function

g(n2, . . . , nm) := f(n2, n2, n3, . . . , nm).

• Linear substitution. If f(n1, . . . , nm) is q–holonomic, then so is the function, g(n′1, . . . , n
′
m′),

where each n′j is a linear function of ni.
• Multisums of q–holonomic functions are q–holonomic. In other words, if f(n1, . . . , nm)
is q–holonomic, the so are the functions g and h, defined by

g(a, b, n2, . . . , nm) :=
b∑

n1=a

f(n1, n2, . . . , nm)

h(a, n2, . . . , nm) :=
∞∑

n1=a

f(n1, n2, . . . , nm)

(assuming that the latter sum is finite for each a).

3.6. State sum formula for the colored Jones polynomial of a knot. Suppose the
knot K is represented as the closure of a braid β on k strands, see Figure 11. The diagram

braid

...

...

...

Figure 11. Oriented links as closures of braids

D of K is the closure of the diagram of the braid. Suppose β (or D) has c crossings. Then
the underlying 4-valent graph of D has 2c edges. A coloring of D is a map

col : { edges of D} → Z.
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A local part of D is a crossing of D or a local maximal point.
For a non-negative integer n and a coloring of D, define the weight of a crossing by

w


 = q(n+nd+nb−ab−dc)/2 f(c, c− b)g(n− a, d− a)δa+b,c+d

w


 = (−1)b−cq(−n−nb−nd+bd+ac−b+c)/2 f(a, a− d)g(n− c, b− c)δa+b,c+d.

and the weight of a maximal point by

w
( )

= q(2a−n)/2.

Here a, b, c, a are the colors of the edges.
The weight of a coloring

w(n, col) =
∏

x:local parts

w(x).

Then one has

(22)
◦
JK(n+ 1) =

∑
col

w(n, col).

3.7. The colored Jones polynomial is q-holonomic. The colored Jones polynomial can
be expressed as a multisum of terms, each is a q-holonomic in all of its variables.

Theorem 3.4. For each framed oriented link L with n components, the function JL : Zn →
Z[t±1] is q-holonomic.

Let AK be the annihilator ideal of K.

3.8. Effect of Weyl symmetry. Let σ : T → T be the R-algebra involution defined by

σ(MaLb) =M−aL−b.

(Check that σ is a well-defined algebra involution.)

Proposition 3.5. The annihilator ideal AK is invariant under σ.

Exercise 3.6. Prove the proposition, using the fact that JK(−n) = −JK(n).

3.8.1. An example. For the right-handed trefoil, one has

◦
JK(n) =

t2−2n

1− t−4
n−1∑
k=0

t−4nk
k∏

i=0

(1− t4i−4n).

The function JK satisfies αJK = 0, where

(23) α = (t4M10 −M6)L2 − (t2M10 + t−18 − t−10M6 − t−14M4)L+ (t−16 − t−4M4).
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Together with the initial conditions JK(0) = 0, JK(1) = 1, this recurrence relation deter-
mines JK(n) uniquely.

3.9. Generator of the recurrence ideal. The quantum torus T is not a principal ideal
domain, and AK might not be generated by a single element. Garoufalidis [Ga2] noticed
that by adding to T all the inverses of polynomials in M one gets a principal ideal domain
T̃ , and hence from the ideal AK one can define a polynomial invariant. Formally one can
proceed as follows. Let R(M) be the fractional field of the polynomial ring R[M ]. Let T̃ be
the set of all Laurent polynomials in the variable L with coefficients in R(M):

T̃ = {
∑
k∈Z

ak(M)Lk | ak(M) ∈ R(M), ak = 0 almost everywhere},

and define the product in T̃ by a(M)Lk · b(M)Ll = a(M) b(t2kM)Lk+l.
Then it is known that every left ideal in T̃ is principal, and T embeds as a subring of T̃ .

The extension ÃK := T̃ AK of AK in T̃ is then generated by a single polynomial

αK(t;M,L) =
n∑

i=0

αK,i(t;M)Li ∈ T+,

where the degree in L is assumed to be minimal and all the coefficients αK,i(t;M) ∈ Z[t±1,M ]
are assumed to be co-prime. That αK can be chosen to have integer coefficients follows from
the fact that JK(n) ∈ Z[t±1]. It is clear that αK(t;M,L) annihilates JK , except for a finite
number of values of the color. Note that αK(t;M,L) is defined up to a factor ±taM b, a, b ∈ Z.
We will call αK the recurrence polynomial of K. For example, the polynomial α in the
previous subsection is the recurrence polynomial of the right-handed trefoil.

Remark 3.7. If P is a polynomial in t and M (no L), and Pf = 0 then P = 0. Hence
adding all the inverses of polynomials in M does not affect the recurrence relations.

3.10. Degree 1 recurrence relation. It turns out that if JK has a recurrence relation of
degree 1, then the breadth of JK(n) can grow at most linearly with n.

Proposition 3.8. Suppose the annihilator polynomial αK has L-degree 1. Then there is a
constant C such that for any n ≥ 1,

br(JK(n)) ≤ Cn.

Consequently, if K is an alternating non-trivial knot, then αK has L-degree ≥ 2.

Sketch of Proof. Assume αK = P (t;M)L + P0(t;M), where P, P0 ∈ Z[t±1,M±1]. Since
σ(αK) = P (t;M−1)L−1 + P0(t;M

−1) is also in the recurrence ideal, it is divisible by αK .

One can then easily show that, (in the extension of T containing
√
M) after normalizing

both P, P0 by a same power of M1/2, one has

P0(t;M) = P (t; t−2M−1).

The equation αKJK = 0 can now be rewritten as

JK(n+ 1) = −P (t; t
−2−2n)

P (t; t2n)
JK(n).
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Thus
br(JK(n+ 1)) = br(JK(n)) + br(P (t; t−2−2n))− br(P (t; t2n)).

It is easy to see that for n big enough, the difference of the breadths br(P (t; t−2−2n)) −
br(P (t; t2n)) is a constant depending only on the polynomial P (t;M), but not on n. From
the above equation it follows that the breadth of JK(n), for n big enough, is a linear function
on n. �
3.11. Linear factor L− 1.

Proposition 3.9. At t = −1, the recurrence polynomial αK is divisible by L − 1. In other

words,
ϵ(αK)

L− 1
∈ Z[M,L].

Sketch of Proof. Suppose αK =
∑d

j=0 aj(t,M)Lj. One has

d∑
j=0

aj(t,M)JK(n+ d) = 0

d∑
j=0

aj(t,M) (t2n+2j − t−2n−2j) J ′K(n+ d) = 0.

Setting t = eu/4n for small enough |u| and taking the limit as n → ∞, using Theorem 2.9,
we have

d∑
j=0

aj(1, e
u/2) (eu/2 − e−u/2) 1

∆(eu/2)
= 0.

It follows that
∑d

j=0 aj(1, e
u/2) = 0 for small |u|. Hence, αK |t2=1,M=z,L=1 = 0, which is

equivalent to the lemma. �
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4. Kauffman bracket skein modules

We recall the definition and known facts about the colored Jones polynomial through the
theory of Kauffman Bracket Skein Modules which were introduced by Przytycki [Pr] and
Turaev [Tu1].

In this section R = C[t±1].

4.1. Skein modules. A framed link in an oriented 3-manifold Y is a disjoint union of
embedded circles, equipped with a non-zero normal vector field. Framed links are considered
up to isotopy. In all figures we will draw framed links, or part of them, by lines as usual,
with the convention that the framing is blackboard. Let L be the free R-module with basis
the set of isotopy classes of framed links in the manifold Y , including the empty link. Let
Rel be the smallest submodule containing all expressions of the form − t − t−1
and⃝+(t2+ t−2)∅, where the links in each expression are identical except in a ball in which
they look like depicted. The quotient S(Y ) := L/Rel is called the Kauffman bracket skein
module, or just skein module, of Y .

When Y = Σ × [0, 1], the cylinder over the surface Σ, we also use the notation S(Σ) for
S(Y ). In this case S(Σ) has an algebra structure induced by the operation of gluing one
cylinder on top of the other. The operation of gluing the cylinder over ∂Y to Y induces a
S(∂Y )-left module structure on S(M).

Exercise 4.1. Suppose f : Y1 ↪→ Y2 is an embedding. Show that L → f(L) gives rise to a
well-define R-module map f∗ : S(Y1)→ S(Y2).

4.2. Example: R3, and the Jones polynomial. When Y is the 3-space R3 or the 3-
sphere S3, the skein module S(Y ) is free over R of rank one, and is spanned by the empty
link. Thus if ℓ is a framed link in R3, then its value in the skein module S(R3) is ⟨ℓ⟩ times
the empty link, where ⟨ℓ⟩ ∈ R is the Kauffman bracket of ℓ.

One could think of S(Y ) as the space of all Kauffman bracket type polynomial of framed
links in Y .

4.3. Example: The solid torus. The solid torus ST is the cylinder over the annulus A,
and hence its skein module S(ST ) has an algebra structure. The algebra S(ST ) is the
polynomial algebra R[z] in the variable z, which is a knot representing the core of the solid
torus.

Instead of the R-basis {1, z, z2, . . . }, two other bases are often useful. Namely, each of
{Tn(z) | n ∈ N} and {Sn(z) | n ∈ N} is a R-basis of S(ST ). Here Tn, Sn are the Chebyshev
polynomials.

A framed knot K in R3 gives rise to an embedding f : A ↪→ R3 which is defined up to
isotopy. Then colored Jones polynomial is then

JK(n) = (−1)n−1f∗(Sn−1(z)).

4.4. The skein module of the torus. Let T2 be the torus with a fixed pair (µ, λ) of simple
closed curves intersecting at exactly one point. For co-prime integers k and l, let λk,l be a
simple closed curve on the torus homologically equal to kµ + lλ. It is not difficult to show
that the skein algebra S(T2) of the torus is generated, as an R-algebra, by all λk,l’s. In fact,
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Bullock and Przytycki [BP] showed that S(T2) is generated over R by 3 elements µ, λ and
λ1,1, subject to some explicit relations. If one adds the inverse of (1− t4) to the ground ring
R, then S(T2) is generated by just two elements µ, λ.

Recall that T = R⟨M±1, L±1⟩/(LM − t2ML) is the quantum torus. Let σ : T → T be
the involution defined by σ(MkLl) :=M−kL−l. Frohman and Gelca [FG] showed that there
is an algebra isomorphism Υ : S(T2)→ T σ given by

Υ(λk,l) := (−1)k+ltkl(MkLl +M−kL−l).

The fact that S(T2) and T σ are isomorphic algebras was also proved by Sallenave [Sal].

4.5. Two-punctured disk and punctured torus. Let F0,3 be the disk with two points
removed, and F1,1 be the torus with one point removed.

Then F0,3 × [0, 1] ∼= F1,1 × [0, 1]. Hence S(F0,3) and S(F1,1) are isomorphic as R-modules.
However, as R-algebras, they are different. In fact, while R(F0,3) is commutative, S(F1,1) is
not.
S(F0,3) is the polynomial algebra R[x, x′, y], where x, x′ are small loops surrounding the

punctured points, and y is a loop parallel to the boundary of the disk. The skein algebra of
the punctured torus is a quantization (non-commutative) algebra of the Lie algebra so3, see
[BP].

Many results and proofs in the theory reduce to calculations involving skein algebras of
F0,3 and F1,1, see e.g. [BW, Le3].

4.6. The orthogonal and peripheral ideals. Let N(K) be a tubular neighborhood of
an oriented knot K in S3, and X the closure of S3 \ N(K). Then ∂(N(K)) = ∂(X) = T2.
There is a standard choice of a meridian µ and a longitude λ on T2 such that the linking
number between the longitude and the knot is zero. We use this pair (µ, λ) and the map Υ
in the previous subsection to identify S(T2) with T σ.

The torus T2 = ∂(N(K)) cut S3 into two parts: N(K) and X. We can consider S(X) as
a left S(T2)-module and S(N(K)) as a right S(T2)-module. There is a bilinear bracket

⟨·, ·⟩ : S(N(K))⊗S(T2) S(X) → S(S3) ≡ R

given by ⟨ℓ′, ℓ′′⟩ := ⟨ℓ′ ∪ ℓ′′⟩, where ℓ′ and ℓ′′ are links in respectively N(K) and X. Note
that if ℓ ∈ S(T2), then

⟨ℓ′ · ℓ, ℓ′′⟩ = ⟨ℓ′, ℓ · ℓ′′⟩.
In general S(X) does not have an algebra structure, but it has the identity element–the

empty link. The map

Θ : S(T2)→ S(X), Θ(ℓ) := ℓ · ∅
is S(T2)-linear. Its kernel P := kerΘ is called the quantum peripheral ideal, first introduced
in [FGL]. In [FGL, Ge], it was proved that every element in P gives rise to a recurrence
relation for the colored Jones polynomial. We will present a refinement of this result here.

The orthogonal ideal O in [FGL] is defined by

O := {ℓ ∈ S(∂X) | ⟨ℓ′,Θ(ℓ)⟩ = 0 for every ℓ′ ∈ S(N(K))}.
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It is clear that O is a left ideal of S(∂X) ≡ T σ and P ⊂ O. In [FGL], O was called the
formal ideal. From the definition, one has

(24) P ⊂ O.

Conjecture 2. For every knot, one has P = O.

According to [Le2], if the conjecture holds, then the colored Jones polynomial distinguish
the unknot from other knots.

4.7. Recurrence relation from Kauffman bracket skein modules. As mentioned above,
the skein algebra of the torus S(T2) can be identified with T σ via the R-algebra isomorphism
Υ sending µ, λ and λ1,1 to respectively −(M +M−1),−(L+L−1) and t(ML+M−1L−1). We
will use this identification.

Recall that A = AK is the recurrence ideal of the knot K.

Proposition 4.2. For every knot one has

P ⊂ O ⊂ A.

Actually,

(25) O = A ∩ T σ.

To prove the above proposition, we first prove the following.

Proposition 4.3. For any ℓ ∈ S(T2). One has

(−1)n−1⟨Sn−1(λ),Θ(ℓ)⟩ = ℓ · JK(n)(26)

Here on the left hand side, ℓ is an element of S(∂X), and on the right hand side ℓ is an
element of T σ ⊂ T , which acts on Map(Z,Z[t±1]).

Proof. We know from the properties of the Jones-Wenzl idempotent (see e.g. [Oh]) that

⟨Sn−1(λ) · µ, ∅⟩ = (−t2n − t−2n)⟨Sn−1(λ), ∅⟩
⟨Sn−1(λ) · λ, ∅⟩ = ⟨Sn(λ) + Sn−2(λ), ∅⟩
⟨Sn−1(λ) · λ1,1, ∅⟩ = −⟨t2n+1Sn(λ) + t−2n+1Sn−2(λ), ∅⟩.

By definition JK(n) = (−1)n−1⟨Sn−1(λ), ∅⟩ and (MJK)(n) = t2nJK(n), (LJK)(n) = JK(n +
1). Hence the above equations can be rewritten as

(−1)n−1⟨Sn−1(λ), Θ(µ)⟩ = −(M +M−1)JK(n) = µ · JK(n),
(−1)n−1⟨Sn−1(λ), Θ(λ)⟩ = −(L+ L−1)JK(n) = λ · JK(n),

(−1)n−1⟨Sn−1(λ), Θ(λ1,1)⟩ = t(ML+M−1L−1)JK(n) = Υ(λ1,1)J(n).

Since S(T2) is generated by µ, λ and λ1,1, we conclude that

(−1)n−1⟨Sn−1(λ),Θ(ℓ)⟩ = Υ(ℓ)JK(n)

for all ℓ ∈ S(T2). �
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Proof of Proposition 4.2. By the definition P ⊂ O. We now show O ⊂ A. Suppose ℓ ∈ O.
Then by definition, the left hand side of 26 is 0. The right hand side of (26) is 0 means that
ℓ ∈ cA. Thus, O ⊂ A.

Next we show that O = AK ∩ T σ.
Since {Sn(λ)}n generates the skein module S(N(K)), Proposition 4.3 implies that

O = {ℓ ∈ S(∂X) | ⟨ℓ′,Θ(ℓ)⟩ = 0 for every ℓ′ ∈ S(N(K))}
= {ℓ ∈ S(∂X) | ⟨Sn(λ),Θ(ℓ)⟩ = 0 for all integers n}
= {ℓ ∈ S(∂X) = T σ | ℓ · JK(n) = 0 for all integers n}.

Hence O = AK ∩ T σ. �
Remark 4.4. Equation (25) was obtained in [Ga1] by another method. We present here a
more geometric proof, using properties of the action of the longitude and the meridian on
the Chebyshev polynomials.

4.8. The character variety of a group. The set of representations of a finitely presented
group G into SL2(C) is an algebraic set defined over C, on which SL2(C) acts by conjugation.
The set-theoretic quotient of the representation space by that action does not have good
topological properties, because two representations with the same character may belong to
different orbits of that action. A better quotient, the algebro-geometric quotient denoted by
χ(G) (see [CS, BH, LM]), has the structure of an algebraic set. There is a bijection between
χ(G) and the set of all characters of representations of G into SL2(C), hence χ(G) is usually
called the character variety of G. For a manifold Y we use χ(Y ) also to denote χ(π1(Y )).
The character variety has played an important role in geometric topology.

Suppose G = Z2, the free abelian group with two generators. Every pair of generators
µ, λ will define an isomorphism between χ(G) and (C∗)2/τ , where (C∗)2 is the set of non-
zero complex pairs (L,M) and τ is the involution τ(M,L) := (M−1, L−1), as follows: Every
representation is conjugate to an upper diagonal one, with M and L being the upper left
entry of µ and λ respectively. The isomorphism does not change if one replaces (µ, λ) with
(µ−1, λ−1).

4.9. Skein modules and character variety. For a non-zero complex number ξ let Sξ(Y )
be the skein module of Y at t = ξ, i.e.

Sξ(Y ) = S(Y )/(t− ξ) = S(Y )⊗R C,

where C is considered as a R-module by setting t→ ξ.
Then Sξ(Y ) is a vector space over C. Note that S±1(Y ) have a natural algebra structure

where the product of two links in S±(Y ) is their disjoint union. It is easy to see that when
t = ±1, this product is well-defined. Let

√
0 be the nil-radical of S−1(Y ). Then S−1(Y )/

√
0

is a reduced finitely generated C-algebra. Hence, S−1(Y )/
√
0 is isomorphic to the ring of

regular functions of some algebraic set.
An important result [Bul, PS] in the theory of skein modules is that S−1(Y )/

√
0 is iso-

morphic to the ring C[χ(Y )] of regular functions of the character variety of π1(Y ). The
isomorphism between is given by K(r) = −tr r(K), where K is a knot in Y representing an
element of π1(Y ), and r : π1(Y )→ SL2(C) is a representation of π1(Y ).
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The algebra S−1(Y ) is isomorphic to the universal SL2-character algebra of π1(Y ), see
[PS, BH].

In many cases S−1(Y ) is reduced, i.e. its nilradical is zero, and hence S−1(Y ) is exactly the
ring of regular functions on the SL2-character variety of π1(Y ). For example, this is the case
when Y is a torus, or when Y is the complement of a two-bridge knot/link [Le2, PS, LT1], or
when Y is the complement of the (−2, 3, 2n + 1)-pretzel knot for any integer n (see [LT2]).
We have the following conjecture.

Conjecture 3. For every knot K the universal SL2-character ring is reduced.

4.10. Skein modules at roots of 1. Suppose ξ ∈ C such that ξ2 is a root of unity of order
exactly N for some odd integer N > 0. Define an action of S−1(Y ) on Sξ(Y ) as follows.

Suppose ℓ, ℓ′ are disjoint framed links in Y . Let

ℓ · ℓ′ = TN(ℓ) ∪ ℓ′,
where TN is the N -th Chebyshev polynomial of type 1. On the left hand side ℓ is considered
as an element of S−1(Y ), ℓ′ is considered as an element of Sξ(Y ). On the right hand side
both ℓ, ℓ′ are considered as elements of Sξ(Y ). In [Le3], it was proved that this gives rise to
an action of S−1(Y ) on Sξ(Y ), which is an extension of results of [BW] for skein algebras of
surfaces.
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5. AJ conjecture

5.1. The A-polynomial. Let X be the closure of S3 minus a tubular neighborhood N(K)
of a knot K. The boundary of X is a torus whose fundamental group is free abelian of rank
two. An orientation of K will define a unique pair of an oriented meridian and an oriented
longitude such that the linking number between the longitude and the knot is zero, as in
Subsection 4.6. The pair provides an identification of χ(∂X) and (C∗)2/τ which actually
does not depend on the orientation of K.

The inclusion ∂X ↪→ X induces the restriction map

(27) ρ : χ(X) 7−→ χ(∂X) ≡ (C∗)2/τ

Let Z be the image of ρ and Ẑ ⊂ (C∗)2 the lift of Z under the projection (C∗)2 → (C∗)2/τ .
The Zariski closure of Ẑ ⊂ (C∗)2 ⊂ C2 in C2 is an algebraic set consisting of components
of dimension 0 or 1. The union of all the one-dimension components is defined by a single
polynomial AK ∈ Z[M,L], whose coefficients are co-prime. Note that AK is defined up to
±1. We call AK the A-polynomial of K. By definition, AK does not have repeated factors.
It is known that AK is always divisible by L − 1. The A-polynomial here is actually equal
to L− 1 times the A-polynomial defined in [CCGLS].

The A-polynomial is an important geometric invariant. The slops of the Newton polygon
of AK are boundary slopes of the knot. The A-polynomial distinguishes the unknot from
other knots, see [DG, BZ].

For a hyperbolic knot [Th], the character of a discrete faithful SL2-representation is always
a smooth point of the character variety, see e.g. [Po]. A component of the character variety
containing the character of a discrete faithful representation is called a geometric component.
By a result of Thurston, the complex dimension of each geometric component is 1. For knots
in S3 there are at most 4 geometric components, see e.g. [Du]. There is no known example
of knots with more than one geometric components.

An important result of Dunfield [Du] that we will use is that the map ρ in (27), when
restricted to a geometric component, is a birational equivalence onto its image.

5.2. The B-polynomial. It is also instructive to see the dual picture in the construction
of the A-polynomial. For an algebraic set V (over C) let C[V ] denote the ring of regular
functions on V . For example, C[(C∗)2/τ ] = tσ, the σ-invariant subspace of t := C[L±1,M±1],
where σ(MkLl) =M−kL−l.

The map ρ in the previous subsection induces an algebra homomorphism

θ : C[χ(∂X)] ≡ tσ −→ C[χ(X)].

We will call the kernel p of θ the classical peripheral ideal; it is an ideal of tσ. We have the
exact sequence

(28) 0→ p→ tσ
θ−→ C[χ(X)].

The ring tσ ⊂ t = C[M±1, L±1] embeds naturally into the principal ideal domain t̃ :=
C(M)[L±1], where C(M) is the fractional field of C[M ]. The ideal extension p̃ := t̃ p of p
in t̃ is thus generated by a single polynomial BK ∈ Z[M,L] which has co-prime coefficients
and is defined up to a factor ±Mk with k ∈ Z. Again BK can be chosen to have integer
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coefficients because everything can be defined over Z. We will call BK the B-polynomial of
K.

5.3. Relation between the A-polynomial and B-polynomial. From the definitions one
has immediately that the polynomial BK is M -essentially divisible by AK . Moreover, their
zero sets {BK = 0} and {AK = 0} are equal, up to some lines parallel to the L-axis in the
LM -plane.

Lemma 5.1. The field C(M) is a flat C[M±1]σ-algebra, and t̃ = tσ ⊗C[M±1]σ C(M).

Proof. The extension from C[M±1]σ to C(M) can be done in two steps: The first one is from
C[M±1]σ to C[M±1] (note that C[M±1] is free over C[M±1]σ since C[M±1] = C[M±1]σ ⊕
MC[M±1]σ); the second step is from C[M±1] to its field of fractions C(M). Each step is a
flat extension, hence C(M) is flat over C[M±1]σ.

It follows that the extension (tσ ↪→ t)⊗ C(M) is still an injection, i.e.

ψ : tσ ⊗C[M±1]σ C(M)→ t⊗C[M±1] C(M) = t̃, ψ(x⊗ y) = xy,

is injective. Let us show that ψ is surjective. For every n ∈ Z,

Ln = ψ

(
(MLn +M−1L−n)⊗ 1

M −M−1 − (Ln + L−n)⊗ M−1

M −M−1

)
.

Since {Ln | n ∈ Z} generates t̃ = C(M)[L±1], ψ is surjective. Thus ψ is an isomorphism. �

Consider the exact sequence (28). The ring C[χ(X)] has a tσ-module structure via the
algebra homomorphism θ : C[χ(∂X)] ≡ tσ → C[χ(X)], hence a C[M±1]σ-module structure
since C[M±1]σ is a subring of tσ. By Lemma 5.1, t̃ = tσ ⊗C[M±1]σ C(M). It follows that
p̃ = p⊗C[M±1]σC(M). Hence by taking the tensor product over C[M±1]σ of the exact sequence
(28) with C(M), we get the exact sequence

(29) 0→ p̃→ t̃
θ̃−→ C̃[χ(X)],

where C̃[χ(X)] := C[χ(X)]⊗C[M±1]σ C(M).

Proposition 5.2. The B-polynomial BK does not have repeated factors.

Corollary 5.3. For every knot K one has

BK =
AK

its M -factor
.

Here the M -factor of AK is the maximal factor of AK depending on M only; it is defined
up to a non-zero complex number.
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5.4. AJ conjecture, example. Garoufalidis [Ga2] formulated the following conjecture (see
also [FGL, Ge]).

Conjecture 4. (AJ conjecture) For every knot K, αK |t=−1 is equal to the A-polynomial,
up to a factor depending on M only.

Some authors also call the recurrence polynomial αK the quantum A-polynomial.

Example 5.4. For the right-handed trefoil, αK is given by (23). One has

αK |t=−1= (M4 − 1)(L− 1)(LM6 + 1) = (M4 − 1)AK(L,M),

and the conjecture holds for the trefoil.

Exercise 5.5. Suppose the AJ conjecture holds for a framed knot K. Show that it holds
for any knot K ′ differing from K by a framing.

The AJ conjecture gives a very deep relation between the colored Jones polynomial and
the fundamental group.

The A-polynomial is difficult to calculate, the recurrence polynomial is even more difficult
to calculate. There are only a few simple knots for which the AJ conjecture can be verified
by direct calculation.

5.5. Results. Suppose K is a knot in R3 ⊂ S3. Let X = S3 \N(K), where N(K) is a
tubular neighborhood of K. Then S(X) is a left S(∂X)-module. We already know that
S(∂X) = S(T2) = T σ. Let M = R[M±1] ⊂ T . Then Mσ ⊂ T σ. Since S(X) is a
T σ-module, it is a module overMσ.

Theorem 1 (See [LT2]). Suppose K is a knot satisfying all the following conditions:
(i) K is hyperbolic,
(ii) the SL2-character variety of π1(S

3 \ K) consists of two irreducible components (one
abelian and one non-abelian),

(iii) the universal SL2-character ring of π1(S
3 \K) is reduced,

(iv) the skein module S(X) is finitely generated overMσ, and
(v) the recurrence polynomial of K has L-degree greater than 1.

Then the AJ conjecture holds true for K.

Note that if K is adequate, then (v) holds. If K is non-torus alternating, then (i) and
(v) hold. On the other hand, if K is torus, then it is known that the AJ conjecture holds
[Hi, Tr].

Condition (iv) can be relaxed, see below.

Theorem 2 (See [LT2]). The following knots satisfy all the conditions (i)–(v) of Theorem
1 and hence the AJ conjecture holds true for them.

(a) All pretzel knots of type (−2, 3, 6n± 1), n ∈ Z.
(b) All two-bridge knots for which the SL2-character variety has exactly two irreducible

components; these include

• all double twist knots of the form J(k, l) (see Figure 12) with k ̸= l
• all two-bridge knots b(p,m) with m = 3, and
• all two-bridge knots b(p,m) with p prime and gcd(p−1

2
, m−1

2
) = 1.
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l

k

Figure 12. The double twist knot J(k, l). Here k and l denote the numbers of half twists in

the boxes. Positive (resp. negative) numbers correspond to right-handed (resp. left-handed)

twists .

Here we use the notation b(p,m) for two bridge knots from [BZ]. The fact that the
character varieties of pretzel knots (−2, 3, 6n ± 1) and double twist knots have exactly 2
components was proved in [MPL] and in [Mat].

Actually, (b) can be strengthen as follows: if the non-abelian character variety of a two-
bridge knot K is irreducible over Z, then the AJ conjecture holds for K (joint work with X.
Zhang).

Remark 5.6. Besides the infinitely many cases of two-bridge knots listed in Theorem 2,
explicit calculations seem to confirm that “most two-bridge knots” satisfy the conditions
of Theorem 1 and hence AJ conjecture holds for them. In fact, among 155 b(p,m) with
p < 45, only 9 hyperbolic knots b(15, 11), b(21, 13), b(27, 5), b(27, 17), b(27, 19), b(33, 5),
b(33, 13), b(33, 23), and b(35, 29) do not satisfy the condition (ii) of Theorem 1. Thus, the
AJ conjecture holds for all two-bridge knots b(p,m) with p < 45 except for these 9 knots.
Using explicit formula, Garoufalidis and Koutchan [GK] showed that the AJ conjecture holds
for b(15, 11).

5.6. Idea of proof. We have the following commutative diagram

(30)

T σ Θ−−−→ S

ε

y ε

y
tσ

θ−−−→ s

Here, for a C[t±1]-module M , we denote ε the natural projection M →M/(t+ 1).
LetM be the localization ofM = C[t±1,M±1] at (1 + t), i.e.

M =

{
f

g
| f, g ∈ C[t±1,M±1], g ̸∈ (1 + t)C[t±1,M±1]

}
.

ThenM is a local ring and a PID, and every ideal ofM is one of ((1+ t)k), k ∈ N. It is not
difficult to show thatM is flat overMσ. Similarly, C(M) is flat over C[M±1]σ.
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Let T = T σ ⊗Mσ M and S = S ⊗Mσ M. Similarly, let t = tσ ⊗C[M±1]σ C(M) and
s = s⊗C[M±1]σ C(M,L). Then one can show that

T =M[L±1]

t = C(M)[L±1] = t̃.

From the Diagram (30), one has

T Θ−−−→ S

ε

y ε

y
t

θ−−−→ s
According to condition (ii), the character variety of X has two components, one abelian

and one non-abelian. Since K is hyperbolic, the non-abelian is the geometric component:
it is the only irreducible component of the character variety containing the character of
the discrete faithful SL2 representation. By a result of Dunfield [Du], the map from the
geometric component onto the character variety of the boundary torus is a birational map
on its image. From here and the condition (iii) one can show that θ is onto.

Now assume that S is finitely generated overM. This condition is weaker than (iv). Then
Nakayama’s lemma shows that Θ is surjective.

We have the following commutative diagram with exact rows.

0 −−−→ P ι−−−→ T Θ−−−→ S −−−→ 0

h

y ε

y ε

y
0 −−−→ p −−−→ t

θ−−−→ s −−−→ 0

Here P = ker(Θ) and p = ker(θ), and h is the restriction of ε on P. One can show that h is
surjective.

Since h is surjective, and BK is the generator of p, there is β ∈ P such that β|t=−1 =
h(β) = BK . Since β ∈ P , αK |β. Then we have

(31) (1− L)|ε(αK)|ε(β) = BK ,

where the fact that (1−L)|ε(αK) is Proposition 3.9. Since the character variety has exactly
2 component, BK = AK = (1 − L)A′K , where A′K is irreducible. It follows that either
ε(αK) = (1−L), or ε(αK) = (1−L)A′K = AK . The first possibility is excluded by condition
(v). Hence, ε(αK) = AK . This completes the proof of Theorem 1.
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