Splitting formulas for the LMO invariant

Gwénaël Massuyeau
(IRMA, Strasbourg)

CNRS/JSPS joint seminar
Marseille, November 2012

Contents

(1) Lagrangian-preserving surgeries

Contents

(1) Lagrangian-preserving surgeries
(2) The LMO invariant and its splitting formulas

Contents

(1) Lagrangian-preserving surgeries
(2) The LMO invariant and its splitting formulas
(3) The LMO functor (with Cheptea \& Habiro)

Contents

(1) Lagrangian-preserving surgeries
(2) The LMO invariant and its splitting formulas
(3) The LMO functor (with Cheptea \& Habiro)
(4) Proof of the splitting formulas

Contents

(1) Lagrangian-preserving surgeries
(2) The LMO invariant and its splitting formulas
(3) The LMO functor (with Cheptea \& Habiro)

4 Proof of the splitting formulas

Lagrangian-preserving pairs

$$
\mathbb{K}:=\mathbb{Z} \text { or } \mathbb{Q}
$$

Lagrangian-preserving pairs

$$
\begin{aligned}
& \mathbb{K}:=\mathbb{Z} \text { or } \mathbb{Q} \\
& H_{g}: \text { standard handlebody of genus } g
\end{aligned}
$$

Lagrangian-preserving pairs

$$
\begin{aligned}
& \mathbb{K}:=\mathbb{Z} \text { or } \mathbb{Q} \\
& H_{g}: \text { standard handlebody of genus } g
\end{aligned}
$$

Definition

A \mathbb{K}-homology handlebody of genus g is a compact oriented 3-manifold D such that $H_{*}(D ; \mathbb{K}) \simeq H_{*}\left(H_{g} ; \mathbb{K}\right)$.

Lagrangian-preserving pairs

$$
\begin{aligned}
& \mathbb{K}:=\mathbb{Z} \text { or } \mathbb{Q} \\
& H_{g}: \text { standard handlebody of genus } g
\end{aligned}
$$

Definition

A \mathbb{K}-homology handlebody of genus g is a compact oriented 3-manifold D such that $H_{*}(D ; \mathbb{K}) \simeq H_{*}\left(H_{g} ; \mathbb{K}\right)$.
$L_{D}^{\mathbb{K}}:=\operatorname{Ker}\left(\operatorname{incl}_{*}: H_{1}(\partial D ; \mathbb{K}) \longrightarrow H_{1}(D ; \mathbb{K})\right)$

Lagrangian-preserving pairs

$\mathbb{K}:=\mathbb{Z}$ or \mathbb{Q}
H_{g} : standard handlebody of genus g

Definition

A \mathbb{K}-homology handlebody of genus g is a compact oriented 3-manifold D such that $H_{*}(D ; \mathbb{K}) \simeq H_{*}\left(H_{g} ; \mathbb{K}\right)$.
$L_{D}^{\mathbb{K}}:=\operatorname{Ker}\left(\operatorname{incl}_{*}: H_{1}(\partial D ; \mathbb{K}) \longrightarrow H_{1}(D ; \mathbb{K})\right)$

Definition

A \mathbb{K}-LP pair is a pair $\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right)$ of two \mathbb{K}-homology handlebodies such that $\partial C^{\prime}=\partial C^{\prime \prime}$ and $L_{C^{\prime}}^{\mathbb{K}}=L_{C^{\prime \prime}}^{\mathbb{K}}$.

Lagrangian-preserving pairs

$\mathbb{K}:=\mathbb{Z}$ or \mathbb{Q}
H_{g} : standard handlebody of genus g

Definition

A \mathbb{K}-homology handlebody of genus g is a compact oriented 3-manifold D such that $H_{*}(D ; \mathbb{K}) \simeq H_{*}\left(H_{g} ; \mathbb{K}\right)$.
$L_{D}^{\mathbb{K}}:=\operatorname{Ker}\left(\operatorname{incl}_{*}: H_{1}(\partial D ; \mathbb{K}) \longrightarrow H_{1}(D ; \mathbb{K})\right)$

Definition

A \mathbb{K}-LP pair is a pair $\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right)$ of two \mathbb{K}-homology handlebodies such that $\partial C^{\prime}=\partial C^{\prime \prime}$ and $L_{C^{\prime}}^{\mathbb{K}}=L_{C^{\prime \prime}}^{\mathbb{K}}$.
$C:=\left(-C^{\prime}\right) \cup_{\partial} C^{\prime \prime}$ is a closed oriented 3-manifold.

Lagrangian-preserving pairs

$\mathbb{K}:=\mathbb{Z}$ or \mathbb{Q}
H_{g} : standard handlebody of genus g

Definition

A \mathbb{K}-homology handlebody of genus g is a compact oriented 3-manifold D such that $H_{*}(D ; \mathbb{K}) \simeq H_{*}\left(H_{g} ; \mathbb{K}\right)$.
$L_{D}^{\mathbb{K}}:=\operatorname{Ker}\left(\operatorname{incl}_{*}: H_{1}(\partial D ; \mathbb{K}) \longrightarrow H_{1}(D ; \mathbb{K})\right)$

Definition

A \mathbb{K}-LP pair is a pair $\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right)$ of two \mathbb{K}-homology handlebodies such that $\partial C^{\prime}=\partial C^{\prime \prime}$ and $L_{C^{\prime}}^{\mathbb{K}}=L_{C^{\prime \prime}}^{\mathbb{K}}$.
$C:=\left(-C^{\prime}\right) \cup_{\partial} C^{\prime \prime}$ is a closed oriented 3-manifold.
$\left\{\begin{array}{rll}H^{1}(C ; \mathbb{Q})^{\times 3} & \longrightarrow \mathbb{Q} \\ (x, y, z) & \longmapsto\langle x \cup y \cup z,[C]\rangle\end{array}\right.$

Lagrangian-preserving pairs

$\mathbb{K}:=\mathbb{Z}$ or \mathbb{Q}
H_{g} : standard handlebody of genus g

Definition

A \mathbb{K}-homology handlebody of genus g is a compact oriented 3-manifold D such that $H_{*}(D ; \mathbb{K}) \simeq H_{*}\left(H_{g} ; \mathbb{K}\right)$.
$L_{D}^{\mathbb{K}}:=\operatorname{Ker}\left(\operatorname{incl}_{*}: H_{1}(\partial D ; \mathbb{K}) \longrightarrow H_{1}(D ; \mathbb{K})\right)$

Definition

A \mathbb{K}-LP pair is a pair $\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right)$ of two \mathbb{K}-homology handlebodies such that $\partial C^{\prime}=\partial C^{\prime \prime}$ and $L_{C^{\prime}}^{\mathbb{K}}=L_{C^{\prime \prime}}^{\mathbb{K}}$.
$C:=\left(-C^{\prime}\right) \cup_{\partial} C^{\prime \prime}$ is a closed oriented 3-manifold.
$\left\{\begin{aligned} H^{1}(C ; \mathbb{Q})^{\times 3} & \longrightarrow \mathbb{Q} \\ (x, y, z) & \longmapsto\langle x \cup y \cup z,[C]\rangle\end{aligned} \rightsquigarrow \mu(C) \in \Lambda^{3} H_{1}(C ; \mathbb{Q})\right.$

Example: the genus 3 Heegaard splitting of the 3-torus

$$
\begin{aligned}
& T:=S^{1} \times S^{1} \times S^{1}=[0,1]^{3} / \sim \\
& K_{1}:=S^{1} \times\{1\} \times\{1\} \\
& K_{2}:=\{1\} \times S^{1} \times\{1\} \\
& K_{3}:=\{1\} \times\{1\} \times S^{1} \\
& T^{\prime}:=-\left(\text { reg. neigh. of }\left(K_{1} \cup K_{2} \cup K_{3}\right)\right) \\
& T^{\prime \prime}:=T \backslash \operatorname{int}\left(T^{\prime}\right)
\end{aligned}
$$

Example: the genus 3 Heegaard splitting of the 3-torus

$$
\begin{aligned}
& T:=S^{1} \times S^{1} \times S^{1}=[0,1]^{3} / \sim \\
& K_{1}:=S^{1} \times\{1\} \times\{1\} \\
& K_{2}:=\{1\} \times S^{1} \times\{1\} \\
& K_{3}:=\{1\} \times\{1\} \times S^{1} \\
& T^{\prime}:=-\left(\text { reg. neigh. of }\left(K_{1} \cup K_{2} \cup K_{3}\right)\right) \\
& T^{\prime \prime}:=T \backslash \operatorname{int}\left(T^{\prime}\right)
\end{aligned}
$$

$$
L_{T^{\prime \prime}}^{\mathbb{Z}}=\left\langle\left[C_{1}\right],\left[C_{2}\right],\left[C_{3}\right]\right\rangle=L_{T^{\prime}}^{\mathbb{Z}}
$$

Example: the genus 3 Heegaard splitting of the 3-torus

$$
\begin{aligned}
& T:=S^{1} \times S^{1} \times S^{1}=[0,1]^{3} / \sim \\
& K_{1}:=S^{1} \times\{1\} \times\{1\} \\
& K_{2}:=\{1\} \times S^{1} \times\{1\} \\
& K_{3}:=\{1\} \times\{1\} \times S^{1} \\
& T^{\prime}:=-\left(\text { reg. neigh. of }\left(K_{1} \cup K_{2} \cup K_{3}\right)\right) \\
& T^{\prime \prime}:=T \backslash \operatorname{int}\left(T^{\prime}\right)
\end{aligned}
$$

$$
L_{T^{\prime \prime}}=\left\langle\left[C_{1}\right],\left[C_{2}\right],\left[C_{3}\right]\right\rangle=L_{T^{\prime}}^{\mathbb{Z}} \quad \Longrightarrow \mathcal{T}:=\left(T^{\prime}, T^{\prime \prime}\right) \text { is a } \mathbb{Z} \text {-LP pair. }
$$

Example: the genus 3 Heegaard splitting of the 3-torus

$$
\begin{aligned}
T & :=S^{1} \times S^{1} \times S^{1}=[0,1]^{3} / \sim \\
K_{1} & :=S^{1} \times\{1\} \times\{1\} \\
K_{2} & :=\{1\} \times S^{1} \times\{1\} \\
K_{3} & :=\{1\} \times\{1\} \times S^{1} \\
T^{\prime} & :=-\left(\text { reg. neigh. of }\left(K_{1} \cup K_{2} \cup K_{3}\right)\right) \\
T^{\prime \prime} & :=T \backslash \operatorname{int}\left(T^{\prime}\right) \\
L_{T^{\prime \prime}}^{\mathbb{Z}} & =\left\langle\left[C_{1}\right],\left[C_{2}\right],\left[C_{3}\right]\right\rangle=L_{T^{\prime}}^{\mathbb{Z}} \quad \Longrightarrow \mathcal{T}:=\left(T^{\prime}, T^{\prime \prime}\right) \text { is a } \mathbb{Z} \text {-LP pair. } \\
\mu(T) & = \pm\left[K_{1}\right] \wedge\left[K_{2}\right] \wedge\left[K_{3}\right] \in \Lambda^{3} H_{1}(T ; \mathbb{Q})
\end{aligned}
$$

Example: the genus 3 Heegaard splitting of the 3 -torus

$$
\begin{aligned}
& T:=S^{1} \times S^{1} \times S^{1}=[0,1]^{3} / \sim \\
& K_{1}:=S^{1} \times\{1\} \times\{1\} \\
& K_{2}:=\{1\} \times S^{1} \times\{1\} \\
& K_{3}:=\{1\} \times\{1\} \times S^{1} \\
& T^{\prime}:=-\left(\text { reg. neigh. of }\left(K_{1} \cup K_{2} \cup K_{3}\right)\right) \\
& T^{\prime \prime}:=T \backslash \operatorname{int}\left(T^{\prime}\right)
\end{aligned}
$$

$L_{T^{\prime \prime}}^{\mathbb{Z}}=\left\langle\left[C_{1}\right],\left[C_{2}\right],\left[C_{3}\right]\right\rangle=L_{T^{\prime}}^{\mathbb{Z}} \quad \Longrightarrow \mathcal{T}:=\left(T^{\prime}, T^{\prime \prime}\right)$ is a \mathbb{Z}-LP pair.
$\mu(T)= \pm\left[K_{1}\right] \wedge\left[K_{2}\right] \wedge\left[K_{3}\right] \in \wedge^{3} H_{1}(T ; \mathbb{Q})$

Remark

Any genus 3 Heegaard splitting of the 3-torus is isotopic to this one (Frohman \& Hass 1989).

Lagrangian-preserving surgeries

Lagrangian-preserving surgeries

M : a closed oriented 3-manifold
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{K}-LP pair with $C^{\prime} \subset M$

Lagrangian-preserving surgeries

M : a closed oriented 3-manifold
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{K}-LP pair with $C^{\prime} \subset M$
Definition (Lescop)
$M_{\mathcal{C}}:=\left(M \backslash \operatorname{int}\left(C^{\prime}\right)\right) \cup_{\partial} C^{\prime \prime}$

M_{C}

$C^{\prime \prime}$

Lagrangian-preserving surgeries

M : a closed oriented 3-manifold
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{K}-LP pair with $C^{\prime} \subset M$
Definition (Lescop)
$M_{\mathcal{C}}:=\left(M \backslash \operatorname{int}\left(C^{\prime}\right)\right) \cup_{\partial} C^{\prime \prime}$ is obtained from M by a \mathbb{K}-LP surgery.

Lagrangian-preserving surgeries

M : a closed oriented 3-manifold
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{K}-LP pair with $C^{\prime} \subset M$
Definition (Lescop)
$M_{\mathcal{C}}:=\left(M \backslash \operatorname{int}\left(C^{\prime}\right)\right) \cup_{\partial} C^{\prime \prime}$ is obtained from M by a \mathbb{K}-LP surgery.

Example: $\mathcal{C}=\mathcal{T}$, the genus 3 Heegaard splitting of the 3-torus
The \mathbb{Z}-LP surgery $M \rightsquigarrow M_{\mathcal{T}}$ can be used to show that any trilinear alternate form is \simeq to the $\mu(N)$ of a closed oriented 3-manifold N (Sullivan 1975).

Lagrangian-preserving surgeries

M : a closed oriented 3-manifold
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{K}-LP pair with $C^{\prime} \subset M$
Definition (Lescop)
$M_{\mathcal{C}}:=\left(M \backslash \operatorname{int}\left(C^{\prime}\right)\right) \cup_{\partial} C^{\prime \prime}$ is obtained from M by a \mathbb{K}-LP surgery.

Example: $\mathcal{C}=\mathcal{T}$, the genus 3 Heegaard splitting of the 3-torus
The \mathbb{Z}-LP surgery $M \rightsquigarrow M_{\mathcal{T}}$ can be used to show that any trilinear alternate form is \simeq to the $\mu(N)$ of a closed oriented 3-manifold N (Sullivan 1975).

This surgery is equivalent to Matveev's Borromean surgery and it is the main operation in the calculus of claspers by Goussarov and Habiro.

LP surgery relations

Question
Given two closed oriented 3-manifolds $M^{\prime} \& M^{\prime \prime}$, when are they related by \mathbb{K}-LP surgeries?

LP surgery relations

Question

Given two closed oriented 3-manifolds $M^{\prime} \& M^{\prime \prime}$, when are they related by \mathbb{K}-LP surgeries?

For $\mathbb{K}=\mathbb{Q}$?
Lemma
The manifolds $M^{\prime} \& M^{\prime \prime}$ are related by a \mathbb{Q}-LP surgery if, and only if, $H_{*}\left(M^{\prime} ; \mathbb{Q}\right) \simeq H_{*}\left(M^{\prime \prime} ; \mathbb{Q}\right)$.

LP surgery relations

Question

Given two closed oriented 3-manifolds $M^{\prime} \& M^{\prime \prime}$, when are they related by \mathbb{K}-LP surgeries?

For $\mathbb{K}=\mathbb{Q}$?

Lemma

The manifolds $M^{\prime} \& M^{\prime \prime}$ are related by a \mathbb{Q}-LP surgery if, and only if, $H_{*}\left(M^{\prime} ; \mathbb{Q}\right) \simeq H_{*}\left(M^{\prime \prime} ; \mathbb{Q}\right)$.

For $\mathbb{K}=\mathbb{Z}$?
Theorem (Matveev 1987)
The following statements are equivalent:

- M^{\prime} \& $M^{\prime \prime}$ are related by a finite sequence of Borromean surgeries;
- $H_{*}\left(M^{\prime} ; \mathbb{Z}\right) \simeq H_{*}\left(M^{\prime \prime} ; \mathbb{Z}\right)$ and $M^{\prime} \& M^{\prime \prime}$ have \simeq linking pairings.

LP surgery relations

Question

Given two closed oriented 3-manifolds $M^{\prime} \& M^{\prime \prime}$, when are they related by \mathbb{K}-LP surgeries?

For $\mathbb{K}=\mathbb{Q}$?

Lemma

The manifolds $M^{\prime} \& M^{\prime \prime}$ are related by a $\mathbb{Q}-L P$ surgery if, and only if, $H_{*}\left(M^{\prime} ; \mathbb{Q}\right) \simeq H_{*}\left(M^{\prime \prime} ; \mathbb{Q}\right)$.

For $\mathbb{K}=\mathbb{Z}$?
Theorem (Matveev 1987)
The following statements are equivalent:

- M^{\prime} \& $M^{\prime \prime}$ are related by a finite sequence of Borromean surgeries;
- $H_{*}\left(M^{\prime} ; \mathbb{Z}\right) \simeq H_{*}\left(M^{\prime \prime} ; \mathbb{Z}\right)$ and $M^{\prime} \& M^{\prime \prime}$ have \simeq linking pairings.

Fact (Habegger 2000)

Any \mathbb{Z}-homology handlebody D such that $\partial D=\partial H_{g}$ and $L_{D}^{\mathbb{Z}}=L_{H_{g}}^{\mathbb{Z}}$, can be obtained from H_{g} by a finite sequence of Borromean surgeries.

LP surgery relations

Question

Given two closed oriented 3-manifolds $M^{\prime} \& M^{\prime \prime}$, when are they related by \mathbb{K}-LP surgeries?

For $\mathbb{K}=\mathbb{Q}$?

Lemma

The manifolds $M^{\prime} \& M^{\prime \prime}$ are related by a $\mathbb{Q}-L P$ surgery if, and only if, $H_{*}\left(M^{\prime} ; \mathbb{Q}\right) \simeq H_{*}\left(M^{\prime \prime} ; \mathbb{Q}\right)$.

For $\mathbb{K}=\mathbb{Z}$?
Theorem (Matveev 1987)
The following statements are equivalent:

- $M^{\prime} \& M^{\prime \prime}$ are related by a \mathbb{Z}-LP surgery;
- $M^{\prime} \& M^{\prime \prime}$ are related by a finite sequence of Borromean surgeries;
- $H_{*}\left(M^{\prime} ; \mathbb{Z}\right) \simeq H_{*}\left(M^{\prime \prime} ; \mathbb{Z}\right)$ and $M^{\prime} \& M^{\prime \prime}$ have \simeq linking pairings.

Fact (Habegger 2000)

Any \mathbb{Z}-homology handlebody D such that $\partial D=\partial H_{g}$ and $L_{D}^{\mathbb{Z}}=L_{H_{g}}^{\mathbb{Z}}$, can be obtained from H_{g} by a finite sequence of Borromean surgeries.

Finite-type invariants

Finite-type invariants

\mathcal{M} : an equivalence class of \mathbb{K}-LP surgery
A : a \mathbb{K}-module

Finite-type invariants

\mathcal{M} : an equivalence class of \mathbb{K}-LP surgery
A : a \mathbb{K}-module

Definition

An invariant $f: \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$
\sum_{I \subset\{0, \ldots, d\}}(-1)^{|I|} \cdot f\left(M_{\mathcal{C}_{I}}\right)=0 \in A
$$

for any $M \in \mathcal{M}$, for any \mathbb{K}-LP pairs $\mathcal{C}_{0}, \ldots, \mathcal{C}_{d}$ with $C_{0}^{\prime} \sqcup \cdots \sqcup C_{d}^{\prime} \subset M$, where $M_{\mathcal{C}_{1}}$ results from the \mathbb{K}-LP surgeries $M \rightsquigarrow M_{\mathcal{C}_{i}}$ performed $\forall i \in I$.

Finite-type invariants

\mathcal{M} : an equivalence class of \mathbb{K}-LP surgery
A : a \mathbb{K}-module

Definition

An invariant $f: \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$
\sum_{I \subset\{0, \ldots, d\}}(-1)^{|I|} \cdot f\left(M_{\mathcal{C}_{I}}\right)=0 \in A
$$

for any $M \in \mathcal{M}$, for any \mathbb{K}-LP pairs $\mathcal{C}_{0}, \ldots, \mathcal{C}_{d}$ with $C_{0}^{\prime} \sqcup \cdots \sqcup C_{d}^{\prime} \subset M$, where $M_{\mathcal{C}_{1}}$ results from the \mathbb{K}-LP surgeries $M \rightsquigarrow M_{\mathcal{C}_{i}}$ performed $\forall i \in I$.
$\mathbb{K}=\mathbb{Z}$: usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro

Finite-type invariants

\mathcal{M} : an equivalence class of \mathbb{K}-LP surgery
A : a \mathbb{K}-module

Definition

An invariant $f: \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$
\sum_{I \subset\{0, \ldots, d\}}(-1)^{|I|} \cdot f\left(M_{\mathcal{C}_{I}}\right)=0 \in A
$$

for any $M \in \mathcal{M}$, for any \mathbb{K}-LP pairs $\mathcal{C}_{0}, \ldots, \mathcal{C}_{d}$ with $C_{0}^{\prime} \sqcup \cdots \sqcup C_{d}^{\prime} \subset M$, where $M_{\mathcal{C}_{1}}$ results from the \mathbb{K}-LP surgeries $M \rightsquigarrow M_{\mathcal{C}_{i}}$ performed $\forall i \in I$.
$\mathbb{K}=\mathbb{Z}$: usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro
$\mathbb{K}=\mathbb{Q}$: a stronger notion of finite-type invariant

Finite-type invariants

\mathcal{M} : an equivalence class of \mathbb{K}-LP surgery
A : a \mathbb{K}-module

Definition

An invariant $f: \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$
\sum_{I \subset\{0, \ldots, d\}}(-1)^{|I|} \cdot f\left(M_{\mathcal{C}_{I}}\right)=0 \in A
$$

for any $M \in \mathcal{M}$, for any \mathbb{K}-LP pairs $\mathcal{C}_{0}, \ldots, \mathcal{C}_{d}$ with $C_{0}^{\prime} \sqcup \cdots \sqcup C_{d}^{\prime} \subset M$, where $M_{\mathcal{C}_{1}}$ results from the \mathbb{K}-LP surgeries $M \rightsquigarrow M_{\mathcal{C}_{i}}$ performed $\forall i \in I$.
$\mathbb{K}=\mathbb{Z}$: usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro
$\mathbb{K}=\mathbb{Q}$: a stronger notion of finite-type invariant
Example: $\mathbb{K} \mathcal{H S}:=\{\mathbb{K}$-homology spheres $\}$

Finite-type invariants

\mathcal{M} : an equivalence class of \mathbb{K}-LP surgery
A : a \mathbb{K}-module

Definition

An invariant $f: \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$
\sum_{I \subset\{0, \ldots, d\}}(-1)^{|I|} \cdot f\left(M_{\mathcal{C}_{I}}\right)=0 \in A
$$

for any $M \in \mathcal{M}$, for any \mathbb{K}-LP pairs $\mathcal{C}_{0}, \ldots, \mathcal{C}_{d}$ with $C_{0}^{\prime} \sqcup \cdots \sqcup C_{d}^{\prime} \subset M$, where $M_{\mathcal{C}_{1}}$ results from the \mathbb{K}-LP surgeries $M \rightsquigarrow M_{\mathcal{C}_{i}}$ performed $\forall i \in I$.
$\mathbb{K}=\mathbb{Z}$: usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro
$\mathbb{K}=\mathbb{Q}$: a stronger notion of finite-type invariant

Example: $\mathbb{K} \mathcal{H S}:=\{\mathbb{K}$-homology spheres $\}$

- The Casson invariant $\lambda: \mathbb{Z H S} \rightarrow \mathbb{Z}$ is a finite-type invariant of degree 2 in the usual sense (Morita 1991).

Finite-type invariants

\mathcal{M} : an equivalence class of \mathbb{K}-LP surgery
A : a \mathbb{K}-module

Definition

An invariant $f: \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$
\sum_{I \subset\{0, \ldots, d\}}(-1)^{|I|} \cdot f\left(M_{\mathcal{C}_{I}}\right)=0 \in A
$$

for any $M \in \mathcal{M}$, for any \mathbb{K}-LP pairs $\mathcal{C}_{0}, \ldots, \mathcal{C}_{d}$ with $C_{0}^{\prime} \sqcup \cdots \sqcup C_{d}^{\prime} \subset M$, where $M_{\mathcal{C}_{1}}$ results from the \mathbb{K}-LP surgeries $M \rightsquigarrow M_{\mathcal{C}_{i}}$ performed $\forall i \in I$.
$\mathbb{K}=\mathbb{Z}$: usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro
$\mathbb{K}=\mathbb{Q}$: a stronger notion of finite-type invariant

Example: $\mathbb{K} \mathcal{H S}:=\{\mathbb{K}$-homology spheres $\}$

- The Casson invariant $\lambda: \mathbb{Z H S} \rightarrow \mathbb{Z}$ is a finite-type invariant of degree 2 in the usual sense (Morita 1991).
- Walker's extension $\lambda_{\mathrm{W}}: \mathbb{Q H S} \rightarrow \mathbb{Q}$ of λ is a finite-type invariant of deg. 2 in the strong sense (Lescop 1998).

Finite-type invariants

\mathcal{M} : an equivalence class of \mathbb{K}-LP surgery
A : a \mathbb{K}-module

Definition

An invariant $f: \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$
\sum_{I \subset\{0, \ldots, d\}}(-1)^{|I|} \cdot f\left(M_{\mathcal{C}_{I}}\right)=0 \in A
$$

for any $M \in \mathcal{M}$, for any \mathbb{K}-LP pairs $\mathcal{C}_{0}, \ldots, \mathcal{C}_{d}$ with $C_{0}^{\prime} \sqcup \cdots \sqcup C_{d}^{\prime} \subset M$, where $M_{\mathcal{C}_{1}}$ results from the \mathbb{K}-LP surgeries $M \rightsquigarrow M_{\mathcal{C}_{i}}$ performed $\forall i \in I$.
$\mathbb{K}=\mathbb{Z}$: usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro

$$
\text { for } \mathcal{M}=\mathbb{Q H S}, A=\mathbb{Q}(\quad(\text { Moussard 2012 })
$$

$\mathbb{K}=\mathbb{Q}$: a stronger notion of finite-type invariant

Example: $\mathbb{K} \mathcal{H S}:=\{\mathbb{K}$-homology spheres $\}$

- The Casson invariant $\lambda: \mathbb{Z H S} \rightarrow \mathbb{Z}$ is a finite-type invariant of degree 2 in the usual sense (Morita 1991).
- Walker's extension $\lambda_{\mathrm{w}}: \mathbb{Q H S} \rightarrow \mathbb{Q}$ of λ is a finite-type invariant of deg. 2 in the strong sense (Lescop 1998).

Finite-type invariants

\mathcal{M} : an equivalence class of \mathbb{K}-LP surgery
A : a \mathbb{K}-module

Definition

An invariant $f: \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$
\sum_{I \subset\{0, \ldots, d\}}(-1)^{|I|} \cdot f\left(M_{\mathcal{C}_{I}}\right)=0 \in A
$$

for any $M \in \mathcal{M}$, for any \mathbb{K}-LP pairs $\mathcal{C}_{0}, \ldots, \mathcal{C}_{d}$ with $C_{0}^{\prime} \sqcup \cdots \sqcup C_{d}^{\prime} \subset M$, where $M_{\mathcal{C}_{1}}$ results from the \mathbb{K}-LP surgeries $M \rightsquigarrow M_{\mathcal{C}_{i}}$ performed $\forall i \in I$.
$\mathbb{K}=\mathbb{Z}$: usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro

$$
\text { for } \mathcal{M}=\mathbb{Q H S}, A=\mathbb{Q}\binom{\text { almost }}{\text { the same }}(\text { Moussard 2012) }
$$

$\mathbb{K}=\mathbb{Q}$: a stronger notion of finite-type invariant

Example: $\mathbb{K} \mathcal{H S}:=\{\mathbb{K}$-homology spheres $\}$

- The Casson invariant $\lambda: \mathbb{Z H S} \rightarrow \mathbb{Z}$ is a finite-type invariant of degree 2 in the usual sense (Morita 1991).
- Walker's extension $\lambda_{\mathrm{w}}: \mathbb{Q H S} \rightarrow \mathbb{Q}$ of λ is a finite-type invariant of deg. 2 in the strong sense (Lescop 1998).

Contents

(1) Lagrangian-preserving surgeries
(2) The LMO invariant and its splitting formulas
(3) The LMO functor (with Cheptea \& Habiro)
(4) Proof of the splitting formulas

The LMO invariant

The LMO invariant

Definition
A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

The LMO invariant

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i -degree is the number of its vertices.

$$
\mathcal{A}(\varnothing):=\frac{\mathbb{Q} \cdot\{\text { trivalent Jacobi diagrams }\}}{\mathrm{AS}, \mathrm{IHX}}
$$

The LMO invariant

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

$$
\mathcal{A}(\varnothing):=\frac{\mathbb{Q} \cdot\{\text { trivalent Jacobi diagrams }\}}{\mathrm{AS}, \mathrm{IHX}} \quad \ni,
$$

The LMO invariant

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

$$
\begin{aligned}
& \mathcal{A}(\varnothing):= \frac{\mathbb{Q} \cdot\{\text { trivalent Jacobi diagrams }\}}{\text { AS, IHX }} \geqslant \\
& \ni=\mathrm{Q} \\
& \text { AS }
\end{aligned}
$$

The LMO invariant

Definition
A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

$$
\begin{aligned}
\mathcal{A}(\varnothing):= & \frac{\mathbb{Q} \cdot\{\text { trivalent Jacobi diagrams }\}}{\text { AS, IHX }} \geqslant \\
& \ni= \\
& =\text { AS }
\end{aligned}
$$

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

$$
\begin{aligned}
& \mathcal{A}(\varnothing):=\frac{\mathbb{Q} \cdot\{\text { trivalent Jacobi diagrams }\}}{\mathrm{AS}, \mathrm{IHX}} \quad \ni, \mathrm{Q} \\
& \text { AS } \\
& -\cdots+\cdots=0 \\
& \text { IHX }
\end{aligned}
$$

Le, Murakami \& Ohtsuki (1998) have constructed an inv. $\mathbb{Q} \mathcal{H S} \xrightarrow{Z} \mathcal{A}(\varnothing)$ such that

$$
Z(M)=\varnothing+\frac{\lambda_{\mathrm{w}}(M)}{4} \cdot-\mathrm{i}+(\mathrm{i}-\operatorname{deg}>2)
$$

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

$$
\begin{aligned}
\mathcal{A}(\varnothing):= & \frac{\mathbb{Q} \cdot\{\text { trivalent Jacobi diagrams }\}}{\text { AS, IHX }} \geqslant \\
& \ni \text { Q } \\
& =\text { AS }
\end{aligned}
$$

Le, Murakami \& Ohtsuki (1998) have constructed an inv. $\mathbb{Q} \mathcal{H S} \xrightarrow{Z} \mathcal{A}(\varnothing)$ such that

$$
Z(M)=\varnothing+\frac{\lambda_{\mathrm{w}}(M)}{4} \cdot-\quad+(\mathrm{i}-\operatorname{deg}>2)
$$

Remarks

- $Z(M)$ is defined for any closed oriented 3-manifold M.

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

$$
\begin{aligned}
\mathcal{A}(\varnothing):= & \frac{\mathbb{Q} \cdot\{\text { trivalent Jacobi diagrams }\}}{\text { AS, IHX }} \geqslant \\
& \ni=\mathrm{Q}, \\
\text { AS } & \text { IHX }
\end{aligned}
$$

Le, Murakami \& Ohtsuki (1998) have constructed an inv. $\mathbb{Q} \mathcal{H} \mathcal{S} \mathcal{Z} \mathcal{A}(\varnothing)$ such that

$$
Z(M)=\varnothing+\frac{\lambda_{\mathrm{w}}(M)}{4} \cdot-\mathrm{i}+(\mathrm{i}-\operatorname{deg}>2)
$$

Remarks

- $Z(M)$ is defined for any closed oriented 3-manifold M.
- Kontsevich and Kuperberg \& Thurston (1999) have defined another invariant $\mathbb{Q H} \mathcal{S} \xrightarrow{\text { KKT }^{\text {KT }}} \mathcal{A}(\varnothing)$ with the same properties

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

$$
\begin{aligned}
\mathcal{A}(\varnothing):= & \frac{\mathbb{Q} \cdot\{\text { trivalent Jacobi diagrams }\}}{\text { AS, IHX }} \geqslant \\
& \ni=\mathrm{Q}, \\
\text { AS } & \text { IHX }
\end{aligned}
$$

Le, Murakami \& Ohtsuki (1998) have constructed an inv. $\mathbb{Q} \mathcal{H} \mathcal{S} \mathcal{Z} \mathcal{A}(\varnothing)$ such that

$$
Z(M)=\varnothing+\frac{\lambda_{\mathrm{w}}(M)}{4} \cdot-\mathrm{i}+(\mathrm{i}-\operatorname{deg}>2)
$$

Remarks

- $Z(M)$ is defined for any closed oriented 3-manifold M.
- Kontsevich and Kuperberg \& Thurston (1999) have defined another invariant $\mathbb{Q H S} \xrightarrow{Z^{\mathrm{KKT}}} \mathcal{A}(\varnothing)$ with the same properties $\ldots Z \stackrel{?}{=} Z^{\mathrm{KKT}}$.

The LMO invariant: sketch of the construction
$M:$ a \mathbb{Q}-homology sphere $\quad \stackrel{?}{\longmapsto} \quad Z(M) \in \mathcal{A}(\varnothing)$

The LMO invariant: sketch of the construction

$$
\begin{aligned}
& M: \text { a } \mathbb{Q} \text {-homology sphere } \stackrel{?}{\longmapsto} \quad Z(M) \in \mathcal{A}(\varnothing) \\
& \frac{\text { framed links in } \left.S^{3} \text { whose linking matrix is invertible }\right\}}{\text { Kirby's moves KI \& KII }} \xrightarrow[\simeq]{\text { usual surgery }} \mathbb{Q} \mathcal{H S}
\end{aligned}
$$

The LMO invariant: sketch of the construction
M : a \mathbb{Q}-homology sphere $\quad \stackrel{?}{\longmapsto} \quad Z(M) \in \mathcal{A}(\varnothing)$
$\xrightarrow[\text { Kirby's moves KI \& KII }]{\left.\text { \{framed links in } S^{3} \text { whose linking matrix is invertible\} }\right\}} \xrightarrow[\sim]{\sim} \mathbb{Q}$ Hsual surgery

$$
L \vdash------------\rightarrow M
$$

The LMO invariant: sketch of the construction

M : a \mathbb{Q}-homology sphere $\quad \stackrel{?}{\longmapsto} \quad Z(M) \in \mathcal{A}(\varnothing)$
$\xrightarrow[\text { Kirby's moves KI \& KII }]{\left.\text { \{framed links in } S^{3} \text { whose linking matrix is invertible\} }\right\}} \xrightarrow[\sim]{\sim} \mathbb{Q}$ usual surgery Lャ------------>M

Fact (Le, $2 \times$ Murakami \& Ohtsuki 1995)
There is a normalization $Z \check{z}$ of the Kontsevich integral Z which behaves very nicely with respect to the move KII.

The LMO invariant: sketch of the construction
(after Bar-Natan, Garoufalidis, Rozansky \& Thurston 2002)
M : a \mathbb{Q}-homology sphere $\quad \stackrel{?}{\longmapsto} \quad Z(M) \in \mathcal{A}(\varnothing)$
$\xrightarrow[\text { Kirby's moves KI \& KII }]{\text { \{framed links in } S^{3} \text { whose linking matrix is invertible \}}} \xrightarrow[\simeq]{\simeq} \mathbb{Q} \mathcal{H S}$

Fact (Le, $2 \times$ Murakami \& Ohtsuki 1995)

There is a normalization $Z \check{z}$ of the Kontsevich integral Z which behaves very nicely with respect to the move KII.
(1) "Symmetrize" $\check{Z}(L) \rightsquigarrow \chi^{-1} \check{Z}(L)$, where χ is the formal PBW iso.

The LMO invariant: sketch of the construction
(after Bar-Natan, Garoufalidis, Rozansky \& Thurston 2002)
M : a \mathbb{Q}-homology sphere $\quad \stackrel{?}{\longmapsto} \quad Z(M) \in \mathcal{A}(\varnothing)$
$\xrightarrow[\text { Kirby's moves KI \& KII }]{\text { \{framed links in } S^{3} \text { whose linking matrix is invertible \}}} \xrightarrow[\simeq]{\simeq} \mathbb{Q} \mathcal{H S}$

Fact (Le, $2 \times$ Murakami \& Ohtsuki 1995)

There is a normalization $Z \check{z}$ of the Kontsevich integral Z which behaves very nicely with respect to the move KII.
(1) "Symmetrize" $\check{Z}(L) \rightsquigarrow \chi^{-1} \check{Z}(L)$, where χ is the formal PBW iso.
(2) Compute the formal Gaussian integral of $\chi^{-1} \check{Z}(L) \ldots$ and get KII.

The LMO invariant: sketch of the construction

(after Bar-Natan, Garoufalidis, Rozansky \& Thurston 2002)
$M:$ a \mathbb{Q}-homology sphere $\stackrel{?}{\longmapsto} \quad Z(M) \in \mathcal{A}(\varnothing)$

Fact (Le, $2 \times$ Murakami \& Ohtsuki 1995)

There is a normalization $Z \check{z}$ of the Kontsevich integral Z which behaves very nicely with respect to the move KII.
(1) "Symmetrize" $\check{Z}(L) \rightsquigarrow \chi^{-1} \check{Z}(L)$, where χ is the formal PBW iso.
(2) Compute the formal Gaussian integral of $\chi^{-1} \check{Z}(L) \ldots$ and get KII.
(3) Divide by the values of the (± 1)-framed trivial knots \ldots and get KI.

Splitting formulas for the LMO invariant

$M:$ a \mathbb{Q}-homology sphere
$\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right)$: a family of \mathbb{Q}-LP pairs such that $C_{1}^{\prime} \sqcup \cdots \sqcup C_{r}^{\prime} \subset M$

Splitting formulas for the LMO invariant
$M:$ a \mathbb{Q}-homology sphere
$\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right):$ a family of \mathbb{Q}-LP pairs such that $C_{1}^{\prime} \sqcup \cdots \sqcup C_{r}^{\prime} \subset M$ $H_{C}:=H_{1}\left(C_{1} ; \mathbb{Q}\right) \oplus \cdots \oplus H_{1}\left(C_{r} ; \mathbb{Q}\right)$

Splitting formulas for the LMO invariant
$M:$ a \mathbb{Q}-homology sphere
$\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right):$ a family of \mathbb{Q}-LP pairs such that $C_{1}^{\prime} \sqcup \cdots \sqcup C_{r}^{\prime} \subset M$
$H_{C}:=H_{1}\left(C_{1} ; \mathbb{Q}\right) \oplus \cdots \oplus H_{1}\left(C_{r} ; \mathbb{Q}\right)$
$\mu_{\mathcal{C}}:=\mu\left(C_{1}\right) \otimes \cdots \otimes \mu\left(C_{r}\right) \in \bigotimes_{i=1}^{r} \Lambda^{3} H_{1}\left(C_{i} ; \mathbb{Q}\right) \subset S^{r} \Lambda^{3} H_{\mathcal{C}}$

Splitting formulas for the LMO invariant

M : a \mathbb{Q}-homology sphere
$\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right)$: a family of \mathbb{Q}-LP pairs such that $C_{1}^{\prime} \sqcup \cdots \sqcup C_{r}^{\prime} \subset M$
$H_{C}:=H_{1}\left(C_{1} ; \mathbb{Q}\right) \oplus \cdots \oplus H_{1}\left(C_{r} ; \mathbb{Q}\right)$
$\mu_{\mathcal{C}}:=\mu\left(C_{1}\right) \otimes \cdots \otimes \mu\left(C_{r}\right) \in \bigotimes_{i=1}^{r} \Lambda^{3} H_{1}\left(C_{i} ; \mathbb{Q}\right) \subset S^{r} \Lambda^{3} H_{\mathcal{C}}$
Any tensor $\left(v_{i_{1}} \wedge v_{j_{1}} \wedge v_{k_{1}}\right) \cdots\left(v_{i_{r}} \wedge v_{j_{r}} \wedge v_{k_{r}}\right) \in S^{r} \wedge^{3} H_{\mathcal{C}}$ can be depicted as

Splitting formulas for the LMO invariant

$M:$ a \mathbb{Q}-homology sphere
$\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right):$ a family of \mathbb{Q}-LP pairs such that $C_{1}^{\prime} \sqcup \cdots \sqcup C_{r}^{\prime} \subset M$
$H_{C}:=H_{1}\left(C_{1} ; \mathbb{Q}\right) \oplus \cdots \oplus H_{1}\left(C_{r} ; \mathbb{Q}\right)$
$\mu_{\mathcal{C}}:=\mu\left(C_{1}\right) \otimes \cdots \otimes \mu\left(C_{r}\right) \in \bigotimes_{i=1}^{r} \Lambda^{3} H_{1}\left(C_{i} ; \mathbb{Q}\right) \subset S^{r} \Lambda^{3} H_{\mathcal{C}}$
Any tensor $\left(v_{i_{1}} \wedge v_{j_{1}} \wedge v_{k_{1}}\right) \cdots\left(v_{i_{r}} \wedge v_{j_{r}} \wedge v_{k_{r}}\right) \in S^{r} \wedge^{3} H_{\mathcal{C}}$ can be depicted as $\ddots \ddots^{v_{k_{1}}} v_{v_{1}}^{v_{1}} \ldots{ }^{v_{1}} \ldots v^{v_{k_{r}}} v_{v_{i r}}$

$$
\left\{\begin{array}{cccc}
H_{1}\left(C_{i}^{\prime} ; \mathbb{Q}\right) \times H_{1}\left(C_{j}^{\prime} ; \mathbb{Q}\right) & \xrightarrow[\ell_{i, j}]{\longrightarrow} & \mathbb{Q} & \forall i \neq j \\
([K],[L]) & \longmapsto & \operatorname{Lk}_{M}(K, L) &
\end{array}\right.
$$

Splitting formulas for the LMO invariant

M : a \mathbb{Q}-homology sphere
$\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right):$ a family of \mathbb{Q}-LP pairs such that $C_{1}^{\prime} \sqcup \cdots \sqcup C_{r}^{\prime} \subset M$
$H_{C}:=H_{1}\left(C_{1} ; \mathbb{Q}\right) \oplus \cdots \oplus H_{1}\left(C_{r} ; \mathbb{Q}\right)$
$\mu_{\mathcal{C}}:=\mu\left(C_{1}\right) \otimes \cdots \otimes \mu\left(C_{r}\right) \in \bigotimes_{i=1}^{r} \Lambda^{3} H_{1}\left(C_{i} ; \mathbb{Q}\right) \subset S^{r} \Lambda^{3} H_{\mathcal{C}}$
Any tensor $\left(v_{i_{1}} \wedge v_{j_{1}} \wedge v_{k_{1}}\right) \cdots\left(v_{i_{r}} \wedge v_{j_{r}} \wedge v_{k_{r}}\right) \in S^{r} \wedge^{3} H_{\mathcal{C}}$ can be depicted as $\ddots^{v_{k_{1}}} v_{v_{1}}^{v_{1}} \ldots \stackrel{v_{k_{r}}}{v_{k_{r}}} \ddots_{v_{r r}}^{v_{i r}}$
$\left\{\begin{array}{cccc}H_{1}\left(C_{i}^{\prime} ; \mathbb{Q}\right) \times H_{1}\left(C_{j}^{\prime} ; \mathbb{Q}\right) & \xrightarrow[\ell_{i, j}]{ } & \mathbb{Q} & \forall i \neq j \\ ([K],[L]) & \longmapsto & \operatorname{Lk}_{M}(K, L) & \end{array}\right.$
$\ell_{\mathcal{C}}:=\frac{1}{2} \sum_{i \neq j} \ell_{i, j}: H_{\mathcal{C}} \times H_{\mathcal{C}} \longrightarrow \mathbb{Q}$ is a symmetric bilinear form.

Splitting formulas for the LMO invariant

$M:$ a \mathbb{Q}-homology sphere
$\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right):$ a family of \mathbb{Q}-LP pairs such that $C_{1}^{\prime} \sqcup \cdots \sqcup C_{r}^{\prime} \subset M$
$H_{C}:=H_{1}\left(C_{1} ; \mathbb{Q}\right) \oplus \cdots \oplus H_{1}\left(C_{r} ; \mathbb{Q}\right)$
$\mu_{\mathcal{C}}:=\mu\left(C_{1}\right) \otimes \cdots \otimes \mu\left(C_{r}\right) \in \bigotimes_{i=1}^{r} \Lambda^{3} H_{1}\left(C_{i} ; \mathbb{Q}\right) \subset S^{r} \Lambda^{3} H_{\mathcal{C}}$
Any tensor $\left(v_{i_{1}} \wedge v_{j_{1}} \wedge v_{k_{1}}\right) \cdots\left(v_{i_{r}} \wedge v_{j_{r}} \wedge v_{k_{r}}\right) \in S^{r} \wedge^{3} H_{\mathcal{C}}$ can be depicted as $\ddots^{v_{k_{1}}} \ddots_{v_{1}}^{v_{1}} \ldots \stackrel{v_{1}}{v_{k_{r} r}} \ddots_{v_{i r}}^{v_{i r}}$
$\left\{\begin{array}{cccc}H_{1}\left(C_{i}^{\prime} ; \mathbb{Q}\right) \times H_{1}\left(C_{j}^{\prime} ; \mathbb{Q}\right) & \xrightarrow[\ell_{i, j}]{ } & \mathbb{Q} & \forall i \neq j \\ ([K],[L]) & \longmapsto & \operatorname{Lk}_{M}(K, L) & \end{array}\right.$
$\ell_{\mathcal{C}}:=\frac{1}{2} \sum_{i \neq j} \ell_{i, j}: H_{\mathcal{C}} \times H_{\mathcal{C}} \longrightarrow \mathbb{Q}$ is a symmetric bilinear form.

Theorem

$\sum_{I \subset\{1, \ldots, r\}}(-1)^{|I|} \cdot Z\left(M_{\mathcal{C}_{I}}\right)=\left(\begin{array}{c}\text { sum of all ways of identifying } \\ \text { pairwisely all legs of } \mu_{\mathcal{C}} \\ \text { by means of the pairing } \ell_{\mathcal{C}}\end{array}\right)+(\mathrm{i}-\operatorname{deg}>r)$.

Splitting formulas: prior results
Theorem

$$
\sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot Z\left(M_{\mathcal{C}_{I}}\right)=\left(\begin{array}{c}
\text { sum of all ways of identifying } \\
\text { pairwisely all legs of } \mu_{\mathcal{C}} \\
\text { by means of the pairing } \ell_{\mathcal{C}}
\end{array}\right)+(\mathrm{i}-\operatorname{deg}>r) .
$$

Splitting formulas: prior results
Theorem
$\sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot Z\left(M_{\mathcal{C}_{I}}\right)=\left(\begin{array}{c}\text { sum of all ways of identifying } \\ \text { pairwisely all legs of } \mu_{\mathcal{C}} \\ \text { by means of the pairing } \ell_{\mathcal{C}}\end{array}\right)+(\mathrm{i}-\mathrm{deg}>r)$.
(1) If $r=2$, this is Lescop's formula (1998) for the Casson-Walker inv.

Splitting formulas: prior results
Theorem

$$
\sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot Z\left(M_{\mathcal{C}_{I}}\right)=\left(\begin{array}{c}
\text { sum of all ways of identifying } \\
\text { pairwisely all legs of } \mu_{\mathcal{C}} \\
\text { by means of the pairing } \ell_{\mathcal{C}}
\end{array}\right)+(\mathrm{i}-\operatorname{deg}>r) .
$$

(1) If $r=2$, this is Lescop's formula (1998) for the Casson-Walker inv.

which generalizes Morita's formula (1991) for the Casson invariant.

Splitting formulas: prior results
Theorem
$\sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot Z\left(M_{\mathcal{C}_{I}}\right)=\left(\begin{array}{c}\text { sum of all ways of identifying } \\ \text { pairwisely all legs of } \mu_{\mathcal{C}} \\ \text { by means of the pairing } \ell_{\mathcal{C}}\end{array}\right)+(\mathrm{i}-\mathrm{deg}>r)$.
(1) If $r=2$, this is Lescop's formula (1998) for the Casson-Walker inv.

which generalizes Morita's formula (1991) for the Casson invariant.
(2) This is the exact analogue of Lescop's result (2004) for $Z^{K K T}$.

Splitting formulas: prior results
Theorem

$$
\sum_{l \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot Z\left(M_{\mathcal{C}_{l}}\right)=\left(\begin{array}{c}
\text { sum of all ways of identifying } \\
\text { pairwisely all legs of } \mu_{\mathcal{C}} \\
\text { by means of the pairing } \ell_{\mathcal{C}}
\end{array}\right)+(\mathrm{i}-\operatorname{deg}>r) .
$$

(1) If $r=2$, this is Lescop's formula (1998) for the Casson-Walker inv.

which generalizes Morita's formula (1991) for the Casson invariant.
(2) This is the exact analogue of Lescop's result (2004) for $Z^{K K T}$.
(3) If $\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$ are copies of \mathcal{T}, this amounts to the universality of LMO among finite-type invariants in the usual sense (Le 1997, Habiro 2000).

Splitting formulas: prior results

Theorem

$$
\sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot Z\left(M_{\mathcal{C}_{l}}\right)=\left(\begin{array}{c}
\text { sum of all ways of identifying } \\
\text { pairwisely all legs of } \mu_{\mathcal{C}} \\
\text { by means of the pairing } \ell_{\mathcal{C}}
\end{array}\right)+(\mathrm{i}-\mathrm{deg}>r) .
$$

(1) If $r=2$, this is Lescop's formula (1998) for the Casson-Walker inv.

which generalizes Morita's formula (1991) for the Casson invariant.
(2) This is the exact analogue of Lescop's result (2004) for $Z^{K K T}$.
(3) If $\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$ are copies of \mathcal{T}, this amounts to the universality of LMO among finite-type invariants in the usual sense (Le 1997, Habiro 2000).
(4) If $\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$ are \mathbb{Z}-LP pairs, this can be deduced from (3) by doing calculus of claspers (Auclair \& Lescop 2005).

Contents

(1) Lagrangian-preserving surgeries
(2) The LMO invariant and its splitting formulas
(3) The LMO functor (with Cheptea \& Habiro)

4 Proof of the splitting formulas

A category of Jacobi diagrams

A category of Jacobi diagrams

S : finite set
$\mathcal{A}(S):=\mathbb{Q} \cdot\left\{\begin{array}{c}\text { finite graphs whose vertices are either } \\ \text { trivalent \& oriented, or, univalent \& colored by } S\end{array}\right\} / \mathrm{AS}, \mathrm{IHX}$

A category of Jacobi diagrams

S : finite set
$\mathcal{A}(S):=\mathbb{Q} \cdot\left\{\begin{array}{c}\text { finite graphs whose vertices are either } \\ \text { trivalent \& oriented, or, univalent \& colored by } S\end{array}\right\} / \mathrm{AS}, \mathrm{IHX}$
Let ${ }^{t s} \mathcal{A}$ be the monoidal category of top-substantial Jacobi diagrams:

A category of Jacobi diagrams

S : finite set
$\mathcal{A}(S):=\mathbb{Q} \cdot\left\{\begin{array}{c}\text { finite graphs whose vertices are either } \\ \text { trivalent \& oriented, or, univalent \& colored by } S\end{array}\right\} / \mathrm{AS}, \mathrm{IHX}$
Let ${ }^{t s} \mathcal{A}$ be the monoidal category of top-substantial Jacobi diagrams:

- objects: integers $g \geq 0$,

A category of Jacobi diagrams

S : finite set
$\mathcal{A}(S):=\mathbb{Q} \cdot\left\{\begin{array}{c}\text { finite graphs whose vertices are either } \\ \text { trivalent \& oriented, or, univalent \& colored by } S\end{array}\right\} / \mathrm{AS}, \mathrm{IHX}$
Let ${ }^{t s} \mathcal{A}$ be the monoidal category of top-substantial Jacobi diagrams:

- objects: integers $g \geq 0$,
- morph. $g \rightarrow f$: elts of $\mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}, 1^{-}, \ldots, f^{-}\right\}\right)$without ${ }^{i^{+} \ldots \ldots . .^{+}}$,

Examples

A category of Jacobi diagrams

S : finite set
$\mathcal{A}(S):=\mathbb{Q} \cdot\left\{\begin{array}{c}\text { finite graphs whose vertices are either } \\ \text { trivalent \& oriented, or, univalent \& colored by } S\end{array}\right\} / \mathrm{AS}, \mathrm{IHX}$
Let ${ }^{t s} \mathcal{A}$ be the monoidal category of top-substantial Jacobi diagrams:

- objects: integers $g \geq 0$,
- morph. $g \rightarrow f$: elts of $\mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}, 1^{-}, \ldots, f^{-}\right\}\right)$without ${ }^{i^{+} \ldots \ldots . .^{+}}$,

Examples

A category of Jacobi diagrams

S : finite set
$\mathcal{A}(S):=\mathbb{Q} \cdot\left\{\begin{array}{c}\text { finite graphs whose vertices are either } \\ \text { trivalent \& oriented, or, univalent \& colored by } S\end{array}\right\} / \mathrm{AS}, \mathrm{IHX}$
Let ${ }^{t s} \mathcal{A}$ be the monoidal category of top-substantial Jacobi diagrams:

- objects: integers $g \geq 0$,
- morph. $g \rightarrow f$: elts of $\mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}, 1^{-}, \ldots, f^{-}\right\}\right)$without ${ }^{i+\ldots . . .^{+}}$,

Examples

$$
{ }^{t 5} \mathcal{A}(0,0)=\mathcal{A}(\varnothing)
$$

A category of Jacobi diagrams

S : finite set

$$
\mathcal{A}(S):=\mathbb{Q} \cdot\left\{\begin{array}{c}
\text { finite graphs whose vertices are either } \\
\text { trivalent \& oriented, or, univalent \& colored by } S
\end{array}\right\} / \mathrm{AS}, \mathrm{IHX}
$$

Let ${ }^{t s} \mathcal{A}$ be the monoidal category of top-substantial Jacobi diagrams:

- objects: integers $g \geq 0$,
- morph. $g \rightarrow f$: elts of $\mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}, 1^{-}, \ldots, f^{-}\right\}\right)$without ${ }^{i+\ldots . . .^{+}}$,
- composition: for any graphs $D \in{ }^{t s} \mathcal{A}(g, f)$ and $E \in{ }^{t s} \mathcal{A}(h, g)$,

$$
D \circ E:=\binom{\text { sum of all ways of gluing all } i^{+} \text {-colored vertices of } D}{\text { with all } i^{-} \text {-colored vertices of } E \text {, for every } i=1, \ldots, g},
$$

Examples

$$
{ }^{t 5} \mathcal{A}(0,0)=\mathcal{A}(\varnothing)
$$

A category of Jacobi diagrams

S : finite set
$\mathcal{A}(S):=\mathbb{Q} \cdot\left\{\begin{array}{c}\text { finite graphs whose vertices are either } \\ \text { trivalent \& oriented, or, univalent \& colored by } S\end{array}\right\} / \mathrm{AS}, \mathrm{IHX}$
Let ${ }^{t s} \mathcal{A}$ be the monoidal category of top-substantial Jacobi diagrams:

- objects: integers $g \geq 0$,
- morph. $g \rightarrow f$: elts of $\mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}, 1^{-}, \ldots, f^{-}\right\}\right)$without ${ }^{i+\ldots . . .^{+}}$,
- composition: for any graphs $D \in{ }^{t 5} \mathcal{A}(g, f)$ and $E \in{ }^{t 5} \mathcal{A}(h, g)$,

$$
D \circ E:=\binom{\text { sum of all ways of gluing all } i^{+} \text {-colored vertices of } D}{\text { with all } i^{-} \text {-colored vertices of } E \text {, for every } i=1, \ldots, g},
$$

- tensor product: $g \otimes f:=g+f$ and $D \otimes E:=D \sqcup E$.

Examples

$$
{ }^{t 5} \mathcal{A}(0,0)=\mathcal{A}(\varnothing)
$$

A category of cobordisms

Let \mathcal{C} ob be the monoidal category of 3-dim. cobordisms (Crane \& Yetter 1999):

A category of cobordisms

Let $\mathcal{C o b}$ be the monoidal category of 3-dim. cobordisms (Crane \& Yetter 1999):

- objects: integers $g \geq 0$,

A category of cobordisms

Let $\mathcal{C o b}$ be the monoidal category of 3-dim. cobordisms (Crane \& Yetter 1999):

- objects: integers $g \geq 0$,
- morphisms $g_{+} \rightarrow g_{-}$: cobordisms from $F_{g_{+}}$to $F_{g_{-}}$,

Any $M \in \mathcal{C o b}\left(g_{+}, g_{-}\right)$comes with $m_{ \pm}: \pm F_{g_{ \pm}} \longrightarrow M$.

A category of cobordisms

Let \mathcal{C} ob be the monoidal category of 3-dim. cobordisms (Crane \& Yetter 1999):

- objects: integers $g \geq 0$,
- morphisms $g_{+} \rightarrow g_{-}$: cobordisms from $F_{g_{+}}$to $F_{g_{-}}$,
- composition: $M \circ N:=$| N |
| :---: |
| M |
| , |

Any $M \in \mathcal{C o b}\left(g_{+}, g_{-}\right)$comes with $m_{ \pm}: \pm F_{g_{ \pm}} \hookrightarrow M$.

A category of cobordisms

Let \mathcal{C} ob be the monoidal category of 3-dim. cobordisms (Crane \& Yetter 1999):

- objects: integers $g \geq 0$,
- morphisms $g_{+} \rightarrow g_{-}$: cobordisms from $F_{g_{+}}$to $F_{g_{-}}$,
- composition: $M \circ N:=$| N |
| :---: | ,
- tensor product: $g \otimes f:=g+f$ and $M \otimes N:=M N$.

Any $M \in \mathcal{C o b}\left(g_{+}, g_{-}\right)$comes with $m_{ \pm}: \pm F_{g_{ \pm}} \hookrightarrow M$.

A category of cobordisms

Let \mathcal{C} ob be the monoidal category of 3-dim. cobordisms (Crane \& Yetter 1999):

- objects: integers $g \geq 0$,
- morphisms $g_{+} \rightarrow g_{-}$: cobordisms from $F_{g_{+}}$to $F_{g_{-}}$,
- composition: $M \circ N:=$| N |
| :---: | ,
- tensor product: $g \otimes f:=g+f$ and $M \otimes N:=M N$.

Any $M \in \mathcal{C o b}\left(g_{+}, g_{-}\right)$comes with $m_{ \pm}: \pm F_{g_{ \pm}} \hookrightarrow M$.
 $A_{g}^{\mathbb{Q}}:=$ subspace of $H_{1}\left(F_{g} ; \mathbb{Q}\right)$ spanned by $\left[\alpha_{1}\right], \ldots,\left[\alpha_{g}\right]$

A category of cobordisms

Let \mathcal{C} ob be the monoidal category of 3-dim. cobordisms (Crane \& Yetter 1999):

- objects: integers $g \geq 0$,
- morphisms $g_{+} \rightarrow g_{-}$: cobordisms from $F_{g_{+}}$to $F_{g_{-}}$,
- composition:

$$
M \circ N:=\begin{array}{|c|}
\hline N \\
\hline M \\
\hline
\end{array},
$$

- tensor product: $g \otimes f:=g+f$ and $M \otimes N:=M N$.

Any $M \in \mathcal{C o b}\left(g_{+}, g_{-}\right)$comes with $m_{ \pm}: \pm F_{g_{ \pm}} \longrightarrow M$.

$A_{g}^{\mathbb{Q}}:=$ subspace of $H_{1}\left(F_{g} ; \mathbb{Q}\right)$ spanned by $\left[\alpha_{1}\right], \ldots,\left[\alpha_{g}\right]$

Definition

A cobordism $M \in \operatorname{Cob}\left(g_{+}, g_{-}\right)$is \mathbb{Q}-Lagrangian if
(1) $H_{1}(M ; \mathbb{Q})=m_{-, *}\left(A_{g-}^{\mathbb{Q}}\right)+m_{+, *}\left(H_{1}\left(F_{g_{+}} ; \mathbb{Q}\right)\right)$,
(2) $m_{+, *}\left(A_{g_{+}}^{\mathbb{Q}}\right) \subset m_{-, *}\left(A_{g_{-}}^{\mathbb{Q}}\right)$ in $H_{1}(M ; \mathbb{Q})$.

A category of cobordisms

Let \mathcal{C} ob be the monoidal category of 3-dim. cobordisms (Crane \& Yetter 1999):

- objects: integers $g \geq 0$,
- morphisms $g_{+} \rightarrow g_{-}$: cobordisms from $F_{g_{+}}$to $F_{g_{-}}$,
- composition:

$$
M \circ N:=\begin{array}{|c|}
\hline N \\
\hline M \\
\hline
\end{array}
$$

- tensor product: $g \otimes f:=g+f$ and $M \otimes N:=M N$.

Any $M \in \mathcal{C o b}\left(g_{+}, g_{-}\right)$comes with $m_{ \pm}: \pm F_{g_{ \pm}} \hookrightarrow M$.

$A_{g}^{\mathbb{Q}}:=$ subspace of $H_{1}\left(F_{g} ; \mathbb{Q}\right)$ spanned by $\left[\alpha_{1}\right], \ldots,\left[\alpha_{g}\right]$

Definition

A cobordism $M \in \operatorname{Cob}\left(g_{+}, g_{-}\right)$is \mathbb{Q}-Lagrangian if
(1) $H_{1}(M ; \mathbb{Q})=m_{-, *}\left(A_{g_{-}}^{\mathbb{Q}}\right)+m_{+, *}\left(H_{1}\left(F_{g_{+}} ; \mathbb{Q}\right)\right)$,
(2) $m_{+, *}\left(A_{g_{+}}^{\mathbb{Q}}\right) \subset m_{-, *}\left(A_{g_{-}}^{\mathbb{Q}}\right)$ in $H_{1}(M ; \mathbb{Q})$.
$\mathbb{Q} \mathcal{L C}$ ob:= monoidal subcategory of \mathcal{C} ob consisting of Lagrangian cobordisms

The LMO functor

The LMO functor

$$
\mathbb{Q} \mathcal{L C o b}(0,0)=\{\mathbb{Q} \text {-homology cubes }\}
$$

The LMO functor

$$
\mathbb{Q} \mathcal{L C o b}(0,0)=\{\mathbb{Q} \text {-homology cubes }\} \quad \xrightarrow[\simeq]{\text { gluing a 3-ball }}\{\mathbb{Q} \text {-homology spheres }\}
$$

The LMO functor

$$
\begin{array}{ll}
\mathbb{Q} \mathcal{L C o b}(0,0)=\{\mathbb{Q} \text {-homology cubes }\} & \begin{array}{l}
\text { gluing a 3-ball }
\end{array}\{\mathbb{Q} \text {-homology spheres }\} \\
{ }^{\text {ts }} \mathcal{A}(0,0)=\mathcal{A}(\varnothing)
\end{array}
$$

$\mathbb{Q} \mathcal{L C o b}(0,0)=\{\mathbb{Q}$-homology cubes $\} \quad \xrightarrow[\simeq]{\text { gluing a 3-ball }}\{\mathbb{Q}$-homology spheres $\}$ ${ }^{t s} \mathcal{A}(0,0)=\mathcal{A}(\varnothing)$

Theorem (with Cheptea \& Habiro 2008)
There is a tensor-preserving functor \tilde{Z} extending the LMO invariant Z :

The LMO functor

$\mathbb{Q} \mathcal{L C o b}(0,0)=\{\mathbb{Q}$-homology cubes $\} \xrightarrow[\simeq]{\text { gluing a 3-ball }}\{\mathbb{Q}$-homology spheres $\}$ ${ }^{{ }^{t} \mathcal{A}}(0,0)=\mathcal{A}(\varnothing)$

Theorem (with Cheptea \& Habiro 2008)
There is a tensor-preserving functor \tilde{Z} extending the LMO invariant Z :

A q-structure on a cobordism $M \in \mathcal{C}$ ob $\left(g_{+}, g_{-}\right)$is a parenthesizing of the g_{+}"top" handles and a parenthesizing of the g_{-}"bottom" handles.

The LMO functor

$\mathbb{Q} \mathcal{L C o b}(0,0)=\{\mathbb{Q}$-homology cubes $\} \xrightarrow[\simeq]{\text { gluing a 3-ball }}\{\mathbb{Q}$-homology spheres $\}$ ${ }^{{ }^{t} \mathcal{A}}(0,0)=\mathcal{A}(\varnothing)$

Theorem (with Cheptea \& Habiro 2008)
There is a tensor-preserving functor \tilde{Z} extending the LMO invariant Z :

A q-structure on a cobordism $M \in \mathcal{C}$ ob $\left(g_{+}, g_{-}\right)$is a parenthesizing of the g_{+}"top" handles and a parenthesizing of the g_{-}"bottom" handles.

Remark

Murakami \& Ohtsuki (1997) and Cheptea \& Le (2007) have constructed other functorial extensions of the LMO invariant.

The LMO functor: sketch of the construction
Let $M \in \mathbb{Q} \mathcal{L C}$ ob (g, f).

The LMO functor: sketch of the construction
Let $M \in \mathbb{Q} \mathcal{L C o b}(g, f)$.

The LMO functor: sketch of the construction
Let $M \in \mathbb{Q} \mathcal{L C o b}(g, f)$.
(1) Glue 2 -handles along $m_{+}\left(\beta_{1}\right), \ldots, m_{+}\left(\beta_{g}\right)$,
(2) glue 2 -handles along $m_{-}\left(\alpha_{1}\right), \ldots, m_{-}\left(\alpha_{f}\right)$:

The LMO functor: sketch of the construction

Let $M \in \mathbb{Q} \mathcal{L C}$ ob (g, f).
(1) Glue 2 -handles along $m_{+}\left(\beta_{1}\right), \ldots, m_{+}\left(\beta_{g}\right)$,
(2) glue 2 -handles along $m_{-}\left(\alpha_{1}\right), \ldots, m_{-}\left(\alpha_{f}\right)$:
\rightsquigarrow a \mathbb{Q}-homology cube B

The LMO functor: sketch of the construction

Let $M \in \mathbb{Q} \mathcal{L C o b}(g, f)$.
(1) Glue 2 -handles along $m_{+}\left(\beta_{1}\right), \ldots, m_{+}\left(\beta_{g}\right)$,
(2) glue 2 -handles along $m_{-}\left(\alpha_{1}\right), \ldots, m_{-}\left(\alpha_{f}\right)$:
\rightsquigarrow a \mathbb{Q}-homology cube B
... with a g-component "top" tangle γ^{+}
\ldots and an f-component "bottom" tangle $\gamma-$.

The LMO functor: sketch of the construction

Let $M \in \mathbb{Q} \mathcal{L C o b}(g, f)$.
(1) Glue 2 -handles along $m_{+}\left(\beta_{1}\right), \ldots, m_{+}\left(\beta_{g}\right)$,
(2) glue 2 -handles along $m_{-}\left(\alpha_{1}\right), \ldots, m_{-}\left(\alpha_{f}\right)$:
\rightsquigarrow a \mathbb{Q}-homology cube B
... with a g-component "top" tangle γ^{+}
\ldots and an f-component "bottom" tangle $\gamma-$.
(3) Compute the Kontsevich-LMO invariant of (B, γ),

(4) and "symmetrize" this:
$\rightsquigarrow Z(M):=\chi^{-1} Z(B, \gamma) \in \mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}, 1^{-}, \ldots, f^{-}\right\}\right)$.

The LMO functor: sketch of the construction

Let $M \in \mathbb{Q} \mathcal{L C o b}(g, f)$.
(1) Glue 2 -handles along $m_{+}\left(\beta_{1}\right), \ldots, m_{+}\left(\beta_{g}\right)$,
(2) glue 2 -handles along $m_{-}\left(\alpha_{1}\right), \ldots, m_{-}\left(\alpha_{f}\right)$:
\rightsquigarrow a \mathbb{Q}-homology cube B
... with a g-component "top" tangle γ^{+}
\ldots and an f-component "bottom" tangle γ-.
(3) Compute the Kontsevich-LMO invariant of (B, γ),

(4) and "symmetrize" this:
$\rightsquigarrow Z(M):=\chi^{-1} Z(B, \gamma) \in \mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}, 1^{-}, \ldots, f^{-}\right\}\right)$.
(5) Normalize $Z(M)$ to get functoriality:
$\rightsquigarrow \widetilde{Z}(M) \in \mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}, 1^{-}, \ldots, f^{-}\right\}\right)$

The LMO functor: sketch of the construction

Let $M \in \mathbb{Q} \mathcal{L C o b}(g, f)$.
(1) Glue 2 -handles along $m_{+}\left(\beta_{1}\right), \ldots, m_{+}\left(\beta_{g}\right)$,
(2) glue 2 -handles along $m_{-}\left(\alpha_{1}\right), \ldots, m_{-}\left(\alpha_{f}\right)$:
\rightsquigarrow a \mathbb{Q}-homology cube B
... with a g-component "top" tangle γ^{+}
\ldots and an f-component "bottom" tangle $\gamma-$.
(3) Compute the Kontsevich-LMO invariant of (B, γ),

(4) and "symmetrize" this:
$\rightsquigarrow Z(M):=\chi^{-1} Z(B, \gamma) \in \mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}, 1^{-}, \ldots, f^{-}\right\}\right)$.
(5) Normalize $Z(M)$ to get functoriality:
$\rightsquigarrow \widetilde{Z}(M) \in \mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}, 1^{-}, \ldots, f^{-}\right\}\right)$

$\tilde{Z}(M)=\underbrace{\exp _{\sqcup}\left(\frac{1}{2} \operatorname{Lk}_{B}\left(\gamma^{-}\right)-\cdots \cdot-\operatorname{Lk}_{B}\left(\gamma^{+}, \gamma^{-}\right){ }_{-}^{+}\right)}_{\text {only struts }} \sqcup \underbrace{(\varnothing+Y+\cdots)}_{\text {no strut at all }}$

The LMO functor: sketch of the construction

Let $M \in \mathbb{Q} \mathcal{L C o b}(g, f)$.
(1) Glue 2 -handles along $m_{+}\left(\beta_{1}\right), \ldots, m_{+}\left(\beta_{g}\right)$,
(2) glue 2 -handles along $m_{-}\left(\alpha_{1}\right), \ldots, m_{-}\left(\alpha_{f}\right)$:
\rightsquigarrow a \mathbb{Q}-homology cube B
... with a g-component "top" tangle γ^{+}
\ldots and an f-component "bottom" tangle $\gamma-$.
(3) Compute the Kontsevich-LMO invariant of (B, γ),

(4) and "symmetrize" this:
$\rightsquigarrow Z(M):=\chi^{-1} Z(B, \gamma) \in \mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}, 1^{-}, \ldots, f^{-}\right\}\right)$.
(5) Normalize $Z(M)$ to get functoriality:
$\rightsquigarrow \widetilde{Z}(M) \in \mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}, 1^{-}, \ldots, f^{-}\right\}\right)$

$\tilde{Z}(M)=\underbrace{\exp \left(\frac{1}{2} \operatorname{Lk}_{B}\left(\gamma^{-}\right)-\cdots-\operatorname{Lk}_{B}\left(\gamma^{+}, \gamma^{-}\right){ }_{-}^{+} \begin{array}{l}\text { - }\end{array}\right)}_{\text {only struts }} \sqcup \underbrace{\left(\varnothing+Y_{i}+\cdots\right)}_{\text {no strut at all }} \in{ }^{t 5} \mathcal{A}(g, f)$

Contents

(1) Lagrangian-preserving surgeries
(2) The LMO invariant and its splitting formulas
(3) The LMO functor (with Cheptea \& Habiro)
(4) Proof of the splitting formulas

The i-degree 1 part of \bar{Z}
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{Q}-LP pair of genus g

The i-degree 1 part of \widehat{Z}
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{Q}-LP pair of genus g
$\mu(C) \in \Lambda^{3} H_{1}(C ; \mathbb{Q})$: triple-cup product form of $C=\left(-C^{\prime}\right) \cup_{\partial} C^{\prime \prime}$

The i-degree 1 part of \widehat{Z}
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{Q}-LP pair of genus g
$\mu(C) \in \Lambda^{3} H_{1}(C ; \mathbb{Q})$: triple-cup product form of $C=\left(-C^{\prime}\right) \cup_{\partial} C^{\prime \prime}$
\exists a parameterization $c^{\prime}=c^{\prime \prime}$ of $\partial C^{\prime}=\partial C^{\prime \prime}$ such that

$$
\left(C^{\prime}, c^{\prime}\right) \in \mathbb{Q} \mathcal{L C o b}(g, 0) \quad \text { and } \quad\left(C^{\prime \prime}, c^{\prime \prime}\right) \in \mathbb{Q} \mathcal{L C o b}(g, 0) .
$$

The i-degree 1 part of \bar{Z}
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{Q}-LP pair of genus g
$\mu(C) \in \Lambda^{3} H_{1}(C ; \mathbb{Q})$: triple-cup product form of $C=\left(-C^{\prime}\right) \cup_{\partial} C^{\prime \prime}$
\exists a parameterization $c^{\prime}=c^{\prime \prime}$ of $\partial C^{\prime}=\partial C^{\prime \prime}$ such that

$$
\left(C^{\prime}, c^{\prime}\right) \in \mathbb{Q} \mathcal{L C o b}(g, 0) \quad \text { and } \quad\left(C^{\prime \prime}, c^{\prime \prime}\right) \in \mathbb{Q} \mathcal{L C} \operatorname{Cob}(g, 0)
$$

Lemma

Via the isomorphism

$$
\Lambda^{3} H_{1}(C ; \mathbb{Q}) \xrightarrow{\simeq} \mathcal{A}_{1}^{c}\left(\left\{1^{+}, \ldots, g^{+}\right\}\right), \quad\left[\beta_{i}\right] \wedge\left[\beta_{j}\right] \wedge\left[\beta_{k}\right] \longmapsto \ddots^{k^{+}} \dot{j}^{+} i^{+}
$$

$\mu(C)$ corresponds to $\widetilde{Z}_{1}\left(C^{\prime}, c^{\prime}\right)-\widetilde{Z}_{1}\left(C^{\prime \prime}, c^{\prime \prime}\right)$.

The i-degree 1 part of \bar{Z}
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{Q}-LP pair of genus g
$\mu(C) \in \Lambda^{3} H_{1}(C ; \mathbb{Q})$: triple-cup product form of $C=\left(-C^{\prime}\right) \cup_{\partial} C^{\prime \prime}$
\exists a parameterization $c^{\prime}=c^{\prime \prime}$ of $\partial C^{\prime}=\partial C^{\prime \prime}$ such that

$$
\left(C^{\prime}, c^{\prime}\right) \in \mathbb{Q} \mathcal{L C o b}(g, 0) \quad \text { and } \quad\left(C^{\prime \prime}, c^{\prime \prime}\right) \in \mathbb{Q} \mathcal{L C o b}(g, 0) .
$$

Lemma

Via the isomorphism

$$
\Lambda^{3} H_{1}(C ; \mathbb{Q}) \xrightarrow{\simeq} \mathcal{A}_{1}^{c}\left(\left\{1^{+}, \ldots, g^{+}\right\}\right), \quad\left[\beta_{i}\right] \wedge\left[\beta_{j}\right] \wedge\left[\beta_{k}\right] \longmapsto \ddots_{\sim}^{k^{+}} \dot{j}^{+}
$$

$\mu(C)$ corresponds to $\widetilde{Z}_{1}\left(C^{\prime}, c^{\prime}\right)-\widetilde{Z}_{1}\left(C^{\prime \prime}, c^{\prime \prime}\right)$.
Sketch of the proof.
(B, γ) : "top" tangle in a \mathbb{Q}-homology cube corresp. to C^{\prime}

The i-degree 1 part of \bar{Z}
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{Q}-LP pair of genus g
$\mu(C) \in \Lambda^{3} H_{1}(C ; \mathbb{Q})$: triple-cup product form of $C=\left(-C^{\prime}\right) \cup_{\partial} C^{\prime \prime}$
\exists a parameterization $c^{\prime}=c^{\prime \prime}$ of $\partial C^{\prime}=\partial C^{\prime \prime}$ such that

$$
\left(C^{\prime}, c^{\prime}\right) \in \mathbb{Q} \mathcal{L C o b}(g, 0) \quad \text { and } \quad\left(C^{\prime \prime}, c^{\prime \prime}\right) \in \mathbb{Q} \mathcal{L C} \text { ob }(g, 0) .
$$

Lemma

Via the isomorphism

$$
\Lambda^{3} H_{1}(C ; \mathbb{Q}) \xrightarrow{\simeq} \mathcal{A}_{1}^{c}\left(\left\{1^{+}, \ldots, g^{+}\right\}\right), \quad\left[\beta_{i}\right] \wedge\left[\beta_{j}\right] \wedge\left[\beta_{k}\right] \longmapsto \ddots^{k^{+}} \ddots^{j^{+}} i^{+}
$$

$\mu(C)$ corresponds to $\widetilde{Z}_{1}\left(C^{\prime}, c^{\prime}\right)-\widetilde{Z}_{1}\left(C^{\prime \prime}, c^{\prime \prime}\right)$.
Sketch of the proof.
(B, γ) : "top" tangle in a \mathbb{Q}-homology cube corresp. to C^{\prime} $(\hat{B}, \hat{\gamma})$: "plat" closure of (B, γ)

The i-degree 1 part of \bar{Z}
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{Q}-LP pair of genus g
$\mu(C) \in \Lambda^{3} H_{1}(C ; \mathbb{Q})$: triple-cup product form of $C=\left(-C^{\prime}\right) \cup_{\partial} C^{\prime \prime}$
\exists a parameterization $c^{\prime}=c^{\prime \prime}$ of $\partial C^{\prime}=\partial C^{\prime \prime}$ such that

$$
\left(C^{\prime}, c^{\prime}\right) \in \mathbb{Q} \mathcal{L C o b}(g, 0) \quad \text { and } \quad\left(C^{\prime \prime}, c^{\prime \prime}\right) \in \mathbb{Q} \mathcal{L C} \operatorname{ob}(g, 0) .
$$

Lemma

Via the isomorphism

$$
\Lambda^{3} H_{1}(C ; \mathbb{Q}) \stackrel{\sim}{\longrightarrow} \mathcal{A}_{1}^{c}\left(\left\{1^{+}, \ldots, g^{+}\right\}\right), \quad\left[\beta_{i}\right] \wedge\left[\beta_{j}\right] \wedge\left[\beta_{k}\right] \longmapsto \ddots_{\ddots}^{k^{+}} \dot{j}^{+} i^{+}
$$

$\mu(C)$ corresponds to $\widetilde{Z}_{1}\left(C^{\prime}, c^{\prime}\right)-\widetilde{Z}_{1}\left(C^{\prime \prime}, c^{\prime \prime}\right)$.
Sketch of the proof.
(B, γ) : "top" tangle in a \mathbb{Q}-homology cube corresp. to C^{\prime} $(\hat{B}, \hat{\gamma})$: "plat" closure of (B, γ)

$\tilde{Z}_{1}\left(C^{\prime}, c^{\prime}\right)=$ "Y-part" of $\chi^{-1} Z(B, \gamma)$

The i-degree 1 part of \bar{Z}
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{Q}-LP pair of genus g
$\mu(C) \in \Lambda^{3} H_{1}(C ; \mathbb{Q})$: triple-cup product form of $C=\left(-C^{\prime}\right) \cup_{\partial} C^{\prime \prime}$
\exists a parameterization $c^{\prime}=c^{\prime \prime}$ of $\partial C^{\prime}=\partial C^{\prime \prime}$ such that

$$
\left(C^{\prime}, c^{\prime}\right) \in \mathbb{Q} \mathcal{L C o b}(g, 0) \quad \text { and } \quad\left(C^{\prime \prime}, c^{\prime \prime}\right) \in \mathbb{Q} \mathcal{L C o b}(g, 0) .
$$

Lemma

Via the isomorphism
$\Lambda^{3} H_{1}(C ; \mathbb{Q}) \xrightarrow{\simeq} \mathcal{A}_{1}^{c}\left(\left\{1^{+}, \ldots, g^{+}\right\}\right), \quad\left[\beta_{i}\right] \wedge\left[\beta_{j}\right] \wedge\left[\beta_{k}\right] \longmapsto \ddots^{k^{+}} \ddots^{j^{+}} i^{+}$
$\mu(C)$ corresponds to $\widetilde{Z}_{1}\left(C^{\prime}, c^{\prime}\right)-\widetilde{Z}_{1}\left(C^{\prime \prime}, c^{\prime \prime}\right)$.
Sketch of the proof.
(B, γ) : "top" tangle in a \mathbb{Q}-homology cube corresp. to C^{\prime} $(\hat{B}, \hat{\gamma})$: "plat" closure of (B, γ)

$\widetilde{Z}_{1}\left(C^{\prime}, c^{\prime}\right)=$ "Y-part" of $\chi^{-1} Z(B, \gamma)=-\sum_{1 \leq i<j<k \leq g} \bar{\mu}_{i j k}(\hat{\gamma}) \cdot{ }^{k^{+} \ddots^{+} i^{+}}$
where $\bar{\mu}_{i j k}(\hat{\gamma})$ is the rational version of Milnor's triple linking numbers.

The i-degree 1 part of \bar{Z}
$\mathcal{C}=\left(C^{\prime}, C^{\prime \prime}\right):$ a \mathbb{Q}-LP pair of genus g
$\mu(C) \in \Lambda^{3} H_{1}(C ; \mathbb{Q})$: triple-cup product form of $C=\left(-C^{\prime}\right) \cup_{\partial} C^{\prime \prime}$
\exists a parameterization $c^{\prime}=c^{\prime \prime}$ of $\partial C^{\prime}=\partial C^{\prime \prime}$ such that

$$
\left(C^{\prime}, c^{\prime}\right) \in \mathbb{Q} \mathcal{L C o b}(g, 0) \quad \text { and } \quad\left(C^{\prime \prime}, c^{\prime \prime}\right) \in \mathbb{Q} \mathcal{L C o b}(g, 0) .
$$

Lemma

Via the isomorphism
$\Lambda^{3} H_{1}(C ; \mathbb{Q}) \xrightarrow{\simeq} \mathcal{A}_{1}^{c}\left(\left\{1^{+}, \ldots, g^{+}\right\}\right), \quad\left[\beta_{i}\right] \wedge\left[\beta_{j}\right] \wedge\left[\beta_{k}\right] \longmapsto \ddots^{k^{+}} \ddots^{j^{+}} i^{+}$
$\mu(C)$ corresponds to $\widetilde{Z}_{1}\left(C^{\prime}, c^{\prime}\right)-\widetilde{Z}_{1}\left(C^{\prime \prime}, c^{\prime \prime}\right)$.
Sketch of the proof.
(B, γ) : "top" tangle in a \mathbb{Q}-homology cube corresp. to C^{\prime} $(\hat{B}, \hat{\gamma})$: "plat" closure of (B, γ)

$\widetilde{Z}_{1}\left(C^{\prime}, c^{\prime}\right)=$ "Y-part" of $\chi^{-1} Z(B, \gamma)=-\sum_{1 \leq i<j<k \leq g} \bar{\mu}_{i j k}(\hat{\gamma}) \cdot \ddots_{\ddots}^{k^{+} j^{+}} i^{+}$
where $\bar{\mu}_{i j k}(\hat{\gamma})$ is the rational version of Milnor's triple linking numbers.

Decomposition of a \mathbb{Q}-homology sphere

M: a \mathbb{Q}-homology sphere
$\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right):$ a family of \mathbb{Q}-LP pairs such that $C_{1}^{\prime} \sqcup \cdots \sqcup C_{r}^{\prime} \subset M$

Decomposition of a \mathbb{Q}-homology sphere

M : a \mathbb{Q}-homology sphere
$\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right):$ a family of \mathbb{Q}-LP pairs such that $C_{1}^{\prime} \sqcup \cdots \sqcup C_{r}^{\prime} \subset M$
\exists a parameterization c_{i}^{\prime} of ∂C_{i}^{\prime} such that $\left(C_{i}^{\prime}, c_{i}^{\prime}\right) \in \mathbb{Q} \mathcal{L C}$ ob $\left(g_{i}, 0\right)$

Decomposition of a \mathbb{Q}-homology sphere

M : a \mathbb{Q}-homology sphere
$\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right):$ a family of \mathbb{Q}-LP pairs such that $C_{1}^{\prime} \sqcup \cdots \sqcup C_{r}^{\prime} \subset M$
\exists a parameterization c_{i}^{\prime} of ∂C_{i}^{\prime} such that $\left(C_{i}^{\prime}, c_{i}^{\prime}\right) \in \mathbb{Q} \mathcal{L C}$ ob $\left(g_{i}, 0\right)$

Decomposition of a \mathbb{Q}-homology sphere

M : a \mathbb{Q}-homology sphere
$\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right):$ a family of \mathbb{Q}-LP pairs such that $C_{1}^{\prime} \sqcup \cdots \sqcup C_{r}^{\prime} \subset M$
\exists a parameterization c_{i}^{\prime} of ∂C_{i}^{\prime} such that $\left(C_{i}^{\prime}, c_{i}^{\prime}\right) \in \mathbb{Q} \mathcal{L C}$ ob $\left(g_{i}, 0\right)$
$M^{+}:=\left(\right.$exterior of $\left.C_{1}^{\prime} \cup \cdots \cup C_{r}^{\prime}\right) \in \mathbb{Q} \mathcal{L C}$ ob $(0, g)$ where $g:=g_{1}+\cdots+g_{r}$

Decomposition of a \mathbb{Q}-homology sphere

M: a \mathbb{Q}-homology sphere
$\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right)$: a family of \mathbb{Q}-LP pairs such that $C_{1}^{\prime} \sqcup \cdots \sqcup C_{r}^{\prime} \subset M$
\exists a parameterization c_{i}^{\prime} of ∂C_{i}^{\prime} such that $\left(C_{i}^{\prime}, c_{i}^{\prime}\right) \in \mathbb{Q} \mathcal{L C o b}\left(g_{i}, 0\right)$
$M^{+}:=\left(\right.$exterior of $\left.C_{1}^{\prime} \cup \cdots \cup C_{r}^{\prime}\right) \in \mathbb{Q} \mathcal{L C}$ ob $(0, g)$ where $g:=g_{1}+\cdots+g_{r}$
$\check{M}:=M \backslash($ open 3 -ball $) \in \mathbb{Q} \mathcal{L C o b}(0,0)$

Decomposition of a \mathbb{Q}-homology sphere

M: a \mathbb{Q}-homology sphere
$\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}\right)$: a family of \mathbb{Q}-LP pairs such that $C_{1}^{\prime} \sqcup \cdots \sqcup C_{r}^{\prime} \subset M$
\exists a parameterization c_{i}^{\prime} of ∂C_{i}^{\prime} such that $\left(C_{i}^{\prime}, c_{i}^{\prime}\right) \in \mathbb{Q} \mathcal{L C o b}\left(g_{i}, 0\right)$
$M^{+}:=\left(\right.$exterior of $\left.C_{1}^{\prime} \cup \cdots \cup C_{r}^{\prime}\right) \in \mathbb{Q} \mathcal{L C}$ ob $(0, g)$ where $g:=g_{1}+\cdots+g_{r}$
$\check{M}:=M \backslash($ open 3 -ball $) \in \mathbb{Q} \mathcal{L C o b}(0,0)$
\rightsquigarrow a decomposition in the monoidal category $\mathbb{Q} \mathcal{L C}$ ob:

$$
\check{M}=\left(C_{1}^{\prime} \otimes \cdots \otimes C_{r}^{\prime}\right) \circ M^{+}
$$

Application of \bar{Z} to the decomposition

$$
\sum_{(c m i n}(-1)^{1)^{\prime}} \cdot z\left(W_{C}\right)
$$

Application of \bar{Z} to the decomposition

$$
\begin{aligned}
& \sum_{I \subset\{1, \ldots, r\}}(-1)^{\mid I I} \cdot Z\left(M_{\mathcal{C}_{l}}\right) \\
= & \sum_{I \subset\{1, \ldots, r\}}(-1)^{\mid I I} \cdot \tilde{Z}\left(\check{M}_{\mathcal{C}_{l}}\right)
\end{aligned}
$$

Application of \widehat{Z} to the decomposition

$$
\begin{aligned}
& \sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot Z\left(M_{\mathcal{C}_{l}}\right) \\
= & \sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot \widetilde{Z}\left(\check{M}_{\mathcal{C}_{l}}\right) \\
= & \sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot \widetilde{Z}\left(\left(C_{1}^{?} \otimes \cdots \otimes C_{r}^{?}\right) \circ M^{+}\right)
\end{aligned}
$$

where $?={ }^{\prime}$ or ${ }^{\prime \prime}$

Application of \bar{Z} to the decomposition

$$
\begin{aligned}
& \sum_{I \subset\{1, \ldots, r\}}(-1)^{\mid I I} \cdot Z\left(M_{\mathcal{C}_{l}}\right) \\
= & \sum_{I \subset\{1, \ldots, r\}}(-1)^{I I I} \cdot \tilde{Z}\left(\check{M}_{\mathcal{C}_{l}}\right) \\
= & \sum_{I \subset\{1, \ldots, r\}}(-1)^{I I I} \cdot \tilde{Z}\left(\left(C_{1}^{?} \otimes \cdots \otimes C_{r}^{?}\right) \circ M^{+}\right) \\
= & \sum_{I \subset\{1, \ldots, r\}}(-1)^{I I I} \cdot\left(\tilde{Z}\left(C_{1}^{?}\right) \otimes \cdots \otimes \tilde{Z}\left(C_{r}^{?}\right)\right) \circ \widetilde{Z}\left(M^{+}\right) \quad
\end{aligned} \quad M \begin{cases} & M^{+} \\
C_{1}^{\prime} & C_{2}^{\prime} \\
& \end{cases}
$$

Application of \bar{Z} to the decomposition

$$
\begin{aligned}
& \sum_{I \subset\{1, \ldots, r\}}(-1)^{\mid I I} \cdot Z\left(M_{\mathcal{C}_{l}}\right) \\
& =\sum_{I \subset\{1, \ldots, r\}}(-1)^{I I I} \cdot \tilde{Z}\left(\check{M}_{\mathcal{C}_{l}}\right) \\
& =\sum_{l \subset\{1, \ldots, r\}}(-1)^{|\prime|} \cdot \tilde{Z}\left(\left(C_{1}^{?} \otimes \cdots \otimes C_{r}^{?}\right) \circ M^{+}\right) \\
& =\sum_{I \subset\{1, \ldots, r\}}(-1)^{|| |} \cdot\left(\tilde{Z}\left(C_{1}^{?}\right) \otimes \cdots \otimes \tilde{Z}\left(C_{r}^{?}\right)\right) \circ \tilde{Z}\left(M^{+}\right) \quad \text { where } ?=\prime \text { or }{ }^{\prime \prime} \\
& =\left(\left(\widetilde{Z}\left(C_{1}^{\prime}\right)-\widetilde{Z}\left(C_{1}^{\prime \prime}\right)\right) \otimes \cdots \otimes\left(\widetilde{Z}\left(C_{r}^{\prime}\right)-\widetilde{Z}\left(C_{r}^{\prime \prime}\right)\right)\right) \circ \widetilde{Z}\left(M^{+}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{I \subset\{1, \ldots, r\}}(-1)^{\mid I I} \cdot Z\left(M_{\mathcal{C}_{l}}\right) \\
& =\sum_{I \subset\{1, \ldots, r\}}(-1)^{\mid I I} \cdot \tilde{Z}\left(\check{M}_{\mathcal{C}_{1}}\right) \\
& =\sum_{1 \subset\{1, \ldots, r\}}(-1)^{\mid / I} \cdot \tilde{Z}\left(\left(C_{1}^{\}} \otimes \cdots \otimes C_{r}^{?}\right) \circ M^{+}\right) \\
& =\sum_{I \subset\{1, \ldots, r\}}(-1)^{|I|} \cdot\left(\tilde{Z}\left(C_{1}^{2}\right) \otimes \cdots \otimes \tilde{Z}\left(C_{r}^{?}\right)\right) \circ \tilde{Z}\left(M^{+}\right) \quad \text { where } ?={ }^{\prime} \text { or }{ }^{\prime \prime} \\
& =\left(\left(\widetilde{Z}\left(C_{1}^{\prime}\right)-\widetilde{Z}\left(C_{1}^{\prime \prime}\right)\right) \otimes \cdots \otimes\left(\widetilde{Z}\left(C_{r}^{\prime}\right)-\widetilde{Z}\left(C_{r}^{\prime \prime}\right)\right)\right) \circ \widetilde{Z}\left(M^{+}\right) \\
& =(\underbrace{\left(\widetilde{Z}_{1}\left(C_{1}^{\prime}\right)-\widetilde{Z}_{1}\left(C_{1}^{\prime \prime}\right)\right)}_{\mu\left(C_{1}\right)} \otimes \cdots \otimes \underbrace{\left(\widetilde{Z}_{1}\left(C_{r}^{\prime}\right)-\widetilde{Z}_{1}\left(C_{r}^{\prime \prime}\right)\right)}_{\mu\left(C_{r}\right)}) \circ \underbrace{\widetilde{Z}_{0}\left(M^{+}\right)}_{\exp _{\perp}\left(l_{C}, \cdots \cdots+\text { stg else }\right)}+(\mathrm{i}-\operatorname{deg}>r)
\end{aligned}
$$

Application of \bar{Z} to the decomposition

$$
\begin{aligned}
& \sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot Z\left(M_{\mathcal{C}_{I}}\right) \\
= & \sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot \tilde{Z}\left(\check{M}_{\mathcal{C}_{l}}\right) \\
= & \sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot \tilde{Z}\left(\left(C_{1}^{\}} \otimes \cdots \otimes \mathcal{C}_{r}^{?}\right) \circ M^{+}\right)
\end{aligned}
$$

$$
=\sum_{I \subset\{1, \ldots, r\}}(-1)^{|I|} \cdot\left(\tilde{Z}\left(C_{1}^{?}\right) \otimes \cdots \otimes \tilde{Z}\left(C_{r}^{?}\right)\right) \circ \widetilde{Z}\left(M^{+}\right) \quad \text { where } ?={ }^{\prime} \text { or }{ }^{\prime \prime}
$$

$$
=\left(\left(\tilde{Z}\left(C_{1}^{\prime}\right)-\widetilde{Z}\left(C_{1}^{\prime \prime}\right)\right) \otimes \cdots \otimes\left(\widetilde{Z}\left(C_{r}^{\prime}\right)-\widetilde{Z}\left(C_{r}^{\prime \prime}\right)\right)\right) \circ \widetilde{Z}\left(M^{+}\right)
$$

$$
=(\underbrace{\left(\widetilde{Z}_{1}\left(C_{1}^{\prime}\right)-\widetilde{Z}_{1}\left(C_{1}^{\prime \prime}\right)\right)}_{\mu\left(C_{1}\right)} \otimes \cdots \otimes \underbrace{\left(\widetilde{Z}_{1}\left(C_{r}^{\prime}\right)-\widetilde{Z}_{1}\left(C_{r}^{\prime \prime}\right)\right)}_{\mu\left(C_{r}\right)}) \circ \underbrace{\widetilde{Z}_{0}\left(M^{+}\right)}_{\exp ^{\prime}\left(\ell_{C}, \cdots, \cdots+\text { sthg else }\right)}+(\mathrm{i}-\operatorname{deg}>r)
$$

$$
=\left(\begin{array}{c}
\text { sum of all ways of identifying } \\
\text { pairwisely all legs of } \mu_{\mathcal{C}} \\
\text { by means of the pairing } \ell_{\mathcal{C}}
\end{array}\right)+(\mathrm{i}-\mathrm{deg}>r)
$$

Application of \bar{Z} to the decomposition

$$
\begin{aligned}
& \sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot Z\left(M_{\mathcal{C}_{I}}\right) \\
= & \sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot \tilde{Z}\left(\check{M}_{\mathcal{C}_{l}}\right) \\
= & \sum_{I \subset\{1, \ldots, r\}}(-1)^{|/|} \cdot \tilde{Z}\left(\left(C_{1}^{\}} \otimes \cdots \otimes \mathcal{C}_{r}^{?}\right) \circ M^{+}\right)
\end{aligned}
$$

$$
=\sum_{I \subset\{1, \ldots, r\}}(-1)^{|I|} \cdot\left(\tilde{Z}\left(C_{1}^{?}\right) \otimes \cdots \otimes \tilde{Z}\left(C_{r}^{?}\right)\right) \circ \widetilde{Z}\left(M^{+}\right) \quad \text { where } ?={ }^{\prime} \text { or }{ }^{\prime \prime}
$$

$$
=\left(\left(\tilde{Z}\left(C_{1}^{\prime}\right)-\widetilde{Z}\left(C_{1}^{\prime \prime}\right)\right) \otimes \cdots \otimes\left(\widetilde{Z}\left(C_{r}^{\prime}\right)-\widetilde{Z}\left(C_{r}^{\prime \prime}\right)\right)\right) \circ \widetilde{Z}\left(M^{+}\right)
$$

$$
=(\underbrace{\left(\widetilde{Z}_{1}\left(C_{1}^{\prime}\right)-\widetilde{Z}_{1}\left(C_{1}^{\prime \prime}\right)\right)}_{\mu\left(C_{1}\right)} \otimes \cdots \otimes \underbrace{\left(\widetilde{Z}_{1}\left(C_{r}^{\prime}\right)-\widetilde{Z}_{1}\left(C_{r}^{\prime \prime}\right)\right)}_{\mu\left(C_{r}\right)}) \circ \underbrace{\widetilde{Z}_{0}\left(M^{+}\right)}_{\exp ^{\prime}\left(\ell_{C}, \cdots, \cdots+\text { sthg else }\right)}+(\mathrm{i}-\operatorname{deg}>r)
$$

$$
=\left(\begin{array}{c}
\text { sum of all ways of identifying } \\
\text { pairwisely all legs of } \mu_{\mathcal{C}} \\
\text { by means of the pairing } \ell_{\mathcal{C}}
\end{array}\right)+(\mathrm{i}-\mathrm{deg}>r)
$$

