Splitting formulas for the LMO invariant

Gwénaël Massuyeau (IRMA, Strasbourg)

 $\mathsf{CNRS}/\mathsf{JSPS} \text{ joint seminar}$

Marseille, November 2012

- 2 The LMO invariant and its splitting formulas
- The LMO functor (with Cheptea & Habiro)

- 2 The LMO invariant and its splitting formulas
- 3 The LMO functor (with Cheptea & Habiro)
- Proof of the splitting formulas

2 The LMO invariant and its splitting formulas

3 The LMO functor (with Cheptea & Habiro)

 $\mathbb{K}:=\mathbb{Z} \text{ or } \mathbb{Q}$

 $\mathbb{K}:=\mathbb{Z}$ or \mathbb{Q}

 H_g : standard handlebody of genus g

 $\mathbb{K}:=\mathbb{Z} \text{ or } \mathbb{Q}$

 H_g : standard handlebody of genus g

Definition

A K-homology handlebody of genus g is a compact oriented 3-manifold D such that $H_*(D; \mathbb{K}) \simeq H_*(H_g; \mathbb{K})$.

 $\mathbb{K}:=\mathbb{Z} \text{ or } \mathbb{Q}$

 H_g : standard handlebody of genus g

Definition

A K-homology handlebody of genus g is a compact oriented 3-manifold D such that $H_*(D; \mathbb{K}) \simeq H_*(H_g; \mathbb{K})$.

 $L_D^{\mathbb{K}} := \operatorname{Ker} \left(\operatorname{incl}_* : H_1(\partial D; \mathbb{K}) \longrightarrow H_1(D; \mathbb{K}) \right)$

 $\mathbb{K}:=\mathbb{Z} \text{ or } \mathbb{Q}$

 H_g : standard handlebody of genus g

Definition

A K-homology handlebody of genus g is a compact oriented 3-manifold D such that $H_*(D; \mathbb{K}) \simeq H_*(H_g; \mathbb{K})$.

 $L_D^{\mathbb{K}} := \operatorname{Ker} \left(\operatorname{incl}_* : H_1(\partial D; \mathbb{K}) \longrightarrow H_1(D; \mathbb{K}) \right)$

Definition

A K-LP pair is a pair C = (C', C'') of two K-homology handlebodies such that $\partial C' = \partial C''$ and $L_{C'}^{\mathbb{K}} = L_{C''}^{\mathbb{K}}$.

 $\mathbb{K}:=\mathbb{Z} \text{ or } \mathbb{Q}$

 H_g : standard handlebody of genus g

Definition

A K-homology handlebody of genus g is a compact oriented 3-manifold D such that $H_*(D; \mathbb{K}) \simeq H_*(H_g; \mathbb{K})$.

 $L_D^{\mathbb{K}} := \operatorname{Ker} \left(\operatorname{incl}_* : H_1(\partial D; \mathbb{K}) \longrightarrow H_1(D; \mathbb{K}) \right)$

Definition

A K-LP pair is a pair C = (C', C'') of two K-homology handlebodies such that $\partial C' = \partial C''$ and $L_{C'}^{\mathbb{K}} = L_{C''}^{\mathbb{K}}$.

 $C := (-C') \cup_{\partial} C''$ is a closed oriented 3-manifold.

 $\mathbb{K}:=\mathbb{Z} \text{ or } \mathbb{Q}$

 H_g : standard handlebody of genus g

Definition

A K-homology handlebody of genus g is a compact oriented 3-manifold D such that $H_*(D; \mathbb{K}) \simeq H_*(H_g; \mathbb{K})$.

 $L_D^{\mathbb{K}} := \mathrm{Ker} \left(\mathrm{incl}_* : H_1(\partial D; \mathbb{K}) \longrightarrow H_1(D; \mathbb{K}) \right)$

Definition

A K-LP pair is a pair C = (C', C'') of two K-homology handlebodies such that $\partial C' = \partial C''$ and $L_{C'}^{\mathbb{K}} = L_{C''}^{\mathbb{K}}$.

$$C := (-C') \cup_{\partial} C'' \text{ is a closed oriented 3-manifold.}$$

$$\begin{cases} H^1(C; \mathbb{Q})^{\times 3} & \longrightarrow & \mathbb{Q} \\ (x, y, z) & \longmapsto & \langle x \cup y \cup z, [C] \rangle \end{cases}$$

 $\mathbb{K}:=\mathbb{Z} \text{ or } \mathbb{Q}$

 H_g : standard handlebody of genus g

Definition

A K-homology handlebody of genus g is a compact oriented 3-manifold D such that $H_*(D; \mathbb{K}) \simeq H_*(H_g; \mathbb{K})$.

 $L_D^{\mathbb{K}} := \mathrm{Ker} \left(\mathrm{incl}_* : H_1(\partial D; \mathbb{K}) \longrightarrow H_1(D; \mathbb{K}) \right)$

Definition

A K-LP pair is a pair C = (C', C'') of two K-homology handlebodies such that $\partial C' = \partial C''$ and $L_{C'}^{\mathbb{K}} = L_{C''}^{\mathbb{K}}$.

$$\begin{split} C &:= (-C') \cup_{\partial} C'' \text{ is a closed oriented 3-manifold.} \\ \left\{ \begin{array}{cc} H^1(C;\mathbb{Q})^{\times 3} &\longrightarrow & \mathbb{Q} \\ (x,y,z) &\longmapsto & \left\langle x \cup y \cup z, [C] \right\rangle \end{array} & \rightsquigarrow & \mu(C) \in \Lambda^3 H_1(C;\mathbb{Q}) \end{split} \right. \end{split}$$

$$T := S^{1} \times S^{1} \times S^{1} = [0, 1]^{3} / \sim$$

$$K_{1} := S^{1} \times \{1\} \times \{1\}$$

$$K_{2} := \{1\} \times S^{1} \times \{1\}$$

$$K_{3} := \{1\} \times \{1\} \times S^{1}$$

$$T' := -(\text{reg. neigh. of } (K_{1} \cup K_{2} \cup K_{3}))$$

$$T'' := T \setminus \text{int}(T')$$

$$T := S^{1} \times S^{1} \times S^{1} = [0, 1]^{3} / \sim$$

$$K_{1} := S^{1} \times \{1\} \times \{1\}$$

$$K_{2} := \{1\} \times S^{1} \times \{1\}$$

$$K_{3} := \{1\} \times \{1\} \times S^{1}$$

$$T' := -(\text{reg. neigh. of } (K_{1} \cup K_{2} \cup K_{3}))$$

$$T'' := T \setminus \text{int}(T')$$

$$L_{T''}^{\mathbb{Z}} = \langle [C_{1}], [C_{2}], [C_{3}] \rangle = L_{T'}^{\mathbb{Z}}$$

$$T := S^{1} \times S^{1} \times S^{1} = [0, 1]^{3} / \sim$$

$$K_{1} := S^{1} \times \{1\} \times \{1\}$$

$$K_{2} := \{1\} \times S^{1} \times \{1\}$$

$$K_{3} := \{1\} \times \{1\} \times S^{1}$$

$$T' := -(\text{reg. neigh. of } (K_{1} \cup K_{2} \cup K_{3}))$$

$$T'' := T \setminus \text{int}(T')$$

 $\mathcal{L}^{\mathbb{Z}}_{\mathcal{T}''} = \langle [\mathcal{C}_1], [\mathcal{C}_2], [\mathcal{C}_3] \rangle = \mathcal{L}^{\mathbb{Z}}_{\mathcal{T}'} \quad \Longrightarrow \ \mathcal{T} := (\mathcal{T}', \mathcal{T}'') \text{ is a } \mathbb{Z}\text{-LP pair.}$

$$T := S^{1} \times S^{1} \times S^{1} = [0, 1]^{3} / \sim$$

$$K_{1} := S^{1} \times \{1\} \times \{1\}$$

$$K_{2} := \{1\} \times S^{1} \times \{1\}$$

$$K_{3} := \{1\} \times \{1\} \times S^{1}$$

$$T' := -(\text{reg. neigh. of } (K_{1} \cup K_{2} \cup K_{3}))$$

$$T'' := T \setminus \text{int}(T')$$

$$L_{T''}^{\mathbb{Z}} = \langle [C_{1}], [C_{2}], [C_{3}] \rangle = L_{T'}^{\mathbb{Z}} \implies \mathcal{T} := (T', T'') \text{ is a } \mathbb{Z}\text{-LP pair.}$$

 $\mu(T) = \pm[K_1] \wedge [K_2] \wedge [K_3] \in \Lambda^3 H_1(T; \mathbb{Q})$

$$T := S^{1} \times S^{1} \times S^{1} = [0, 1]^{3} / \sim$$

$$K_{1} := S^{1} \times \{1\} \times \{1\}$$

$$K_{2} := \{1\} \times S^{1} \times \{1\}$$

$$K_{3} := \{1\} \times \{1\} \times S^{1}$$

$$T' := -(\text{reg. neigh. of } (K_{1} \cup K_{2} \cup K_{3}))$$

$$T'' := T \setminus \text{int}(T')$$

$$L_{T''}^{\mathbb{Z}} = \langle [C_{1}], [C_{2}], [C_{3}] \rangle = L_{T'}^{\mathbb{Z}} \implies \mathcal{T} := (T', T'') \text{ is a } \mathbb{Z}\text{-LP pair.}$$

$$\mu(T) = \pm[K_1] \wedge [K_2] \wedge [K_3] \in \Lambda^3 H_1(T; \mathbb{Q})$$

Remark

Any genus 3 Heegaard splitting of the 3-torus is isotopic to this one (Frohman & Hass 1989).

- M: a closed oriented 3-manifold
- $\mathcal{C} = (\mathcal{C}', \mathcal{C}'')$: a \mathbb{K} -LP pair with $\mathcal{C}' \subset M$

- M: a closed oriented 3-manifold
- $\mathcal{C} = (\mathcal{C}', \mathcal{C}'')$: a $\mathbb{K} ext{-LP}$ pair with $\mathcal{C}' \subset \mathcal{M}$

Definition (Lescop)

 $M_{\mathcal{C}} := (M \setminus \operatorname{int}(C')) \cup_{\partial} C''$

M: a closed oriented 3-manifold

$$\mathcal{C} = (\mathcal{C}', \mathcal{C}'')$$
 : a $\mathbb{K} ext{-LP}$ pair with $\mathcal{C}' \subset M$

Definition (Lescop)

 $M_{\mathcal{C}} := (M \setminus \operatorname{int}(C')) \cup_{\partial} C''$ is obtained from M by a \mathbb{K} -LP surgery.

M: a closed oriented 3-manifold

$$\mathcal{C} = (\mathcal{C}', \mathcal{C}'')$$
 : a $\mathbb{K} ext{-LP}$ pair with $\mathcal{C}' \subset M$

Definition (Lescop)

 $M_{\mathcal{C}} := (M \setminus \operatorname{int}(C')) \cup_{\partial} C''$ is obtained from M by a \mathbb{K} -LP surgery.

Example: C = T, the genus 3 Heegaard splitting of the 3-torus

The Z-LP surgery $M \rightsquigarrow M_T$ can be used to show that any trilinear alternate form is \simeq to the $\mu(N)$ of a closed oriented 3-manifold N (Sullivan 1975).

M: a closed oriented 3-manifold

$$\mathcal{C} = (\mathit{C}', \mathit{C}'')$$
 : a $\mathbb{K} ext{-LP}$ pair with $\mathit{C}' \subset \mathit{M}$

Definition (Lescop)

 $M_{\mathcal{C}} := (M \setminus \operatorname{int}(C')) \cup_{\partial} C''$ is obtained from M by a \mathbb{K} -LP surgery.

Example: C = T, the genus 3 Heegaard splitting of the 3-torus

The \mathbb{Z} -LP surgery $M \rightsquigarrow M_{\mathcal{T}}$ can be used to show that any trilinear alternate form is \simeq to the $\mu(N)$ of a closed oriented 3-manifold N (Sullivan 1975).

This surgery is equivalent to Matveev's Borromean surgery and it is the main operation in the calculus of claspers by Goussarov and Habiro.

Question

Given two closed oriented 3-manifolds M' & M'', when are they related by \mathbb{K} -LP surgeries?

Question

Given two closed oriented 3-manifolds M' & M'', when are they related by \mathbb{K} -LP surgeries?

For $\mathbb{K}=\mathbb{Q}?$

Lemma

The manifolds M' & M'' are related by a \mathbb{Q} -LP surgery if, and only if, $H_*(M'; \mathbb{Q}) \simeq H_*(M''; \mathbb{Q})$.

Question

Given two closed oriented 3-manifolds M' & M'', when are they related by \mathbb{K} -LP surgeries?

For $\mathbb{K}=\mathbb{Q}?$

Lemma

The manifolds M' & M'' are related by a \mathbb{Q} -LP surgery if, and only if, $H_*(M'; \mathbb{Q}) \simeq H_*(M''; \mathbb{Q})$.

For $\mathbb{K} = \mathbb{Z}$?

Theorem (Matveev 1987)

The following statements are equivalent:

- M' & M'' are related by a finite sequence of Borromean surgeries;
- $H_*(M';\mathbb{Z}) \simeq H_*(M'';\mathbb{Z})$ and M' & M'' have \simeq linking pairings.

Question

Given two closed oriented 3-manifolds M' & M'', when are they related by \mathbb{K} -LP surgeries?

For $\mathbb{K}=\mathbb{Q}?$

Lemma

The manifolds M' & M'' are related by a \mathbb{Q} -LP surgery if, and only if, $H_*(M'; \mathbb{Q}) \simeq H_*(M''; \mathbb{Q})$.

For $\mathbb{K} = \mathbb{Z}$?

Theorem (Matveev 1987)

The following statements are equivalent:

- M' & M'' are related by a finite sequence of Borromean surgeries;
- $H_*(M';\mathbb{Z}) \simeq H_*(M'';\mathbb{Z})$ and M' & M'' have \simeq linking pairings.

Fact (Habegger 2000)

Any \mathbb{Z} -homology handlebody D such that $\partial D = \partial H_g$ and $L_D^{\mathbb{Z}} = L_{H_g}^{\mathbb{Z}}$, can be obtained from H_g by a finite sequence of Borromean surgeries.

Question

Given two closed oriented 3-manifolds M' & M'', when are they related by \mathbb{K} -LP surgeries?

For $\mathbb{K}=\mathbb{Q}?$

Lemma

The manifolds M' & M'' are related by a \mathbb{Q} -LP surgery if, and only if, $H_*(M'; \mathbb{Q}) \simeq H_*(M''; \mathbb{Q})$.

For $\mathbb{K} = \mathbb{Z}$?

Theorem (Matveev 1987)

The following statements are equivalent:

- M' & M'' are related by a Z-LP surgery;
- M' & M'' are related by a finite sequence of Borromean surgeries;
- $H_*(M';\mathbb{Z}) \simeq H_*(M'';\mathbb{Z})$ and M' & M'' have \simeq linking pairings.

Fact (Habegger 2000)

Any \mathbb{Z} -homology handlebody D such that $\partial D = \partial H_g$ and $L_D^{\mathbb{Z}} = L_{H_g}^{\mathbb{Z}}$, can be obtained from H_g by a finite sequence of Borromean surgeries.

- \mathcal{M} : an equivalence class of $\mathbb{K}\text{-}\mathsf{LP}$ surgery
- A : a \mathbb{K} -module

 $\mathcal M$: an equivalence class of $\mathbb K\text{-}\mathsf{LP}$ surgery

10

A : a \mathbb{K} -module

Definition

An invariant $f : \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$\sum_{I \in \{0,\ldots,d\}} (-1)^{|I|} \cdot f(M_{\mathcal{C}_I}) = 0 \in A$$

for any $M \in \mathcal{M}$, for any \mathbb{K} -LP pairs $\mathcal{C}_0, \ldots, \mathcal{C}_d$ with $C'_0 \sqcup \cdots \sqcup C'_d \subset M$, where $M_{\mathcal{C}_l}$ results from the \mathbb{K} -LP surgeries $M \rightsquigarrow M_{\mathcal{C}_l}$ performed $\forall i \in I$.

- $\mathcal M$: an equivalence class of $\mathbb K\text{-}\mathsf{LP}$ surgery
- A : a \mathbb{K} -module

Definition

An invariant $f : \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$\sum_{I \subset \{0,...,d\}} (-1)^{|I|} \cdot f(M_{\mathcal{C}_I}) = 0 \in A$$

for any $M \in \mathcal{M}$, for any \mathbb{K} -LP pairs $\mathcal{C}_0, \ldots, \mathcal{C}_d$ with $C'_0 \sqcup \cdots \sqcup C'_d \subset M$, where $M_{\mathcal{C}_l}$ results from the \mathbb{K} -LP surgeries $M \rightsquigarrow M_{\mathcal{C}_l}$ performed $\forall i \in I$.

 $\mathbb{K}=\mathbb{Z}:$ usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro

 $\mathcal M$: an equivalence class of $\mathbb K\text{-}\mathsf{LP}$ surgery

10

A : a \mathbb{K} -module

Definition

An invariant $f : \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$\sum_{I \in \{0,...,d\}} (-1)^{|I|} \cdot f(M_{\mathcal{C}_I}) = 0 \in A$$

for any $M \in \mathcal{M}$, for any \mathbb{K} -LP pairs $\mathcal{C}_0, \ldots, \mathcal{C}_d$ with $C'_0 \sqcup \cdots \sqcup C'_d \subset M$, where $M_{\mathcal{C}_l}$ results from the \mathbb{K} -LP surgeries $M \rightsquigarrow M_{\mathcal{C}_l}$ performed $\forall i \in I$.

 $\mathbb{K}=\mathbb{Z}:$ usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro

 $\mathbb{K}=\mathbb{Q}:$ a stronger notion of finite-type invariant

 $\mathcal M$: an equivalence class of $\mathbb K\text{-}\mathsf{LP}$ surgery

10

A : a \mathbb{K} -module

Definition

An invariant $f : \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$\sum_{I \in \{0,...,d\}} (-1)^{|I|} \cdot f(M_{\mathcal{C}_I}) = 0 \in A$$

for any $M \in \mathcal{M}$, for any \mathbb{K} -LP pairs $\mathcal{C}_0, \ldots, \mathcal{C}_d$ with $C'_0 \sqcup \cdots \sqcup C'_d \subset M$, where $M_{\mathcal{C}_l}$ results from the \mathbb{K} -LP surgeries $M \rightsquigarrow M_{\mathcal{C}_l}$ performed $\forall i \in I$.

 $\mathbb{K}=\mathbb{Z}:$ usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro

 $\mathbb{K} = \mathbb{Q}$: a stronger notion of finite-type invariant Example: $\mathbb{KHS} := \{\mathbb{K}\text{-homology spheres}\}$
$\mathcal M$: an equivalence class of $\mathbb K\text{-}\mathsf{LP}$ surgery

10

A : a \mathbb{K} -module

Definition

An invariant $f : \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$\sum_{I \in \{0,\ldots,d\}} (-1)^{|I|} \cdot f(M_{\mathcal{C}_I}) = 0 \in A$$

for any $M \in \mathcal{M}$, for any \mathbb{K} -LP pairs $\mathcal{C}_0, \ldots, \mathcal{C}_d$ with $C'_0 \sqcup \cdots \sqcup C'_d \subset M$, where $M_{\mathcal{C}_l}$ results from the \mathbb{K} -LP surgeries $M \rightsquigarrow M_{\mathcal{C}_l}$ performed $\forall i \in I$.

 $\mathbb{K}=\mathbb{Z}:$ usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro

$\mathbb{K}=\mathbb{Q}:$ a stronger notion of finite-type invariant

Example: $\mathbb{KHS} := \{\mathbb{K}\text{-homology spheres}\}$

• The Casson invariant $\lambda : \mathbb{ZHS} \to \mathbb{Z}$ is a finite-type invariant of degree 2 in the usual sense (Morita 1991).

 $\mathcal M$: an equivalence class of $\mathbb K\text{-}\mathsf{LP}$ surgery

10

A : a \mathbb{K} -module

Definition

An invariant $f : \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$\sum_{I \in \{0,...,d\}} (-1)^{|I|} \cdot f(M_{\mathcal{C}_I}) = 0 \in A$$

for any $M \in \mathcal{M}$, for any \mathbb{K} -LP pairs $\mathcal{C}_0, \ldots, \mathcal{C}_d$ with $C'_0 \sqcup \cdots \sqcup C'_d \subset M$, where $M_{\mathcal{C}_l}$ results from the \mathbb{K} -LP surgeries $M \rightsquigarrow M_{\mathcal{C}_l}$ performed $\forall i \in I$.

 $\mathbb{K}=\mathbb{Z}:$ usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro

$\mathbb{K}=\mathbb{Q}:$ a stronger notion of finite-type invariant

Example: $\mathbb{KHS} := \{\mathbb{K}\text{-homology spheres}\}$

- The Casson invariant $\lambda : \mathbb{ZHS} \to \mathbb{Z}$ is a finite-type invariant of degree 2 in the usual sense (Morita 1991).
- Walker's extension λ_W: QHS → Q of λ is a finite-type invariant of deg. 2 in the strong sense (Lescop 1998).

 $\mathcal M$: an equivalence class of $\mathbb K\text{-}\mathsf{LP}$ surgery

10

A : a \mathbb{K} -module

Definition

An invariant $f : \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$\sum_{I \in \{0,\ldots,d\}} (-1)^{|I|} \cdot f(M_{\mathcal{C}_I}) = 0 \in A$$

for any $M \in \mathcal{M}$, for any \mathbb{K} -LP pairs $\mathcal{C}_0, \ldots, \mathcal{C}_d$ with $C'_0 \sqcup \cdots \sqcup C'_d \subset M$, where $M_{\mathcal{C}_l}$ results from the \mathbb{K} -LP surgeries $M \rightsquigarrow M_{\mathcal{C}_l}$ performed $\forall i \in I$.

 $\mathbb{K} = \mathbb{Z}: \text{ usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro}$ for $\mathcal{M} = \mathbb{QHS}, A = \mathbb{Q} \begin{pmatrix} \uparrow \\ & \end{pmatrix}$ (Moussard 2012)

 $\mathbb{K}=\mathbb{Q}:$ a stronger notion of finite-type invariant

Example: $\mathbb{KHS} := \{\mathbb{K}\text{-homology spheres}\}$

- The Casson invariant $\lambda : \mathbb{ZHS} \to \mathbb{Z}$ is a finite-type invariant of degree 2 in the usual sense (Morita 1991).
- Walker's extension λ_W: QHS → Q of λ is a finite-type invariant of deg. 2 in the strong sense (Lescop 1998).

 $\mathcal M$: an equivalence class of $\mathbb K\text{-}\mathsf{LP}$ surgery

10

A : a \mathbb{K} -module

Definition

An invariant $f : \mathcal{M} \longrightarrow A$ is of finite type of degree at most d if

$$\sum_{I \in \{0,\ldots,d\}} (-1)^{|I|} \cdot f(M_{\mathcal{C}_I}) = 0 \in A$$

for any $M \in \mathcal{M}$, for any \mathbb{K} -LP pairs $\mathcal{C}_0, \ldots, \mathcal{C}_d$ with $C'_0 \sqcup \cdots \sqcup C'_d \subset M$, where $M_{\mathcal{C}_l}$ results from the \mathbb{K} -LP surgeries $M \rightsquigarrow M_{\mathcal{C}_l}$ performed $\forall i \in I$.

 $\mathbb{K} = \mathbb{Z}: \text{ usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro}$ for $\mathcal{M} = \mathbb{QHS}, A = \mathbb{Q}\left(\overset{\text{almost}}{\underset{\text{the same}}{\text{same}}} \right)$ (Moussard 2012)

 $\mathbb{K}=\mathbb{Q}:$ a stronger notion of finite-type invariant

Example: $\mathbb{KHS} := \{\mathbb{K}\text{-homology spheres}\}$

- The Casson invariant $\lambda : \mathbb{ZHS} \to \mathbb{Z}$ is a finite-type invariant of degree 2 in the usual sense (Morita 1991).
- Walker's extension λ_W: QHS → Q of λ is a finite-type invariant of deg. 2 in the strong sense (Lescop 1998).

Lagrangian-preserving surgeries

2 The LMO invariant and its splitting formulas

3 The LMO functor (with Cheptea & Habiro)

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

 $\mathcal{A}(\varnothing) := \frac{\mathbb{Q} \cdot \{\text{trivalent Jacobi diagrams}\}}{\text{AS, IHX}}$

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

$$\mathcal{A}(\varnothing) := \frac{\mathbb{Q} \cdot \{\text{trivalent Jacobi diagrams}\}}{\text{AS, IHX}} \quad \ni \underbrace{(\cdots)}_{(\downarrow)}$$

.....

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

Le, Murakami & Ohtsuki (1998) have constructed an inv. $\mathbb{QHS} \xrightarrow{Z} \mathcal{A}(\emptyset)$ such that

$$Z(M) = \emptyset + \frac{\lambda_{\mathsf{W}}(M)}{4} \cdot \bigoplus + (\mathrm{i\text{-}deg} > 2)$$

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

Le, Murakami & Ohtsuki (1998) have constructed an inv. $\mathbb{QHS} \xrightarrow{Z} \mathcal{A}(\emptyset)$ such that

$$Z(M) = \varnothing + \frac{\lambda_{W}(M)}{4} \cdot \bigcirc + (i - \deg > 2)$$

Remarks

• Z(M) is defined for any closed oriented 3-manifold M.

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

Le, Murakami & Ohtsuki (1998) have constructed an inv. $\mathbb{QHS} \xrightarrow{Z} \mathcal{A}(\emptyset)$ such that

$$Z(M) = \varnothing + \frac{\lambda_{W}(M)}{4} \cdot \bigcirc + (i - \deg > 2)$$

Remarks

- Z(M) is defined for any closed oriented 3-manifold M.
- Kontsevich and Kuperberg & Thurston (1999) have defined another invariant $\mathbb{QHS} \xrightarrow{Z^{KKT}} \mathcal{A}(\emptyset)$ with the same properties

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent and oriented. Its i-degree is the number of its vertices.

Le, Murakami & Ohtsuki (1998) have constructed an inv. $\mathbb{QHS} \xrightarrow{Z} \mathcal{A}(\emptyset)$ such that

$$Z(M) = \varnothing + \frac{\lambda_{W}(M)}{4} \cdot \bigcirc + (i - \deg > 2)$$

Remarks

- Z(M) is defined for any closed oriented 3-manifold M.
- Kontsevich and Kuperberg & Thurston (1999) have defined another invariant $\mathbb{QHS} \xrightarrow{Z^{KKT}} \mathcal{A}(\emptyset)$ with the same properties $\ldots Z \stackrel{?}{=} Z^{KKT}$.

M: a \mathbb{Q} -homology sphere $\stackrel{?}{\longmapsto} Z(M) \in \mathcal{A}(\emptyset)$

M: a \mathbb{Q} -homology sphere $\stackrel{?}{\longmapsto} Z(M) \in \mathcal{A}(\varnothing)$

 $\frac{\{\text{framed links in } S^3 \text{ whose linking matrix is invertible}\}}{\text{Kirby's moves KI \& KII}} \xrightarrow{\text{usual surgery}} \mathbb{QHS}$

M: a \mathbb{Q} -homology sphere $\stackrel{?}{\longmapsto} Z(M) \in \mathcal{A}(\emptyset)$

M: a \mathbb{Q} -homology sphere $\stackrel{?}{\mapsto}$ $Z(M) \in \mathcal{A}(\varnothing)$

Fact (Le, 2×Murakami & Ohtsuki 1995)

There is a normalization \check{Z} of the Kontsevich integral Z which behaves very nicely with respect to the move KII.

(after Bar-Natan, Garoufalidis, Rozansky & Thurston 2002)

$$M$$
: a \mathbb{Q} -homology sphere $\stackrel{?}{\longmapsto} Z(M) \in \mathcal{A}(\varnothing)$

Fact (Le, 2×Murakami & Ohtsuki 1995)

There is a normalization \check{Z} of the Kontsevich integral Z which behaves very nicely with respect to the move KII.

(1) "Symmetrize" $\check{Z}(L) \rightsquigarrow \chi^{-1}\check{Z}(L)$, where χ is the formal PBW iso.

(after Bar-Natan, Garoufalidis, Rozansky & Thurston 2002)

$$M$$
: a \mathbb{Q} -homology sphere $\stackrel{?}{\longmapsto} Z(M) \in \mathcal{A}(\varnothing)$

Fact (Le, 2×Murakami & Ohtsuki 1995)

There is a normalization \check{Z} of the Kontsevich integral Z which behaves very nicely with respect to the move KII.

(1) "Symmetrize" $\check{Z}(L) \rightsquigarrow \chi^{-1}\check{Z}(L)$, where χ is the formal PBW iso. (2) Compute the formal Gaussian integral of $\chi^{-1}\check{Z}(L)$... and get KII.

(after Bar-Natan, Garoufalidis, Rozansky & Thurston 2002)

$$M$$
: a \mathbb{Q} -homology sphere $\stackrel{?}{\mapsto} Z(M) \in \mathcal{A}(\emptyset)$

Fact (Le, 2×Murakami & Ohtsuki 1995)

There is a normalization \check{Z} of the Kontsevich integral Z which behaves very nicely with respect to the move KII.

- (1) "Symmetrize" $\check{Z}(L) \rightsquigarrow \chi^{-1}\check{Z}(L)$, where χ is the formal PBW iso.
- (2) Compute the formal Gaussian integral of $\chi^{-1}\check{Z}(L)$... and get KII.
- (3) Divide by the values of the (±1)-framed trivial knots ... and get KI.

M: a \mathbb{Q} -homology sphere

 $\mathcal{C}=(\mathcal{C}_1,\ldots,\mathcal{C}_r)$: a family of $\mathbb{Q}\text{-}\mathsf{LP}$ pairs such that $C_1'\sqcup\cdots\sqcup C_r'\subset M$

M : a \mathbb{Q} -homology sphere

 $\mathcal{C}=(\mathcal{C}_1,\ldots,\mathcal{C}_r)$: a family of $\mathbb{Q}\text{-}\mathsf{LP}$ pairs such that $\mathcal{C}_1'\sqcup\cdots\sqcup\,\mathcal{C}_r'\subset M$

 $H_{\mathcal{C}} := H_1(C_1; \mathbb{Q}) \oplus \cdots \oplus H_1(C_r; \mathbb{Q})$

M : a \mathbb{Q} -homology sphere

 $\mathcal{C}=(\mathcal{C}_1,\ldots,\mathcal{C}_r)$: a family of $\mathbb{Q}\text{-}\mathsf{LP}$ pairs such that $C_1'\sqcup\cdots\sqcup C_r'\subset M$

$$H_{\mathcal{C}} := H_1(C_1; \mathbb{Q}) \oplus \cdots \oplus H_1(C_r; \mathbb{Q})$$

 $\mu_{\mathcal{C}} := \mu(C_1) \otimes \cdots \otimes \mu(C_r) \in \bigotimes_{i=1}^r \Lambda^3 H_1(C_i; \mathbb{Q}) \subset S^r \Lambda^3 H_{\mathcal{C}}$

$$M := \mathbb{Q}\text{-homology sphere}$$

$$\mathcal{C} = (\mathcal{C}_1, \dots, \mathcal{C}_r) := \text{a family of } \mathbb{Q}\text{-LP pairs such that } C'_1 \sqcup \dots \sqcup C'_r \subset M$$

$$H_{\mathcal{C}} := H_1(\mathcal{C}_1; \mathbb{Q}) \oplus \dots \oplus H_1(\mathcal{C}_r; \mathbb{Q})$$

$$\mu_{\mathcal{C}} := \mu(\mathcal{C}_1) \otimes \dots \otimes \mu(\mathcal{C}_r) \in \bigotimes_{i=1}^r \Lambda^3 H_1(\mathcal{C}_i; \mathbb{Q}) \subset S^r \Lambda^3 H_{\mathcal{C}}$$
Any tensor $(v_{i_1} \land v_{j_1} \land v_{k_1}) \cdots (v_{i_r} \land v_{j_r} \land v_{k_r}) \in S^r \Lambda^3 H_{\mathcal{C}}$ can be depicted as
$$v_{k_1} v_{j_1} v_{j_1} \cdots v_{k_r} v_{j_r} v_{j_r}$$

$$\begin{split} M &: a \mathbb{Q}\text{-homology sphere} \\ \mathcal{C} &= (\mathcal{C}_1, \dots, \mathcal{C}_r) : a \text{ family of } \mathbb{Q}\text{-LP pairs such that } C'_1 \sqcup \dots \sqcup C'_r \subset M \\ \mathcal{H}_{\mathcal{C}} &:= \mathcal{H}_1(\mathcal{C}_1; \mathbb{Q}) \oplus \dots \oplus \mathcal{H}_1(\mathcal{C}_r; \mathbb{Q}) \\ \mu_{\mathcal{C}} &:= \mu(\mathcal{C}_1) \otimes \dots \otimes \mu(\mathcal{C}_r) \in \bigotimes_{i=1}^r \Lambda^3 \mathcal{H}_1(\mathcal{C}_i; \mathbb{Q}) \subset S^r \Lambda^3 \mathcal{H}_{\mathcal{C}} \\ \text{Any tensor } (v_{i_1} \land v_{j_1} \land v_{k_1}) \cdots (v_{i_r} \land v_{j_r} \land v_{k_r}) \in S^r \Lambda^3 \mathcal{H}_{\mathcal{C}} \text{ can be depicted as} \\ & \bigvee_{k_1} \bigvee_{i_1} \bigvee_{i_1} \cdots \bigvee_{k_r} \bigvee_{i_r} \bigvee_{i_r} \\ & \left\{ \begin{array}{c} \mathcal{H}_1(\mathcal{C}'_i; \mathbb{Q}) \times \mathcal{H}_1(\mathcal{C}'_j; \mathbb{Q}) & \xrightarrow{\ell_{i,j}} & \mathbb{Q} \\ ([\mathcal{K}], [\mathcal{L}]) & \longmapsto & \mathrm{Lk}_{\mathcal{M}}(\mathcal{K}, \mathcal{L}) \end{array} \right. \forall i \neq j \\ \\ \mathcal{\ell}_{\mathcal{C}} &:= \frac{1}{2} \sum_{i \neq j} \ell_{i,j} : \mathcal{H}_{\mathcal{C}} \times \mathcal{H}_{\mathcal{C}} \longrightarrow \mathbb{Q} \text{ is a symmetric bilinear form.} \end{split}$$

$$M : a \mathbb{Q}\text{-homology sphere}$$

$$\mathcal{C} = (\mathcal{C}_1, \dots, \mathcal{C}_r) : a \text{ family of } \mathbb{Q}\text{-LP pairs such that } C'_1 \sqcup \dots \sqcup C'_r \subset M$$

$$H_{\mathcal{C}} := H_1(C_1; \mathbb{Q}) \oplus \dots \oplus H_1(C_r; \mathbb{Q})$$

$$\mu_{\mathcal{C}} := \mu(C_1) \otimes \dots \otimes \mu(C_r) \in \bigotimes_{i=1}^r \Lambda^3 H_1(C_i; \mathbb{Q}) \subset S^r \Lambda^3 H_{\mathcal{C}}$$
Any tensor $(v_{i_1} \land v_{j_1} \land v_{k_1}) \cdots (v_{i_r} \land v_{j_r} \land v_{k_r}) \in S^r \Lambda^3 H_{\mathcal{C}}$ can be depicted as
$$V_{k_1} V_{j_1} V_{j_1} \cdots V_{k_r} V_{j_r} V_{j_r}$$

$$\begin{cases} H_1(C'_i; \mathbb{Q}) \times H_1(C'_j; \mathbb{Q}) & \stackrel{\ell_{i,j}}{\longrightarrow} & \mathbb{Q} \\ ([K]], [L]) & \longmapsto & \operatorname{Lk}_M(K, L) \end{cases} \forall i \neq j$$

$$\ell_{\mathcal{C}} := \frac{1}{2} \sum_{i \neq j} \ell_{i,j} : H_{\mathcal{C}} \times H_{\mathcal{C}} \longrightarrow \mathbb{Q} \text{ is a symmetric bilinear form.}$$

Theorem

$$\sum_{C \in \{1,...,r\}} (-1)^{|I|} \cdot Z(M_{\mathcal{C}_I}) = \begin{pmatrix} \text{sum of all ways of identifying} \\ \text{pairwisely all legs of } \mu_{\mathcal{C}} \\ \text{by means of the pairing } \ell_{\mathcal{C}} \end{pmatrix} + (i \cdot \deg > r).$$

Theorem

$$\sum_{\subset \{1,...,r\}} (-1)^{|I|} \cdot Z(M_{C_I}) = 1$$

$$\begin{array}{l} \text{sum of all ways of identifying} \\ \text{pairwisely all legs of } \mu_{\mathcal{C}} \\ \text{by means of the pairing } \ell_{\mathcal{C}} \end{array} + (\mathrm{i-deg} > r).$$

Theorem

$$\sum_{I \subset \{1,...,r\}} (-1)^{|I|} \cdot Z(M_{\mathcal{C}_I}) = \begin{pmatrix} \text{sum of all ways of identifying} \\ \text{pairwisely all legs of } \mu_{\mathcal{C}} \\ \text{by means of the pairing } \ell_{\mathcal{C}} \end{pmatrix} + (\text{i-deg} > r).$$

(1) If r = 2, this is Lescop's formula (1998) for the Casson–Walker inv.

Theorem

$$\sum_{I \subset \{1,...,r\}} (-1)^{|I|} \cdot Z(M_{\mathcal{C}_I}) = \begin{pmatrix} \text{sum of all ways of identifying} \\ \text{pairwisely all legs of } \mu_{\mathcal{C}} \\ \text{by means of the pairing } \ell_{\mathcal{C}} \end{pmatrix} + (\text{i-deg} > r).$$

(1) If r = 2, this is Lescop's formula (1998) for the Casson–Walker inv.

which generalizes Morita's formula (1991) for the Casson invariant.

Theorem

$$\sum_{I \subset \{1,...,r\}} (-1)^{|I|} \cdot Z(M_{\mathcal{C}_I}) = \begin{pmatrix} \text{sum of all ways of identifying} \\ \text{pairwisely all legs of } \mu_{\mathcal{C}} \\ \text{by means of the pairing } \ell_{\mathcal{C}} \end{pmatrix} + (\text{i-deg} > r).$$

(1) If r = 2, this is Lescop's formula (1998) for the Casson–Walker inv.

which generalizes Morita's formula (1991) for the Casson invariant.

(2) This is the exact analogue of Lescop's result (2004) for Z^{KKT} .

Theorem

$$\sum_{I \subset \{1,...,r\}} (-1)^{|I|} \cdot Z(M_{\mathcal{C}_I}) = \begin{pmatrix} \text{sum of all ways of identifying} \\ \text{pairwisely all legs of } \mu_{\mathcal{C}} \\ \text{by means of the pairing } \ell_{\mathcal{C}} \end{pmatrix} + (\text{i-deg} > r).$$

(1) If r = 2, this is Lescop's formula (1998) for the Casson–Walker inv.

which generalizes Morita's formula (1991) for the Casson invariant.

- (2) This is the exact analogue of Lescop's result (2004) for Z^{KKT} .
- (3) If C_1, \ldots, C_r are copies of \mathcal{T} , this amounts to the universality of LMO among finite-type invariants in the usual sense (Le 1997, Habiro 2000).

Theorem

$$\sum_{I \subset \{1,...,r\}} (-1)^{|I|} \cdot Z(M_{\mathcal{C}_I}) = \begin{pmatrix} \text{sum of all ways of identifying} \\ \text{pairwisely all legs of } \mu_{\mathcal{C}} \\ \text{by means of the pairing } \ell_{\mathcal{C}} \end{pmatrix} + (\text{i-deg} > r).$$

(1) If r = 2, this is Lescop's formula (1998) for the Casson–Walker inv.

which generalizes Morita's formula (1991) for the Casson invariant.

- (2) This is the exact analogue of Lescop's result (2004) for Z^{KKT} .
- (3) If C₁,..., C_r are copies of T, this amounts to the universality of LMO among finite-type invariants in the usual sense (Le 1997, Habiro 2000).
- (4) If C₁,..., C_r are Z-LP pairs, this can be deduced from (3) by doing calculus of claspers (Auclair & Lescop 2005).

Lagrangian-preserving surgeries

2 The LMO invariant and its splitting formulas

3 The LMO functor (with Cheptea & Habiro)

$\begin{array}{l} S: {\rm finite \ set} \\ \mathcal{A}(S) := \mathbb{Q} \cdot \left\{ \begin{array}{c} {\rm finite \ graphs \ whose \ vertices \ are \ either} \\ {\rm trivalent \ \& \ oriented, \ or, \ univalent \ \& \ colored \ by \ S} \end{array} \right\} \Big/ {\rm AS, \ IHX} \end{array}$

$$\begin{split} S &: \text{finite set} \\ \mathcal{A}(S) &:= \mathbb{Q} \cdot \left\{ \begin{array}{c} \text{finite graphs whose vertices are either} \\ \text{trivalent \& oriented, or, univalent \& colored by } S \end{array} \right\} \Big/ \text{AS, IHX} \end{split}$$

- $$\begin{split} S &: \text{finite set} \\ \mathcal{A}(S) &:= \mathbb{Q} \cdot \left\{ \begin{array}{c} \text{finite graphs whose vertices are either} \\ \text{trivalent \& oriented, or, univalent \& colored by } S \end{array} \right\} \Big/ \text{AS, IHX} \end{split}$$
- Let ${}^{ts}\!\mathcal{A}$ be the monoidal category of top-substantial Jacobi diagrams:
 - objects: integers $g \ge 0$,

$$\begin{split} S &: \text{finite set} \\ \mathcal{A}(S) &:= \mathbb{Q} \cdot \left\{ \begin{array}{c} \text{finite graphs whose vertices are either} \\ \text{trivalent \& oriented, or, univalent \& colored by } S \end{array} \right\} \Big/ \text{AS, IHX} \end{split}$$

- objects: integers $g \ge 0$,
- morph. $g \to f$: elts of $\mathcal{A}(\{1^+, \dots, g^+, 1^-, \dots, f^-\})$ without $\stackrel{i^+, \dots, j^+}{,}$

$$\begin{split} S &: \text{finite set} \\ \mathcal{A}(S) &:= \mathbb{Q} \cdot \left\{ \begin{array}{c} \text{finite graphs whose vertices are either} \\ \text{trivalent \& oriented, or, univalent \& colored by } S \end{array} \right\} \Big/ \text{AS, IHX} \end{split}$$

- objects: integers $g \ge 0$,
- morph. $g \to f$: elts of $\mathcal{A}(\{1^+, \dots, g^+, 1^-, \dots, f^-\})$ without $\stackrel{i^+, \dots, j^+}{,}$

$$\begin{split} S &: \text{finite set} \\ \mathcal{A}(S) &:= \mathbb{Q} \cdot \left\{ \begin{array}{c} \text{finite graphs whose vertices are either} \\ \text{trivalent \& oriented, or, univalent \& colored by } S \end{array} \right\} \Big/ \text{AS, IHX} \end{split}$$

- objects: integers $g \ge 0$,
- morph. $g \to f$: elts of $\mathcal{A}(\{1^+, \dots, g^+, 1^-, \dots, f^-\})$ without $\stackrel{i^+, \dots, j^+}{,}$

$$\begin{split} S &: \text{finite set} \\ \mathcal{A}(S) &:= \mathbb{Q} \cdot \left\{ \begin{array}{c} \text{finite graphs whose vertices are either} \\ \text{trivalent \& oriented, or, univalent \& colored by } S \end{array} \right\} \Big/ \text{AS, IHX} \end{split}$$

Let ${}^{ts}\!\mathcal{A}$ be the monoidal category of top-substantial Jacobi diagrams:

- objects: integers $g \ge 0$,
- morph. $g \to f$: elts of $\mathcal{A}(\{1^+, \dots, g^+, 1^-, \dots, f^-\})$ without $\stackrel{i^+, \dots, j^+}{,}$
- composition: for any graphs $D \in {}^{ts}\!\mathcal{A}(g, f)$ and $E \in {}^{ts}\!\mathcal{A}(h, g)$,

 $D \circ E := \left(\begin{array}{c} \text{sum of all ways of gluing all } i^+ \text{-colored vertices of } D \\ \text{with all } i^- \text{-colored vertices of } E, \text{ for every } i = 1, \dots, g \end{array} \right),$

$\begin{array}{l} S : {\rm finite \ set} \\ \mathcal{A}(S) := \mathbb{Q} \cdot \left\{ \begin{array}{c} {\rm finite \ graphs \ whose \ vertices \ are \ either} \\ {\rm trivalent \ \& \ oriented, \ or, \ univalent \ \& \ colored \ by \ S} \end{array} \right\} \Big/ {\rm AS, \ IHX} \end{array}$

Let ${}^{ts}\!\mathcal{A}$ be the monoidal category of top-substantial Jacobi diagrams:

- objects: integers $g \ge 0$,
- morph. $g \to f$: elts of $\mathcal{A}(\{1^+, \dots, g^+, 1^-, \dots, f^-\})$ without $\stackrel{i^+, \dots, j^+}{,}$
- composition: for any graphs $D \in {}^{ts}\!\mathcal{A}(g, f)$ and $E \in {}^{ts}\!\mathcal{A}(h, g)$,

 $D \circ E := \left(\begin{array}{c} \text{sum of all ways of gluing all } i^+ \text{-colored vertices of } D \\ \text{with all } i^- \text{-colored vertices of } E, \text{ for every } i = 1, \dots, g \end{array} \right),$

• tensor product: $g \otimes f := g + f$ and $D \otimes E := D \sqcup E$.

Let Cob be the monoidal category of 3-dim. cobordisms (Crane & Yetter 1999):

Let Cob be the monoidal category of 3-dim. cobordisms (Crane & Yetter 1999):

• objects: integers $g \ge 0$,

Let Cob be the monoidal category of 3-dim. cobordisms (Crane & Yetter 1999):

- objects: integers $g \ge 0$,
- morphisms $g_+
 ightarrow g_-$: cobordisms from F_{g_+} to F_{g_-} ,

Any
$$M \in Cob(g_+, g_-)$$
 comes
with $m_{\pm} : \pm F_{g_{\pm}} \hookrightarrow M$.

Let Cob be the monoidal category of 3-dim. cobordisms (Crane & Yetter 1999):

- objects: integers $g \ge 0$,
- morphisms $g_+
 ightarrow g_-$: cobordisms from F_{g_+} to F_{g_-} ,

• composition:
$$M \circ N := \frac{N}{M}$$
,

Any $M \in Cob(g_+, g_-)$ comes with $m_{\pm} : \pm F_{g_{\pm}} \hookrightarrow M$.

$$F_g$$

Let Cob be the monoidal category of 3-dim. cobordisms (Crane & Yetter 1999):

- objects: integers $g \ge 0$,
- ullet morphisms $g_+
 ightarrow g_-$: cobordisms from F_{g_+} to F_{g_-} ,
- composition: $M \circ N := \frac{N}{M}$,
- tensor product: $g \otimes f := g + f$ and $M \otimes N := M N$.

Any $M \in Cob(g_+, g_-)$ comes with $m_{\pm} : \pm F_{g_{\pm}} \hookrightarrow M$.

Let Cob be the monoidal category of 3-dim. cobordisms (Crane & Yetter 1999):

- objects: integers $g \ge 0$,
- ullet morphisms $g_+
 ightarrow g_-$: cobordisms from F_{g_+} to F_{g_-} ,

• composition:
$$M \circ N := \frac{N}{M}$$
,

• tensor product: $g \otimes f := g + f$ and $M \otimes N := M N$.

Any
$$M \in Cob(g_+, g_-)$$
 comes
with $m_{\pm} : \pm F_{g_{\pm}} \longrightarrow M$.
 $f_g :=$ subspace of $H_1(F_g; \mathbb{Q})$ spanned by $[\alpha_1], \dots, [\alpha_g]$

Let Cob be the monoidal category of 3-dim. cobordisms (Crane & Yetter 1999):

- objects: integers $g \ge 0$,
- ullet morphisms $g_+
 ightarrow g_-$: cobordisms from F_{g_+} to F_{g_-} ,
- composition: $M \circ N := \frac{N}{M}$,

Any $M \in Cob(g_+, g_-)$ comes with $m_{\pm} : \pm F_{g_+} \hookrightarrow M$.

• tensor product: $g \otimes f := g + f$ and $M \otimes N := M N$.

$$A^{\mathbb{Q}}_{\mathfrak{s}} :=$$
 subspace of $H_1(F_{\mathfrak{s}}; \mathbb{Q})$ spanned by $[\alpha_1], \ldots, [\alpha_{\mathfrak{s}}]$

Definition

A cobordism $M \in \mathcal{C}ob(g_+,g_-)$ is Q-Lagrangian if

- $\ \, {\mathfrak S} \ \, m_{+,*}(A^{\mathbb Q}_{g_+}) \subset m_{-,*}(A^{\mathbb Q}_{g_-}) \ \, \text{in} \ \, H_1(M;\mathbb Q).$

Let Cob be the monoidal category of 3-dim. cobordisms (Crane & Yetter 1999):

- objects: integers $g \ge 0$,
- ullet morphisms $g_+
 ightarrow g_-$: cobordisms from F_{g_+} to F_{g_-} ,
- composition: $M \circ N := \frac{N}{M}$,

Any $M \in Cob(g_+, g_-)$ comes

• tensor product: $g \otimes f := g + f$ and $M \otimes N := M N$.

with
$$m_{\pm}:\pm F_{g_{\pm}} \hookrightarrow M$$
.

 $A_g^{\mathbb{Q}} :=$ subspace of $H_1(F_g; \mathbb{Q})$ spanned by $[\alpha_1], \ldots, [\alpha_g]$

Definition

A cobordism $M \in \mathcal{C}ob(g_+,g_-)$ is Q-Lagrangian if

•
$$H_1(M; \mathbb{Q}) = m_{-,*}(A_{g_-}^{\mathbb{Q}}) + m_{+,*}(H_1(F_{g_+}; \mathbb{Q})),$$

\mathbb{QLCob} := monoidal subcategory of Cob consisting of Lagrangian cobordisms

 $\mathbb{QLCob}(0,0) = \{\mathbb{Q}\text{-homology cubes}\}$

$$\mathbb{QLCob}(0,0) = \{\mathbb{Q}\text{-homology cubes}\} \xrightarrow[\sim]{} \mathbb{QLCob}(0,0) = \{\mathbb{Q}\text{-homology spheres}\}$$

$$\begin{array}{l} \mathbb{QLCob}(0,0) = \{\mathbb{Q}\text{-homology cubes}\} & \xrightarrow{\text{gluing a 3-ball}} & \mathbb{Q}\text{-homology spheres}\} \\ \xrightarrow{ts} \mathcal{A}(0,0) = \mathcal{A}(\varnothing) \end{array}$$

$$\begin{array}{l} \mathbb{QLCob}(0,0) = \{\mathbb{Q}\text{-homology cubes}\} & \xrightarrow{\text{gluing a 3-ball}} & \mathbb{Q}\text{-homology spheres}\} \\ \xrightarrow{t^{s}}\mathcal{A}(0,0) = \mathcal{A}(\varnothing) \end{array}$$

Theorem (with Cheptea & Habiro 2008)

There is a tensor-preserving functor \widetilde{Z} extending the LMO invariant Z:

$$\mathbb{QHS} \xrightarrow{Z} \mathcal{A}(\emptyset)$$

$$\int_{\mathbb{QLC}ob} - --- \to t^{s}\mathcal{A}$$

$$\begin{split} \mathbb{Q}\mathcal{LCob}(0,0) &= \{\mathbb{Q}\text{-homology cubes}\} \xrightarrow{\qquad \text{gluing a 3-ball}} \{\mathbb{Q}\text{-homology spheres}\} \\ \xrightarrow{\ \ z \to } \{\mathbb{Q}\text{-homology spheres}\} \end{split}$$

Theorem (with Cheptea & Habiro 2008)

There is a tensor-preserving functor \tilde{Z} extending the LMO invariant Z:

A *q*-structure on a cobordism $M \in Cob(g_+, g_-)$ is a parenthesizing of the g_+ "top" handles and a parenthesizing of the g_- "bottom" handles.

$$\begin{array}{l} \mathbb{QLCob}(0,0) = \{\mathbb{Q}\text{-homology cubes}\} & \xrightarrow{\text{gluing a 3-ball}} & \mathbb{Q}\text{-homology spheres}\} \\ \xrightarrow{ts} \mathcal{A}(0,0) = \mathcal{A}(\varnothing) \end{array}$$

Theorem (with Cheptea & Habiro 2008)

There is a tensor-preserving functor \widetilde{Z} extending the LMO invariant Z:

 $\mathbb{QHS} \xrightarrow{Z} \mathcal{A}(\emptyset)$ $\mathbb{QLC}ob_q \xrightarrow{--- \to t_s} t_s$ A *q*-structure on a cobordism $M \in Cob(g_+, g_-)$ is a parenthesizing of the g_+ "top" handles and a parenthesizing of the g_- "bottom" handles.

Remark

Murakami & Ohtsuki (1997) and Cheptea & Le (2007) have constructed other functorial extensions of the LMO invariant.

- (1) Glue 2-handles along $m_+(\beta_1), \ldots, m_+(\beta_g)$,
- (2) glue 2-handles along $m_{-}(\alpha_{1}), \ldots, m_{-}(\alpha_{f})$:

- (1) Glue 2-handles along $m_+(\beta_1), \ldots, m_+(\beta_g)$,
- (2) glue 2-handles along $m_{-}(\alpha_{1}), \ldots, m_{-}(\alpha_{f})$:
- \rightsquigarrow a \mathbb{Q} -homology cube B

- (1) Glue 2-handles along $m_+(\beta_1), \ldots, m_+(\beta_g)$,
- (2) glue 2-handles along $m_{-}(\alpha_{1}), \ldots, m_{-}(\alpha_{f})$:
- \rightsquigarrow a Q-homology cube B ... with a g-component "top" tangle γ^+ ... and an f-component "bottom" tangle $\gamma-$.

Let $M \in \mathbb{QLCob}(g, f)$. (1) Glue 2-handles along $m_+(\beta_1), \ldots, m_+(\beta_g)$, (2) glue 2-handles along $m_{-}(\alpha_{1}), \ldots, m_{-}(\alpha_{f})$: m_+ \rightsquigarrow a Q-homology cube B ... with a g-component "top" tangle γ^+ ... and an *f*-component "bottom" tangle γ -. М (3) Compute the Kontsevich–LMO invariant of (B, γ) , (4) and "symmetrize" this: m_{-} $\rightsquigarrow Z(M) := \chi^{-1}Z(B,\gamma) \in \mathcal{A}(\{1^+,\ldots,g^+,1^-,\ldots,f^-\}).$

Ff

Lagrangian-preserving surgeries

2 The LMO invariant and its splitting formulas

3 The LMO functor (with Cheptea & Habiro)

The i-degree 1 part of \widetilde{Z}

 $\mathcal{C} = (\mathcal{C}', \mathcal{C}'')$: a \mathbb{Q} -LP pair of genus g

The i-degree 1 part of \widetilde{Z}

 $\mathcal{C} = (\mathcal{C}', \mathcal{C}'')$: a \mathbb{Q} -LP pair of genus g

 $\mu(C) \in \Lambda^3 H_1(C; \mathbb{Q})$: triple-cup product form of $C = (-C') \cup_{\partial} C''$
$\mathcal{C} = (\mathcal{C}', \mathcal{C}'')$: a \mathbb{Q} -LP pair of genus g

 $\mu(C) \in \Lambda^{3}H_{1}(C;\mathbb{Q})$: triple-cup product form of $C = (-C') \cup_{\partial} C''$

 \exists a parameterization c' = c'' of $\partial C' = \partial C''$ such that

 $(C',c')\in \mathbb{QLCob}(g,0) \quad ext{and} \quad (C'',c'')\in \mathbb{QLCob}(g,0).$

$$\begin{split} \mathcal{C} &= (C', C'') : \text{ a } \mathbb{Q}\text{-LP pair of genus } g \\ \mu(C) &\in \Lambda^3 H_1(C; \mathbb{Q}) : \text{ triple-cup product form of } C = (-C') \cup_{\partial} C'' \\ \exists \text{ a parameterization } c' &= c'' \text{ of } \partial C' &= \partial C'' \text{ such that} \\ (C', c') &\in \mathbb{Q}\mathcal{LCob}(g, 0) \text{ and } (C'', c'') \in \mathbb{Q}\mathcal{LCob}(g, 0). \end{split}$$

Lemma

Via the isomorphism $\Lambda^{3}H_{1}(C;\mathbb{Q}) \xrightarrow{\simeq} \mathcal{A}_{1}^{c}(\{1^{+},\ldots,g^{+}\}), \quad [\beta_{i}] \wedge [\beta_{j}] \wedge [\beta_{k}] \longmapsto \overset{k^{+}}{\underset{\sim}{\longrightarrow}} \overset{j^{+}}{\underset{\sim}{\longrightarrow}} \overset{i^{+}}{\underset{\sim}{\longrightarrow}} \overset{i^{+}}{\underset{\sim}{\longrightarrow}} \overset{j^{+}}{\underset{\sim}{\longrightarrow}} \overset{i^{+}}{\underset{\sim}{\longrightarrow}} \overset{j^{+}}{\underset{\sim}{\longrightarrow}} \overset{j^{+}}{\underset$

$$\begin{split} \mathcal{C} &= (C', C''): \text{ a } \mathbb{Q}\text{-}\mathsf{LP} \text{ pair of genus } g \\ \mu(C) &\in \Lambda^3 \mathcal{H}_1(C; \mathbb{Q}): \text{ triple-cup product form of } C = (-C') \cup_\partial C'' \\ \exists \text{ a parameterization } c' &= c'' \text{ of } \partial C' &= \partial C'' \text{ such that} \\ (C', c') &\in \mathbb{Q}\mathcal{LC}ob(g, 0) \text{ and } (C'', c'') \in \mathbb{Q}\mathcal{LC}ob(g, 0). \end{split}$$

Lemma

Via the isomorphism $\Lambda^{3}H_{1}(C; \mathbb{Q}) \xrightarrow{\simeq} \mathcal{A}_{1}^{c}(\{1^{+}, \dots, g^{+}\}), \quad [\beta_{i}] \wedge [\beta_{j}] \wedge [\beta_{k}] \longmapsto \overset{k^{+} j^{+} i^{+}}{\swarrow} \overset{i^{+}}{\downarrow} \overset$

Sketch of the proof.

 (B,γ) : "top" tangle in a \mathbb{Q} -homology cube corresp. to C'

$$\begin{split} \mathcal{C} &= (C', C''): \text{ a } \mathbb{Q}\text{-}\mathsf{LP} \text{ pair of genus } g \\ \mu(C) &\in \Lambda^3 H_1(C; \mathbb{Q}): \text{ triple-cup product form of } C = (-C') \cup_\partial C'' \\ \exists \text{ a parameterization } c' &= c'' \text{ of } \partial C' &= \partial C'' \text{ such that} \\ (C', c') &\in \mathbb{Q}\mathcal{LC}ob(g, 0) \text{ and } (C'', c'') \in \mathbb{Q}\mathcal{LC}ob(g, 0). \end{split}$$

Lemma

Via the isomorphism $\Lambda^{3}H_{1}(C; \mathbb{Q}) \xrightarrow{\simeq} \mathcal{A}_{1}^{c}(\{1^{+}, \dots, g^{+}\}), \quad [\beta_{i}] \wedge [\beta_{j}] \wedge [\beta_{k}] \longmapsto \overset{k^{+} j^{+} i^{+}}{\swarrow} \overset{i^{+}}{\longrightarrow} \overset$

Sketch of the proof.

 (B, γ) : "top" tangle in a Q-homology cube corresp. to $C'(\hat{B}, \hat{\gamma})$: "plat" closure of (B, γ)

$$\begin{split} \mathcal{C} &= (C', C'') : \text{ a } \mathbb{Q}\text{-}\mathsf{LP} \text{ pair of genus } g \\ \mu(C) &\in \Lambda^3 \mathcal{H}_1(C; \mathbb{Q}) : \text{ triple-cup product form of } C = (-C') \cup_\partial C'' \\ \exists \text{ a parameterization } c' &= c'' \text{ of } \partial C' &= \partial C'' \text{ such that} \\ (C', c') &\in \mathbb{Q}\mathcal{LC}ob(g, 0) \text{ and } (C'', c'') \in \mathbb{Q}\mathcal{LC}ob(g, 0). \end{split}$$

Lemma

Via the isomorphism $\Lambda^{3}H_{1}(C; \mathbb{Q}) \xrightarrow{\simeq} \mathcal{A}_{1}^{c}(\{1^{+}, \dots, g^{+}\}), \quad [\beta_{i}] \wedge [\beta_{j}] \wedge [\beta_{k}] \longmapsto \overset{k^{+} j^{+} i^{+}}{\swarrow} \overset{i^{+}}{\swarrow} \overset{i^{+}}{\longrightarrow} \mu(C) \text{ corresponds to } \widetilde{Z}_{1}(C', c') - \widetilde{Z}_{1}(C'', c'').$

Sketch of the proof.

 (B, γ) : "top" tangle in a \mathbb{Q} -homology cube corresp. to $C'(\hat{B}, \hat{\gamma})$: "plat" closure of (B, γ)

\cap			
\Box		U	
$\hat{\gamma}_1$	Â	$\hat{\gamma}_{g}$	
		_	')

$$\widetilde{\mathsf{Z}}_1(\mathsf{C}', \mathsf{c}') =$$
 "Y-part" of $\chi^{-1} \mathsf{Z}(\mathsf{B}, \gamma)$

$$\begin{split} \mathcal{C} &= (C', C'') : \text{ a } \mathbb{Q}\text{-}\mathsf{LP} \text{ pair of genus } g \\ \mu(C) &\in \Lambda^3 \mathcal{H}_1(C; \mathbb{Q}) : \text{ triple-cup product form of } C = (-C') \cup_\partial C'' \\ \exists \text{ a parameterization } c' &= c'' \text{ of } \partial C' &= \partial C'' \text{ such that} \\ (C', c') &\in \mathbb{Q}\mathcal{LC}ob(g, 0) \text{ and } (C'', c'') \in \mathbb{Q}\mathcal{LC}ob(g, 0). \end{split}$$

Lemma

Via the isomorphism $\Lambda^{3}H_{1}(C; \mathbb{Q}) \xrightarrow{\simeq} \mathcal{A}_{1}^{c}(\{1^{+}, \dots, g^{+}\}), \quad [\beta_{i}] \wedge [\beta_{j}] \wedge [\beta_{k}] \longmapsto \overset{k^{+} j^{+}}{\swarrow} \overset{i^{+}}{\downarrow} \overset{i^{+}$

Sketch of the proof.

 (B,γ) : "top" tangle in a Q-homology cube corresp. to $C'(\hat{B},\hat{\gamma})$: "plat" closure of (B,γ)

$$\widetilde{Z}_1(C',c') =$$
 "Y-part" of $\chi^{-1}Z(B,\gamma) = -\sum_{1 \le i < j < k \le g} \overline{\mu}_{ijk}(\widehat{\gamma}) \cdot \overset{k^+ \ j^+ \ i}{\searrow}$

where $\overline{\mu}_{ijk}(\hat{\gamma})$ is the rational version of Milnor's triple linking numbers.

$$\begin{split} \mathcal{C} &= (C', C''): \text{ a } \mathbb{Q}\text{-}\mathsf{LP} \text{ pair of genus } g \\ \mu(C) &\in \Lambda^3 H_1(C; \mathbb{Q}): \text{ triple-cup product form of } C = (-C') \cup_\partial C'' \\ \exists \text{ a parameterization } c' &= c'' \text{ of } \partial C' &= \partial C'' \text{ such that} \\ (C', c') &\in \mathbb{Q}\mathcal{LC}ob(g, 0) \text{ and } (C'', c'') \in \mathbb{Q}\mathcal{LC}ob(g, 0). \end{split}$$

Lemma

Via the isomorphism $\Lambda^{3}H_{1}(C; \mathbb{Q}) \xrightarrow{\simeq} \mathcal{A}_{1}^{c}(\{1^{+}, \dots, g^{+}\}), \quad [\beta_{i}] \wedge [\beta_{j}] \wedge [\beta_{k}] \longmapsto \overset{k^{+} j^{+}}{\swarrow} \overset{i^{+}}{\downarrow} \overset{i^{+}$

Sketch of the proof.

 (B,γ) : "top" tangle in a Q-homology cube corresp. to $C'(\hat{B},\hat{\gamma})$: "plat" closure of (B,γ)

$$\widetilde{Z}_1(C',c') = \text{``Y-part'' of } \chi^{-1}Z(B,\gamma) = -\sum_{1 \le i < j < k \le g} \overline{\mu}_{ijk}(\widehat{\gamma}) \cdot \overset{k^+ \ j^- \ i}{\searrow} \cdot$$

where $\overline{\mu}_{ijk}(\hat{\gamma})$ is the rational version of Milnor's triple linking numbers.

M: a \mathbb{Q} -homology sphere

 $\mathcal{C}=(\mathcal{C}_1,\ldots,\mathcal{C}_r)$: a family of $\mathbb{Q}\text{-}\mathsf{LP}$ pairs such that $\mathcal{C}_1'\sqcup\cdots\sqcup \mathcal{C}_r'\subset M$

M : a \mathbb{Q} -homology sphere

 $\mathcal{C}=(\mathcal{C}_1,\ldots,\mathcal{C}_r)$: a family of $\mathbb{Q}\text{-}\mathsf{LP}$ pairs such that $C_1'\sqcup\cdots\sqcup C_r'\subset M$

 \exists a parameterization c'_i of $\partial C'_i$ such that $(C'_i, c'_i) \in \mathbb{QLCob}(g_i, 0)$

M : a \mathbb{Q} -homology sphere

 $\mathcal{C}=(\mathcal{C}_1,\ldots,\mathcal{C}_r)$: a family of $\mathbb{Q}\text{-}\mathsf{LP}$ pairs such that $C_1'\sqcup\cdots\sqcup C_r'\subset M$

 \exists a parameterization c'_i of $\partial C'_i$ such that $(C'_i, c'_i) \in \mathbb{QLCob}(g_i, 0)$

M : a \mathbb{Q} -homology sphere

 $\mathcal{C}=(\mathcal{C}_1,\ldots,\mathcal{C}_r)$: a family of $\mathbb{Q}\text{-}\mathsf{LP}$ pairs such that $\mathit{C}_1'\sqcup\cdots\sqcup\mathit{C}_r'\subset \mathit{M}$

 \exists a parameterization c'_i of $\partial C'_i$ such that $(C'_i, c'_i) \in \mathbb{QLCob}(g_i, 0)$

 $M^+\!:=\!(ext{exterior of } C_1'\cup\cdots\cup C_r')\in \mathbb{QLCob}(0,g) ext{ where } g:=g_1+\cdots+g_r$

M: a \mathbb{Q} -homology sphere

 $\mathcal{C}=(\mathcal{C}_1,\ldots,\mathcal{C}_r)$: a family of $\mathbb{Q}\text{-}\mathsf{LP}$ pairs such that $C_1'\sqcup\cdots\sqcup C_r'\subset M$

 \exists a parameterization c'_i of $\partial C'_i$ such that $(C'_i, c'_i) \in \mathbb{QLCob}(g_i, 0)$

 $M^+ := (\text{exterior of } C'_1 \cup \cdots \cup C'_r) \in \mathbb{QLCob}(0,g) \text{ where } g := g_1 + \cdots + g_r$ $\check{M} := M \setminus (\text{open 3-ball}) \in \mathbb{QLCob}(0,0)$

M: a \mathbb{Q} -homology sphere

 $\mathcal{C}=(\mathcal{C}_1,\ldots,\mathcal{C}_r)$: a family of $\mathbb{Q}\text{-}\mathsf{LP}$ pairs such that $\mathit{C}_1'\sqcup\cdots\sqcup\mathit{C}_r'\subset \mathit{M}$

- \exists a parameterization c'_i of $\partial C'_i$ such that $(C'_i, c'_i) \in \mathbb{QLCob}(g_i, 0)$
- $M^+ := (\text{exterior of } C'_1 \cup \cdots \cup C'_r) \in \mathbb{QLCob}(0,g) \text{ where } g := g_1 + \cdots + g_r$ $\check{M} := M \setminus (\text{open 3-ball}) \in \mathbb{QLCob}(0,0)$
- \rightsquigarrow a decomposition in the monoidal category $\mathbb{Q}\mathcal{LC}\textit{ob}:$

$$\check{M} = (C'_1 \otimes \cdots \otimes C'_r) \circ M^+$$

 $\sum_{I \subset \{1,\ldots,r\}} (-1)^{|I|} \cdot Z(M_{\mathcal{C}_I})$

$$\sum_{\substack{I \subset \{1,...,r\}}} (-1)^{|I|} \cdot Z(M_{\mathcal{C}_I})$$
$$= \sum_{\substack{I \subset \{1,...,r\}}} (-1)^{|I|} \cdot \widetilde{Z}(\check{M}_{\mathcal{C}_I})$$

$$\sum_{\substack{I \subset \{1,...,r\}}} (-1)^{|I|} \cdot Z(M_{\mathcal{C}_I})$$

$$= \sum_{\substack{I \subset \{1,...,r\}}} (-1)^{|I|} \cdot \widetilde{Z}(\check{M}_{\mathcal{C}_I})$$

$$= \sum_{\substack{I \subset \{1,...,r\}}} (-1)^{|I|} \cdot \widetilde{Z}\left((C_1^? \otimes \cdots \otimes C_r^?) \circ M^+\right)$$

where
$$? = '$$
 or "

$$\sum_{I \subset \{1,...,r\}} (-1)^{|I|} \cdot Z(M_{C_I})$$

$$= \sum_{I \subset \{1,...,r\}} (-1)^{|I|} \cdot \widetilde{Z}(\check{M}_{C_I})$$

$$= \sum_{I \subset \{1,...,r\}} (-1)^{|I|} \cdot \widetilde{Z}\left((C_1^? \otimes \cdots \otimes C_r^?) \circ M^+\right)$$

$$= \sum_{I \subset \{1,...,r\}} (-1)^{|I|} \cdot \left(\widetilde{Z}(C_1^?) \otimes \cdots \otimes \widetilde{Z}(C_r^?)\right) \circ \widetilde{Z}(M^+) \quad \text{where } ?= ' \text{ or } ''$$

$$\sum_{\substack{I \subset \{1, \dots, r\} \\ I \subset \{1, \dots, r\}}} (-1)^{|I|} \cdot \widetilde{Z}(M_{C_{I}}) = \sum_{\substack{I \subset \{1, \dots, r\} \\ I \subset \{1, \dots, r\}}} (-1)^{|I|} \cdot \widetilde{Z}((C_{1}^{?} \otimes \dots \otimes C_{r}^{?}) \circ M^{+}) = \sum_{\substack{I \subset \{1, \dots, r\} \\ I \subset \{1, \dots, r\}}} (-1)^{|I|} \cdot (\widetilde{Z}(C_{1}^{?}) \otimes \dots \otimes \widetilde{Z}(C_{r}^{?})) \circ \widetilde{Z}(M^{+}) \quad \text{where } ? = I \text{ or } I''$$
$$= \left(\left(\widetilde{Z}(C_{1}') - \widetilde{Z}(C_{1}'') \right) \otimes \dots \otimes \left(\widetilde{Z}(C_{r}') - \widetilde{Z}(C_{r}'') \right) \right) \circ \widetilde{Z}(M^{+})$$

$$\sum_{l \in \{1, \dots, r\}} (-1)^{|l|} \cdot Z(M_{\mathcal{C}_l})$$

$$= \sum_{l \in \{1, \dots, r\}} (-1)^{|l|} \cdot \widetilde{Z}(\check{M}_{\mathcal{C}_l})$$

$$= \sum_{l \in \{1, \dots, r\}} (-1)^{|l|} \cdot \widetilde{Z}\left((C_1^? \otimes \dots \otimes C_r^?) \circ M^+\right)$$

$$= \sum_{l \in \{1, \dots, r\}} (-1)^{|l|} \cdot \left(\widetilde{Z}(C_1^?) \otimes \dots \otimes \widetilde{Z}(C_r^?)\right) \circ \widetilde{Z}(M^+) \quad \text{where } ? = ' \text{ or } ''$$

$$= \left(\left(\widetilde{Z}(C_1') - \widetilde{Z}(C_1'')\right) \otimes \dots \otimes \left(\widetilde{Z}(C_r') - \widetilde{Z}(C_r'')\right)\right) \circ \widetilde{Z}(M^+)$$

$$= \left(\underbrace{\left(\widetilde{Z}_1(C_1') - \widetilde{Z}_1(C_1'')\right)}_{\mu(C_1)} \otimes \dots \otimes \underbrace{\left(\widetilde{Z}_1(C_r') - \widetilde{Z}_1(C_r'')\right)}_{\mu(C_r)}\right) \circ \underbrace{\widetilde{Z}_0(M^+)}_{\exp_{\sqcup}\left(\ell_{\mathcal{C}}, \dots, + \text{ sthg else}\right)}$$

$$\begin{split} &\sum_{I \subset \{1, \dots, r\}} (-1)^{|I|} \cdot Z(M_{\mathcal{C}_{I}}) \\ &= \sum_{I \subset \{1, \dots, r\}} (-1)^{|I|} \cdot \widetilde{Z}(\check{M}_{\mathcal{C}_{I}}) \\ &= \sum_{I \subset \{1, \dots, r\}} (-1)^{|I|} \cdot \widetilde{Z}\left((C_{1}^{?} \otimes \dots \otimes C_{r}^{?}) \circ M^{+}\right) \\ &= \sum_{I \subset \{1, \dots, r\}} (-1)^{|I|} \cdot \left(\widetilde{Z}(C_{1}^{?}) \otimes \dots \otimes \widetilde{Z}(C_{r}^{?})\right) \circ \widetilde{Z}(M^{+}) \quad \text{where } ? = ' \text{ or } '' \\ &= \left(\left(\widetilde{Z}(C_{1}') - \widetilde{Z}(C_{1}'')\right) \otimes \dots \otimes \left(\widetilde{Z}(C_{r}') - \widetilde{Z}(C_{r}'')\right)\right) \circ \widetilde{Z}(M^{+}) \\ &= \left(\underbrace{\left(\widetilde{Z}_{1}(C_{1}') - \widetilde{Z}_{1}(C_{1}'')\right)}_{\mu(C_{1})} \otimes \dots \otimes \underbrace{\left(\widetilde{Z}_{1}(C_{r}') - \widetilde{Z}_{1}(C_{r}'')\right)}_{\mu(C_{r})}\right) \circ \underbrace{\widetilde{Z}_{0}(M^{+})}_{exp_{Ll}(\ell_{C}, \dots, + \text{ sthg else})} \\ &= \left(\begin{array}{c} \text{sum of all ways of identifying} \\ \text{pairwisely all legs of } \mu_{\mathcal{C}} \end{array} \right) + (i\text{-deg} > r) \end{split}$$

by means of the pairing $\ell_{\mathcal{C}}$

$$\sum_{l \in \{1,...,r\}} (-1)^{|l|} \cdot Z(M_{C_l})$$

$$= \sum_{l \in \{1,...,r\}} (-1)^{|l|} \cdot \widetilde{Z}(\check{M}_{C_l})$$

$$= \sum_{l \in \{1,...,r\}} (-1)^{|l|} \cdot \widetilde{Z}((C_1^? \otimes \cdots \otimes C_r^?) \circ M^+)$$

$$= \sum_{l \in \{1,...,r\}} (-1)^{|l|} \cdot (\widetilde{Z}(C_1^? \otimes \cdots \otimes \widetilde{Z}(C_r^?)) \circ \widetilde{Z}(M^+) \quad \text{where } ? = ' \text{ or } ''$$

$$= \left(\left(\widetilde{Z}(C_1') - \widetilde{Z}(C_1'') \right) \otimes \cdots \otimes \left(\widetilde{Z}(C_r') - \widetilde{Z}(C_r'') \right) \right) \circ \widetilde{Z}(M^+)$$

$$= \left(\left(\underbrace{(\widetilde{Z}_1(C_1') - \widetilde{Z}_1(C_1''))}_{\mu(C_1)} \otimes \cdots \otimes \underbrace{(\widetilde{Z}_1(C_r') - \widetilde{Z}_1(C_r''))}_{\mu(C_r)} \right) \circ \underbrace{\widetilde{Z}_0(M^+)}_{exp_{\sqcup}(\ell_C \cdot \cdots \cdot + \text{ sthg else})}$$

$$= \left(\begin{array}{c} \text{sum of all ways of identifying} \\ \text{pairwisely all legs of } \mu_C \end{array} \right) + (i\text{-deg} > r)$$

 $= \left(\begin{array}{c} \text{pairwisely all legs of } \mu_{\mathcal{C}} \\ \text{by means of the pairing } \ell_{\mathcal{C}} \end{array}\right) + (\text{i-deg} > r)$