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G 6

Hg : standard handlebody of genus g

Definition
A K-homology handlebody of genus g is a compact oriented 3-manifold
D such that H,(D;K) >~ H,(Hg; K).

LHE() = Ker (incl* - H1(0D; K) — Hl(D;K))

Definition
A K-LP pair is a pair C = (C’, C") of two K-homology handlebodies
such that 9C’ = 9C" and L%, = L%,

C:=(—C") Uy C" is a closed oriented 3-manifold.
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Example: the genus 3 Heegaard splitting of the 3-torus

T:=8' xS xSt =[0,1]*/ ~
Ky := St x {1} x {1}
Ky := {1} x S x {1}
Ks == {1} x {1} x St

T = —(regA neigh. of (K1 U K U K3))

T =T \int(T")

Ki

Lz, = y=1% = T:=(T',T")isa Z-LP pair.
w(T) = £[Ki] A K] A [Ks] € APHL(T; Q)
Remark

Any genus 3 Heegaard splitting of the 3-torus is isotopic to this one
(Frohman & Hass 1989).
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M : a closed oriented 3-manifold
C=(C",C"): aK-LP pair with ' c M

Definition (Lescop)
Me := (M \ int(C")) Uy C” is obtained from M by a K-LP surgery.

Example: C = 7T, the genus 3 Heegaard splitting of the 3-torus
The Z-LP surgery M ~~ M7 can be used to show that any trilinear alternate
form is ~ to the u(N) of a closed oriented 3-manifold N (Sullivan 1975).

This surgery is equivalent to Matveev's Borromean surgery and it is the main
operation in the calculus of claspers by Goussarov and Habiro.
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Definition
A trivalent Jacobi diagram is a finite graph whose vertices are trivalent
and oriented. Its i-degree is the number of its vertices.

_ Q- {trivalent Jacobi diagrams}

Al@): AS, IHX

AS IHX

Le, Murakami & Ohtsuki (1998) have constructed an inv. QHS =, A(2)

such that
Aw (M)
4

Z(M)= o + 94 (ideg > 2)

Remarks
e Z(M) is defined for any closed oriented 3-manifold M.
@ Kontsevich and Kuperberg & Thurston (1999) have defined another
invariant QHS = A(@) with the same properties ... Z L ZKKT,
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(after Bar-Natan, Garoufalidis, Rozansky & Thurston 2002)

M : a Q-homology sphere SN Z(M) € A(@)
{framed links in S whose linking matrix is invertible} usual surgery

Kirby's moves Kl & Kill =
Lk —mmm e — - —— M

m C\/-\) h ~. A 3.
Ciink ] <% Cink ] 5 (ink | C FRpaALY \(
. - l,/\;’—"l/

Fact (Le, 2xMurakami & Ohtsuki 1995)

There is a normalization Z of the Kontsevich integral Z which behaves
very nicely with respect to the move KII.

(1) “Symmetrize” Z(L) ~» x~'Z(L), where x is the formal PBW iso.
(2) Compute the formal Gaussian integral of x~1Z(L) ...and get KII.
(3) Divide by the values of the (41)-framed trivial knots . ..and get K.
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(1) If r =2, this is Lescop's formula (1998) for the Casson—Walker inv.
77 7 7 7 7
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1(Cr) wG)

which generalizes Morita's formula (1991) for the Casson invariant.

(2) This is the exact analogue of Lescop's result (2004) for ZXKT.

(3) IfCy,...,C, are copies of T, this amounts to the universality of LMO
among finite-type invariants in the usual sense (Le 1997, Habiro 2000).

(4) If Cq,...,C, are Z-LP pairs, this can be deduced from (3) by doing
calculus of claspers (Auclair & Lescop 2005).
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A category of Jacobi diagrams

S : finite set

L finite graphs whose vertices are either }
A(S)=Q { trivalent & oriented, or, univalent & colored by S /AS' HX

Let 4 be the monoidal category of top-substantial Jacobi diagrams:
@ objects: integers g > 0,

i+

e morph. g — f: elts of A({1%,...,g%,17,...,f~}) without e

@ composition: for any graphs D € %A(g,f) and E € *A(h, g),

DoF — ( sum of all ways of gluing all iT-colored vertices of D
"\ with all i™-colored vertices of E, forevery i =1,...,g

@ tensor product: g®@f:=g+f and D® E:=DUE.

Examples
1+ 1+ ot3t gt ot
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Let Cob be the monoidal category of 3-dim. cobordisms (Crane & Yetter 1999):
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A category of cobordisms

Let Cob be the monoidal category of 3-dim. cobordisms (Crane & Yetter 1999):
@ objects: integers g > 0,
@ morphisms g, — g_: cobordisms from Fg, to F,_

e composition: [ M ]o[ N |:= Al\; ,
@ tensor product: g®f:=g+f and ’M‘@’N‘—’M

Any M € Cob(g,g-) comes
with my 1 £F;, — M.

AZ := subspace of Hy(Fg; Q) spanned by o], ..., [ag]

Definition

A cobordism M € Cob(g,g-) is Q-Lagrangian if
Q@ Hi(M;Q) = m_ (AL ) + m, . (Hi(Fg,: Q).
Q@ my . (AY) C m_.(AY)in Hi(M;Q).

QLCob:=monoidal subcategory of Cob consisting of Lagrangian cobordisms
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The LMO functor
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A g-structure on a cobordism M € Cob(g,,g-) is a parenthesizing of the
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The LMO functor

QLCob(0,0) = {Q-homology cubes} M
th(Ov 0) = A(@)

{Q-homology spheres}

Theorem (with Cheptea & Habiro 2008)
There is a tensor-preserving functor Z extending the LMO invariant Z:

QHS —Z— A(2)

QLCobg ——— 154
z

V.

A g-structure on a cobordism M € Cob(g,,g-) is a parenthesizing of the
g+ “top” handles and a parenthesizing of the g_ "bottom” handles.

Remark

Murakami & Ohtsuki (1997) and Cheptea & Le (2007) have constructed
other functorial extensions of the LMO invariant.




Let M € QLCob(g, f).
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The LMO functor: sketch of the construction

Let M € QLCob(g, )

(1) Glue 2-handles anr;g mi(B1), ..., mi(Be), cg1. : ag
E

(2) glue 2-handles along m_(a1), ..., m_(ar):

~> a Q-homology cube B l l l e l l l
.. with a g-component “top” tangle v©
.. and an f-component “bottom” tangle y—.

(3) Compute the Kontsevich—LMO invariant of (B,~),
(4) and “symmetrize” this: I T I m_ I T I
~ Z(M) :=x""Z(B,y) € A({1%,...,g",17,..

(5) Normalize Z(M) to get functoriality:
~ Z(M) € A({1%,...,g%,17,...,f7})

@
C

Z(M) = expu(%LkB(v’) 7 4 Lke(yt, )i 7)U(® + ) € “A(g, f)

only struts no strut at all
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Decomposition of a Q-homology sphere

M : a Q-homology sphere
C =(Cy,...,C;) : afamily of Q-LP pairs such that G U---UC/ C M
3 a parameterization ¢/ of 9C/ such that (C/, ¢/) € QLCob(gi,0)

M := (exterior of C{ U---U C]) € QLCob(0,g) where g := g1 +---+g;
M := M\ (open 3-ball) € QL£Cob(0,0)

~+ a decomposition in the monoidal category QLCob:

M=(Cl® - ®C)oM*t




Application of Z to the decomposition

Sz

1c{1,..., r}




Application of Z to the decomposition

Sz

1c{1,..., r}




Application of Z to the decomposition

Sz

1c{1,..., r}

= > " Z(Me,) M
1c{1,..., r}

= > )"Z(de-ed)oM)
1c{1,...,r}



Application of Z to the decomposition

Sz

1c{1,..., r}

= > )" Z(e,) M

= > zZ(de eg)om)

= > Y (z@)e--®Z(¢)) o Z(MT)  where?="or”



Application of Z to the decomposition

Sz

1c{1,..., r}

S )" Z(ie,) M

Z (_1)|’|,z((cl?®...®C,?)oM+)




Application of Z to the decomposition

> (0" z(me)

1c{1,..., r}

S ) Z(e,) M

Yo o )zZ((de-ed)om)

( (Z(c) - aeh) oo (2(¢) - () ) o Zo(M') + (i-deg > r)
N——

e e exp (£c---~ + sthg else)
w(Cr) w(Cr)



Application of Z to the decomposition

>, v

1c{1,..., r}

'Z(MC/)

- Z(Me,)

Z(d e ac)om)

< (Z(c{) - Z(c{')) ® - ® (Z(c,’) - Z(c,”)) ) o Zo(M¥) + (i-deg > r)
N——

w(Cr)

e exp (£c---~ + sthg else)
wu(Cr) ™

sum of all ways of identifying
( pairwisely all legs of uc ) + (i-deg > r)
by means of the pairing /¢



Application of Z to the decomposition

>, v

1c{1,..., r}

'Z(MC/)

- Z(Me,)

Z(d e ac)om)

< (Z(c{) - Z(c{')) ® - ® (Z(c,’) - Z(c,”)) ) o Zo(M¥) + (i-deg > r)
N——

w(Cr)

e exp (£c---~ + sthg else)
wu(Cr) ™

sum of all ways of identifying
( pairwisely all legs of uc ) + (i-deg > r) O
by means of the pairing /¢



	Lagrangian-preserving surgeries
	The LMO invariant and its splitting formulas
	The LMO functor (with Cheptea & Habiro)
	Proof of the splitting formulas

