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Lagrangian-preserving pairs

K := Z or Q

Hg : standard handlebody of genus g 1

· · ·
g

Definition

A K-homology handlebody of genus g is a compact oriented 3-manifold
D such that H∗(D;K) ' H∗(Hg ;K).

LK
D := Ker

(
incl∗ : H1(∂D;K) −→ H1(D;K)

)
Definition

A K-LP pair is a pair C = (C ′,C ′′) of two K-homology handlebodies
such that ∂C ′ = ∂C ′′ and LK

C ′ = LK
C ′′ .

C := (−C ′) ∪∂ C ′′ is a closed oriented 3-manifold.ß
H1(C ;Q)×3 −→ Q

(x , y , z) 7−→
〈
x ∪ y ∪ z , [C ]

〉

 µ (C ) ∈ Λ3H1(C ;Q)
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Example: the genus 3 Heegaard splitting of the 3-torus

T := S1 × S1 × S1 = [0, 1]3/ ∼

K1 := S1 × {1} × {1}
K2 := {1} × S1 × {1}
K3 := {1} × {1} × S1

T ′ := −
(

reg. neigh. of (K1 ∪ K2 ∪ K3)
)

T ′′ := T \ int(T ′)
K1

K2

K3

LZ
T ′′ = 〈[C1], [C2], [C3]〉 = LZ

T ′ =⇒ T := (T ′,T ′′) is a Z-LP pair.

µ(T ) = ±[K1] ∧ [K2] ∧ [K3] ∈ Λ3H1(T ;Q)

Remark

Any genus 3 Heegaard splitting of the 3-torus is isotopic to this one
(Frohman & Hass 1989).
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Lagrangian-preserving surgeries

M : a closed oriented 3-manifold

C = (C ′,C ′′) : a K-LP pair with C ′ ⊂ M

Definition (Lescop)

MC := (M \ int(C ′)) ∪∂ C ′′

is obtained from M by a K-LP surgery.

Example: C = T , the genus 3 Heegaard splitting of the 3-torus

The Z-LP surgery M  MT can be used to show that any trilinear alternate

form is ' to the µ(N) of a closed oriented 3-manifold N (Sullivan 1975).

This surgery is equivalent to Matveev’s Borromean surgery and it is the main
operation in the calculus of claspers by Goussarov and Habiro.
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LP surgery relations

Question

Given two closed oriented 3-manifolds M ′ & M ′′, when are they related
by K-LP surgeries?

For K = Q?

Lemma

The manifolds M ′ & M ′′ are related by a Q-LP surgery if, and only if,
H∗(M ′;Q) ' H∗(M ′′;Q).

For K = Z?

Theorem (Matveev 1987)

The following statements are equivalent:

M ′ & M ′′ are related by a Z-LP surgery;

M ′ & M ′′ are related by a finite sequence of Borromean surgeries;

H∗(M ′;Z) ' H∗(M ′′;Z) and M ′ & M ′′ have ' linking pairings.

Fact (Habegger 2000)

Any Z-homology handlebody D such that ∂D = ∂Hg and LZ
D = LZ

Hg
, can

be obtained from Hg by a finite sequence of Borromean surgeries.
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Finite-type invariants

M : an equivalence class of K-LP surgery

A : a K-module

Definition
An invariant f :M−→ A is of finite type of degree at most d if∑

I⊂{0,...,d}

(−1)|I | · f (MCI ) = 0 ∈ A

for any M ∈M, for any K-LP pairs C0, . . . , Cd with C ′0 t · · · t C ′d ⊂ M,
where MCI results from the K-LP surgeries M  MCi performed ∀i ∈ I .

K = Z: usual notion of finite-type inv. by Ohtsuki, Goussarov and Habiro

K = Q: a stronger notion of finite-type invariant

Example: KHS := {K-homology spheres}

The Casson invariant λ : ZHS → Z is a finite-type invariant of degree 2
in the usual sense (Morita 1991).

Walker’s extension λW :QHS → Q of λ is a finite-type invariant of deg. 2
in the strong sense (Lescop 1998).
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The LMO invariant

Definition

A trivalent Jacobi diagram is a finite graph whose vertices are trivalent
and oriented. Its i-degree is the number of its vertices.

A(∅) :=
Q · {trivalent Jacobi diagrams}

AS, IHX

3

AS IHX

= − − + = 0

Le, Murakami & Ohtsuki (1998) have constructed an inv. QHS Z−→ A(∅)
such that

Z (M) = ∅ +
λW(M)

4
· + (i-deg > 2)

Remarks

Z (M) is defined for any closed oriented 3-manifold M.

Kontsevich and Kuperberg & Thurston (1999) have defined another

invariant QHS ZKKT

−→ A(∅) with the same properties

. . . Z
?
= ZKKT.
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The LMO invariant: sketch of the construction

M : a Q-homology sphere
?7−→ Z (M) ∈ A(∅)

{framed links in S3 whose linking matrix is invertible}
Kirby’s moves KI & KII '

usual surgery
// QHS

M

link link link
KI←→ KI←→ KII←→

Fact (Le, 2×Murakami & Ohtsuki 1995)

There is a normalization Ž of the Kontsevich integral Z which behaves
very nicely with respect to the move KII.

(1) “Symmetrize” Ž (L) χ−1Ž (L), where χ is the formal PBW iso.

(2) Compute the formal Gaussian integral of χ−1Ž (L) . . . and get KII.

(3) Divide by the values of the (±1)-framed trivial knots . . . and get KI.



11/22

The LMO invariant: sketch of the construction

M : a Q-homology sphere
?7−→ Z (M) ∈ A(∅)

{framed links in S3 whose linking matrix is invertible}
Kirby’s moves KI & KII '

usual surgery
// QHS

M

link link link
KI←→ KI←→ KII←→

Fact (Le, 2×Murakami & Ohtsuki 1995)
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(1) “Symmetrize” Ž (L) χ−1Ž (L), where χ is the formal PBW iso.

(2) Compute the formal Gaussian integral of χ−1Ž (L) . . . and get KII.

(3) Divide by the values of the (±1)-framed trivial knots . . . and get KI.



11/22

The LMO invariant: sketch of the construction
(after Bar-Natan, Garoufalidis, Rozansky & Thurston 2002)

M : a Q-homology sphere
?7−→ Z (M) ∈ A(∅)

{framed links in S3 whose linking matrix is invertible}
Kirby’s moves KI & KII '

usual surgery
// QHS

L
� //________________ M

link link link
KI←→ KI←→ KII←→

Fact (Le, 2×Murakami & Ohtsuki 1995)
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(3) Divide by the values of the (±1)-framed trivial knots . . . and get KI.



11/22

The LMO invariant: sketch of the construction
(after Bar-Natan, Garoufalidis, Rozansky & Thurston 2002)

M : a Q-homology sphere
?7−→ Z (M) ∈ A(∅)

{framed links in S3 whose linking matrix is invertible}
Kirby’s moves KI & KII '

usual surgery
// QHS

L
� //________________ M

link link link
KI←→ KI←→ KII←→

Fact (Le, 2×Murakami & Ohtsuki 1995)
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Splitting formulas for the LMO invariant

M : a Q-homology sphere

C = (C1, . . . , Cr ) : a family of Q-LP pairs such that C ′1 t · · · t C ′r ⊂ M

HC := H1(C1;Q)⊕ · · · ⊕ H1(Cr ;Q)

µC := µ(C1)⊗ · · · ⊗ µ(Cr ) ∈
⊗r

i=1 Λ3H1(Ci ;Q) ⊂ S rΛ3HC

Any tensor (vi1 ∧ vj1 ∧ vk1) · · · (vir ∧ vjr ∧ vkr ) ∈ S rΛ3HC can be depicted as

vk1 vj1 vi1
· · ·

vkr vjr vir®
H1(C ′i ;Q)× H1(C ′j ;Q)

`i,j−→ Q
([K ], [L]) 7−→ LkM(K , L)

∀i 6= j

`C :=
1

2

∑
i 6=j

`i,j : HC × HC −→ Q is a symmetric bilinear form.

Theorem∑
I⊂{1,...,r}

(−1)|I | ·Z (MCI ) =

(
sum of all ways of identifying

pairwisely all legs of µC
by means of the pairing `C

)
+(i-deg > r).
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Splitting formulas: prior results

Theorem∑
I⊂{1,...,r}

(−1)|I | ·Z (MCI ) =

(
sum of all ways of identifying

pairwisely all legs of µC
by means of the pairing `C

)
+(i-deg > r).

(1) If r = 2, this is Lescop’s formula (1998) for the Casson–Walker inv.

? ? ?

µ(C1)

? ? ?

µ(C2)

 ?

which generalizes Morita’s formula (1991) for the Casson invariant.

(2) This is the exact analogue of Lescop’s result (2004) for ZKKT.

(3) If C1, . . . , Cr are copies of T , this amounts to the universality of LMO
among finite-type invariants in the usual sense (Le 1997, Habiro 2000).

(4) If C1, . . . , Cr are Z-LP pairs, this can be deduced from (3) by doing
calculus of claspers (Auclair & Lescop 2005).
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A category of Jacobi diagrams

S : finite set

A(S) := Q ·
ß

finite graphs whose vertices are either

trivalent & oriented, or, univalent & colored by S

™/
AS, IHX

Let tsA be the monoidal category of top-substantial Jacobi diagrams:

objects: integers g ≥ 0,

morph. g → f : elts of A
(
{1+, . . . , g+, 1−, . . . , f −}

)
without

i+ j+

,

composition: for any graphs D ∈ tsA(g , f ) and E ∈ tsA(h, g),

D ◦ E :=

Å
sum of all ways of gluing all i+-colored vertices of D

with all i−-colored vertices of E , for every i = 1, . . . , g

ã
,

tensor product: g ⊗ f := g + f and D ⊗ E := D t E .

Examples

tsA(0, 0) = A(∅)

1+ 1+ 2+2+ 3+ 4+

1− 1− 2− 3− 5− 5−

i-degree 6

∈ tsA(4, 5)
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A category of cobordisms

Let Cob be the monoidal category of 3-dim. cobordisms (Crane & Yetter 1999):

objects: integers g ≥ 0,

morphisms g+ → g−: cobordisms from Fg+ to Fg− ,

composition: M ◦ N :=
N
M

,

tensor product: g ⊗ f := g + f and M ⊗ N := M N .

Any M ∈ Cob(g+, g−) comes
with m± : ±Fg± ↪−→ M. α1 αgβ1 βg

Fg

· · ·
	

AQ
g := subspace of H1(Fg ;Q) spanned by [α1], . . . , [αg ]

Definition

A cobordism M ∈ Cob(g+, g−) is Q-Lagrangian if

1 H1(M;Q) = m−,∗(AQ
g−) + m+,∗

(
H1(Fg+ ;Q)

)
,

2 m+,∗(AQ
g+) ⊂ m−,∗(AQ

g−) in H1(M;Q).

QLCob := monoidal subcategory of Cob consisting of Lagrangian cobordisms
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The LMO functor

QLCob(0, 0) = {Q-homology cubes} gluing a 3-ball

'
// {Q-homology spheres}

tsA(0, 0) = A(∅)

Theorem (with Cheptea & Habiro 2008)

There is a tensor-preserving functor Z̃ extending the LMO invariant Z :

QHS� _

��

Z // A(∅)� _

��

Z̃

//_____ tsA

A q-structure on a cobordism M ∈ Cob(g+, g−) is a parenthesizing of the
g+ “top” handles and a parenthesizing of the g− “bottom” handles.

Remark

Murakami & Ohtsuki (1997) and Cheptea & Le (2007) have constructed
other functorial extensions of the LMO invariant.
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The LMO functor: sketch of the construction

Let M ∈ QLCob(g , f ).

(1) Glue 2-handles along m+(β1), . . . ,m+(βg ),

(2) glue 2-handles along m−(α1), . . . ,m−(αf ):

 a Q-homology cube B
... with a g -component “top” tangle γ+

... and an f -component “bottom” tangle γ−.

(3) Compute the Kontsevich–LMO invariant of (B, γ),

(4) and “symmetrize” this:

 Z(M) := χ−1Z(B, γ) ∈ A
(
{1+, . . . , g+, 1−, . . . , f −}

)
.

(5) Normalize Z(M) to get functoriality:

 Z̃ (M) ∈ A
(
{1+, . . . , g+, 1−, . . . , f −}

)

α1 αgβ1 βg

Fg

· · ·

M

m+

m−

α1 αfβ1 βf

Ff

· · ·

Z̃ (M) = expt

Å
1

2
LkB(γ−) − − + LkB(γ+, γ−) −

+
ã

︸ ︷︷ ︸
only struts

t
(
∅ + + · · ·

)
︸ ︷︷ ︸

no strut at all

∈ tsA(g , f )
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The i-degree 1 part of Z̃

C = (C ′,C ′′) : a Q-LP pair of genus g

µ(C ) ∈ Λ3H1(C ;Q) : triple-cup product form of C = (−C ′) ∪∂ C ′′

∃ a parameterization c ′ = c ′′ of ∂C ′ = ∂C ′′ such that

(C ′, c ′) ∈ QLCob(g , 0) and (C ′′, c ′′) ∈ QLCob(g , 0).

Lemma
Via the isomorphism

Λ3H1(C ;Q)
'−→ Ac

1({1+, . . . , g+}), [βi ] ∧ [βj ] ∧ [βk ] 7−→
k+ j+ i+

µ(C ) corresponds to Z̃1(C ′, c ′)− Z̃1(C ′′, c ′′).

Sketch of the proof.
(B, γ) : “top” tangle in a Q-homology cube corresp. to C ′

(B̂, γ̂) : “plat” closure of (B, γ)

Z̃1(C ′, c ′) = “Y-part” of χ−1Z(B, γ)

= −
∑

1≤i<j<k≤g

µijk(γ̂) ·
k+ j+ i+

where µijk(γ̂) is the rational version of Milnor’s triple linking numbers.
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Decomposition of a Q-homology sphere

M : a Q-homology sphere

C = (C1, . . . , Cr ) : a family of Q-LP pairs such that C ′1 t · · · t C ′r ⊂ M

∃ a parameterization c ′i of ∂C ′i such that (C ′i , c
′
i ) ∈ QLCob(gi , 0)

M+ :=(exterior of C ′1 ∪ · · · ∪ C ′r ) ∈ QLCob(0, g) where g := g1 + · · ·+ gr
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Application of Z̃ to the decomposition

M

 C ′1 C ′2 · · · C ′r

M+

∑
I⊂{1,...,r}

(−1)|I | · Z(MCI )

=
∑

I⊂{1,...,r}

(−1)|I | · Z̃(M̌CI )

=
∑

I⊂{1,...,r}

(−1)|I | · Z̃
(

(C ?
1 ⊗ · · · ⊗ C ?

r ) ◦M+
)

=
∑

I⊂{1,...,r}

(−1)|I | ·
(
Z̃(C ?

1 )⊗ · · · ⊗ Z̃(C ?
r )
)
◦ Z̃(M+) where ? = ′ or ′′

=
ÄÄ

Z̃(C ′1)− Z̃(C ′′1 )
ä
⊗ · · · ⊗

Ä
Z̃(C ′r )− Z̃(C ′′r )

ää
◦ Z̃(M+)

=

ÇÄ
Z̃1(C ′1)− Z̃1(C ′′1 )

ä
︸ ︷︷ ︸

µ(C1)

⊗ · · · ⊗
Ä
Z̃1(C ′r )− Z̃1(C ′′r )

ä
︸ ︷︷ ︸

µ(Cr )

å
◦ Z̃0(M+)︸ ︷︷ ︸
expt(`C + sthg else)

+ (i-deg > r)

=

Ç sum of all ways of identifying
pairwisely all legs of µC

by means of the pairing `C

å
+ (i-deg > r) �
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