Degeneration and dynamics

Greg McShane

November 19, 2012

Intro

- $\Sigma = a$ surface of $\chi(\Sigma) < 0$, boundary $\partial \Sigma$
- Fricke space F(Σ) (Teichmueller space)
 := isotopy classes of marked hyperbolic structures on Σ
 + ∂Σ geodesic.
- Fricke space \hookrightarrow Character variety of $\pi_1 = \pi_1(\Sigma)$
- Mapping class group $\mathcal{MCG} = \text{Diff}/\text{Isotopies}$

Definition *G* a Lie group then $\chi(\pi_1, G) = G$ -character variety := {representations $\rho : \pi_1 \to G$ } // *G* "= {representations $\rho : \pi_1 \to G$ } up to conjugation. "

Representations and actions

$$ho \in \operatorname{Hom}(\pi_1, G)$$

 $[
ho] \in \operatorname{Hom}(\pi_1, G) / / G = \chi(\pi_1, G)$

Action on the representation variety

$$f \in \operatorname{Aut}(\pi_1), \, \rho \in \operatorname{Hom}(\pi_1, G), \, f^* \rho = \rho \circ f^{-1}$$

• Example: Action of interior automorphism $f : \gamma \mapsto \alpha \gamma \alpha^{-1}$

$$(f^*\rho)(\gamma) = \rho(\alpha^{-1}\gamma\alpha) = \rho(\alpha^{-1})(\gamma)\rho(\alpha). \Rightarrow [f\rho] = [\rho]$$

• Action of Out on $\operatorname{Hom}(\pi_1, G)//G$

 $[f], [\rho] \mapsto [f^* \rho]$

Outer automorphisms Out := Aut/Inn

The three big questions

- 1. What is the biggest subset on which \mathcal{MCG} acts properly discontinuously?
- 2. On the complement of this set is the action ergodic?
- 3. Does the answer agree with "geometric intuition"?

On Teichmueller space the action is proper.

action proper \leftrightarrow geometric structure associated to ρ .

When the action is proper one can take a quotient to form a "moduli space".

- How big is this moduli space?
- How does it degenerate?

What is the geography of the character variety relative to this action?

Decomposition of a group action

 Γ torsion free, Kleinian group acts on Riemann sphere $\hat{\mathbb{C}}=\Omega\sqcup\Lambda$

- Ω discontinuity domain $\forall x, \exists U_x, g(U_x) \cap U_x = \emptyset, \forall g \neq 1$
- ► Λ- limit set
 - ∀U, ∃g ≠ 1, g(U) ∩ U ≠ Ø
 Topo transitive i.e. ∃x, Γ.{x} ∩ U ≠ Ø
 (Γ.U = U) ⇒ U = Λ, Ø
 ⇔ Every invariant continuous function is constant.
 Ergodic U meas.
 (Γ.U = U) ⇒ m(U) × m(U^c) = 0
 ⊕ Formation is constant for action is constant.
 - $\Leftrightarrow \mathsf{Every} \text{ invariant } \underline{\mathsf{measurable}} \text{ function is constant.}$

Ergodic?

Irrational rotation of the circle

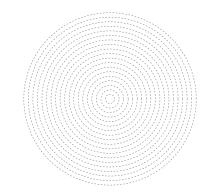
$$z\mapsto e^{i\theta}z$$

Hyperbolic toral automorphism

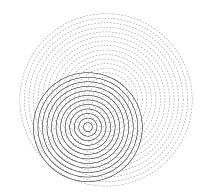
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \mod 1$$

- $SL(2,\mathbb{Z})$ action on $\partial \mathbb{H} = P(\mathbb{R}^2)$
- $SL(2,\mathbb{Z})$ action on \mathbb{R}^2
- Semigroup generated by two irrational rotations with distinct fixed points.

- \blacktriangleright Semigroup generated by one irrational rotation on \mathbb{R}^2 NOT ergodic
- Semigroup generated by two irrational rotations with distinct fixed points.



- \blacktriangleright Semigroup generated by one irrational rotation on \mathbb{R}^2 NOT ergodic
- Semigroup generated by two irrational rotations with distinct fixed points.



Motivation

Motivation: Do, Norbury

Weil-Petersson volumes and cone surfaces, (2005)

- Mapping class group \mathcal{MCG} .
- $\omega_{WP} \mathcal{MCG}$ -invar. symplectic form.
- \blacktriangleright \Rightarrow Moduli space admits a symplectic vol. form

Symplectic volume of the moduli space of a surface

- a number for surface with marked points.
 Wolpert (1982), Penner, Harer-Zagier
- a polynomial for surface with boundary. Nakanishi-Naatanen (2001), Mirzakhani(2003).

torus, one hole,
$$V_1(l_1) = \frac{1}{24}(4\pi^2 + l_1^2)$$

corus, two hole, $V_1(l_1, l_2) = \frac{1}{192}(4\pi^2 + l_1^2 + l_2^2)(12\pi^2 + l_1^2 + l_2^2)$

Motivation: Do,Norbury

$$V_1(l_1) = \frac{1}{24}(4\pi^2 + l_1^2)$$

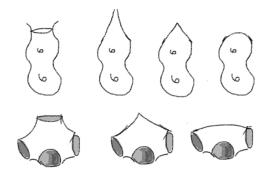
$$V_1(l_1, l_2) = \frac{1}{192}(4\pi^2 + l_1^2 + l_2^2)(12\pi^2 + l_1^2 + l_2^2)$$

$$\begin{aligned} \frac{\partial}{\partial l_2} V_1(l_1, l_2) &= \frac{1}{96} l_2 (16\pi^2 + 2l_1^2 + 2l_2^2) \\ \frac{\partial}{\partial l_2} \Big|_{2\pi i} V_1(l_1, l_2) &= \frac{2\pi i}{96} (8\pi^2 + 2l_1^2) \\ &= \frac{2\pi i}{4.24} (4\pi^2 + l_1^2) = \frac{2\pi i}{4} V_1(l_1) \end{aligned}$$

Motivation: Interpolating the forgetful map

$$\frac{\partial}{\partial l_n}V_1(l_1,\ldots,l_{n-1},2\pi i)=-2\pi i\times\chi(\Sigma_{g,n})\times V_1(l_1,\ldots,l_{n-1})$$

Cone point = geodesic boundary with complex length $i\theta$ Use cone surface with a cone point of angle $0 < \theta < 2\pi$.



$$\frac{\partial}{\partial I_n}V_1(I_1,\ldots,I_{n-1},2\pi i)=-2\pi i\times\chi(\Sigma_{g,n})\times V_1(I_1,\ldots,I_{n-1})$$

Cone point = geodesic boundary with complex length $i\theta$ Use cone surface with a cone point of angle $0 < \theta < 2\pi$:

- ▶ to interpolate the forgetful map $(\Sigma_g, p) o \Sigma_g$
- study degeneration of associated fibration(s)

$$\Sigma_g \to \mathcal{T}(\Sigma_{g,1})/\mathcal{MCG} \to \mathcal{T}(\Sigma_g)/\mathcal{MCG}$$

 Volume should go to zero (Schumacher-Trappani + some work)

$$V_g(\pm 2\pi i)=0$$

- What happens to the topology of the moduli space.
- \blacktriangleright What happens to the dynamics of \mathcal{MCG}

as $\theta \rightarrow 2\pi$.

Four holed sphere

$$V_0(I_{\alpha}, I_{\beta}, I_{\gamma}, I_{\delta}) = rac{1}{2}(4\pi^2 + l_{\alpha}^2 + l_{\beta}^2 + l_{\gamma}^2 + l_{\delta}^2)$$

What happens to

- the topology of the moduli space
- ▶ the dynamics of *MCG*

as $I_\delta
ightarrow 2\pi i$?

Four holed sphere

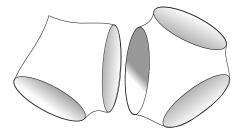
$$V_0(I_{lpha}, I_{eta}, I_{\gamma}, I_{\delta}) = rac{1}{2}(4\pi^2 + I_{lpha}^2 + I_{eta}^2 + I_{\gamma}^2 + I_{\delta}^2)$$

What happens to

- the topology of the moduli space
- the dynamics of \mathcal{MCG}

as $I_\delta
ightarrow 2\pi i$?

 $\Sigma=$ Four-holed sphere = (pair of pants) \sqcup (pair of pants) $/\sim$



Example: torus with a hole

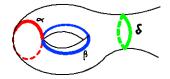
$\Sigma = torus$ with a hole/cone point

Definition $SL(2, \mathbb{R})$ -character variety

 $:= \{ \text{traces of representations } \rho : \pi_1 \to SL(2, \mathbb{R}) \}$

"= {representations $\rho: \pi_1 \to SL(2,\mathbb{R})$ } up to conjugation. "

= {representations $\rho : \pi_1 \to SL(2,\mathbb{R})$ } // $SL(2,\mathbb{R})$



 $\pi_1(\operatorname{torus} \setminus \{pt\}) = \langle \alpha, \beta \rangle \simeq \mathbb{Z} * \mathbb{Z}$

Theorem (Fricke/Vogt)

The $SL(2, \mathbb{R})$ -character variety can be identified with a semi algebraic set (SAS) of \mathbb{R}^3 via

$$\chi: \rho \mapsto (\operatorname{tr} \rho(\alpha), \operatorname{tr} \rho(\beta), \operatorname{tr} \rho(\beta\alpha)).$$

Is $\chi : \operatorname{Hom}(\pi_1, SL(2, \mathbb{R})) \to \mathbb{R}^3$ surjective?

The character map is injective $\chi \to \mathbb{R}^3$ Is it surjective?Try to make a section:

$$\rho(\alpha) = \begin{pmatrix} x & -1 \\ 1 & 0 \end{pmatrix}, \ \rho(\alpha) = \begin{pmatrix} 0 & \zeta^{-1} \\ -\zeta & y \end{pmatrix}, \ \rho(\alpha\beta) = \begin{pmatrix} \zeta & x\zeta^{-1} + y \\ 0 & \zeta^{-1} \end{pmatrix}$$
$$z = \zeta + \zeta^{-1}$$

Conclusion

- ▶ $\exists SL(2, \mathbb{R})$ representation with traces (x, y, z) if (at least) one of $|x|, |y|, |z| \ge 2$.
- if $\zeta \notin \mathbb{R}$ then $\exists SU(2)$ representation with traces (x, y, z).

Slicing the character variety: Peripheral element

Lemma

 $\delta = \alpha \beta \alpha^{-1} \beta^{-1}$, $f \in Aut(\mathbb{Z} * \mathbb{Z})$ then $f(\delta)$ is conjugate to δ or δ^{-1} .

Corollary

 $\kappa : \rho \mapsto 2 + \operatorname{tr}(\rho(\delta))$ is an invariant function for \mathcal{MCG} action (so action is not ergodic).

Calculate ℓ_{δ} from the traces

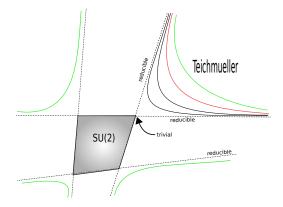
$$\begin{aligned} \kappa(\rho) &:= 2 + \operatorname{tr} \rho(\delta) \\ &= \operatorname{tr}^2 \rho(\alpha) + \operatorname{tr}^2 \rho(\beta) + \operatorname{tr}^2 \rho(\gamma) - \operatorname{tr} \rho(\alpha) \operatorname{tr} \rho(\beta) \operatorname{tr} \rho(\gamma) \\ &= 2 - 2 \cosh(\ell_{\delta}/2) \end{aligned}$$

The Fricke space of a holed torus is homeomorphic to (**a connected component)** of

$$(x,y,z) \in \mathbb{R}^3, \; \kappa(x,y,z) := x^2 + y^2 + z^2 - xyz \le 0,$$

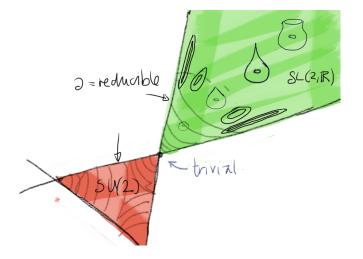
Geography of character variety

Loop round the hole $\delta = [\alpha, \beta] \in \pi_1$



Geography of character variety

Loop round the hole $\delta = [\alpha, \beta] \in \pi_1$



Topology of level sets of κ

Theorem (Fricke)

٠

If $\rho \in Hom(\mathbb{Z} * \mathbb{Z}, SL(2, \mathbb{R}))$ is reducible then its image is in

$$\kappa^{-1}(4) \Leftrightarrow x^2 + y^2 + z^2 - xyz = 4$$

- 1. Easy calculation $\Rightarrow \kappa^{-1}(t)$ singular iff t = 4
- 2. The singular points are permuted by the action.
- The chararacter of the trivial representation is a singular point. It is a global fixed point.

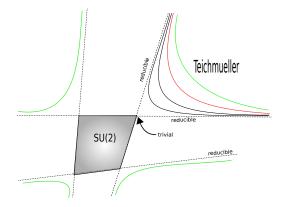
Topology of level sets of $\kappa^{-1}(t)$

$$\kappa(x, y, z) := x^2 + y^2 + z^2 - xyz$$

	\sharp connected compents of $\kappa^{-1}(t)$	topology
t = 4	single component	complicated
<i>t</i> < 0	4 components	4 discs
$0 \leq t < 4$	5 components	4 discs
		a sphere
4 < t	single component	4 holed sphere

Remark: The sphere component $\subset \{|x|, |y|, |z| \leq 2\}$

Finally



Action of \mathcal{MCG}

 t_{α} -Dehn twist round α .

$$\blacktriangleright (t_{\alpha})_* : \pi_1 \to \pi_1, \ \alpha \mapsto \alpha, \beta \mapsto \beta.\alpha$$

• Automorphism of \mathbb{R}^3

$$\mathbb{R}^3 \rightarrow \mathbb{R}^3$$

 $(x, y, z) \mapsto (x, xy - z, y)$

• Similarly Dehn twist round
$$\beta$$

$$(x, y, z) \mapsto (xy - z, y, x)$$

Dehn twists generate \mathcal{MCG} .

 \Rightarrow The mapping class group acts on the whole of \mathbb{R}^3 by polynomial automorphisms.

Dynamical decomposition

Theorem (Goldman)

	$\kappa^{-1}(t)$ topology	dynamics
t = 4	complicated	finite number of minimal sets
<i>t</i> < 0	4 discs	proper
$0 \le t < 4$	4 discs	proper
	a sphere	ergodic
$4 < t \le 20$	4 holed sphere	ergodic
20 < <i>t</i>	"	wandering domains

Definition an open set U is a *wandering domain* for the action of a group Γ iff

$$g(U)\cap U
eq \emptyset \Rightarrow g=1_{\mathsf{F}}$$

Faithful discrete \Rightarrow action proper

1. $\kappa^{-1}(t < 0) = 4 \times$ Fricke space of a holed torus

length spectrum of a hyperbolic surface is discrete \Rightarrow action proper.

But if $0 \le t < 4$ then 4 discs $\subset \kappa^{-1}(t)$ and action is still proper. $\kappa(\rho) = 2 + \operatorname{tr} \rho(\delta) = 2 + 2 \cosh(\ell_{\delta}/2) \ge 4$ if $\ell_{\delta} \in \mathbb{R}$ $\kappa(\rho) = 2 + \operatorname{tr} \rho(\delta) = 2 + 2 \cosh(i\theta/2) \le 4$

The discs are in the Fricke space of a torus with a cone point.

 ρ not discrete, faithful for 0 $<\theta<2\pi$

If $\rho : \pi_1 \to SL(2, \mathbb{R})$ discrete, faithful then $\rho(\gamma)$ is hyperbolic $\forall \gamma (\neq 1) \in \pi_1$.

 $\rho(\delta)$ is elliptic, but peripheral

Definition: Simple Hyperbolicity

 $\forall \gamma \in \pi_1$ essential, simple loop the element $\rho(\gamma)$ is hyperbolic.

 \Rightarrow length function still well defined i.e.

$$\exists \ell_\gamma(
ho) > 0, |\mathrm{tr}\,
ho(\gamma)| = 2\cosh(\ell_\gamma(
ho)/2)$$

Definition: Simple Spectrum

Simple spectrum : = { $\ell_{\gamma}(\rho)$, γ essential, simple loop}. want to show that the simple spectrum grows as quickly as for a discrete representation. Theorem (Tan-Wong-Zhang) For $\theta < 2\pi$: $\exists \epsilon(\rho) > 0$ such that $\forall \gamma$ essential simple loop

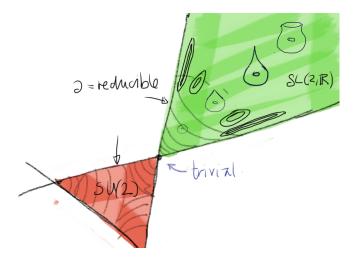
$$\ell_{\gamma}(\rho) \geq \epsilon \ell_{\gamma}(\rho_0).$$

where ρ_0 a fixed discrete faithful representation and \mathbb{H}/ρ_0 is a complete, hyperbolic one holed torus.

Corollary

The action of \mathcal{MCG} is proper on the discs.

Proper \leftrightarrow geometric structure.



Wolpert's Volume Calculation

Invariant area form on the level sets $\kappa^{-1}(t)$:

$$\frac{dx \wedge dy}{xy - 2z}$$

When the action is proper one can associate a volume and calculate it by finding a fundamental domain.

Nakashini/Nataanen generalised Wolpert's method to surfaces with boundary : one holed torus $V_1(I) = \frac{1}{24}(4\pi^2 + I^2)$

ho reducible $\Rightarrow \kappa = 4 = 2 - 2\cosh(i\ell_{\delta}/2) \Rightarrow i\ell_{\delta} = 2\pi i$ and $V_1(2\pi i) = 0$

Theorem (Goldman)

The $SL(2,\mathbb{Z}) < \mathcal{MCG}$ action on the $SL(2,\mathbb{R})$ -reducibles is ergodic in fact it is conjugate to the usual linear action of $SL(2,\mathbb{Z})$ on $\mathbb{R}^2/v \rightarrow -v$.

Action on the SU(2) representations

Theorem (Goldman)

The action of \mathcal{MCG} on the SU(2)-reducibles is ergodic in fact it is conjugate to the usual linear action of $SL(2,\mathbb{Z})$ on $(S^1 \times S^1)$ /inversion.

- Any $\phi \in \mathcal{MCG}$ pseudo anosov acts ergodically on reducibles.
- ▶ But any $\phi \in \mathcal{MCG}$ Dehn twist preserves non constant function.

Theorem (Goldman)

The action of \mathcal{MCG} on $\kappa^{-1}(t) \subset SU(2)$ -characters is ergodic.

Theorem (Brown)

There exists t and $\phi \in \mathcal{MCG}$ pseudo anosov such that ϕ does not act ergodically on $\kappa^{-1}(t)$.

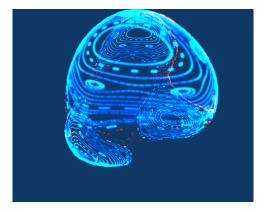
Action on the SU(2) representations

Theorem (Goldman)

The action of \mathcal{MCG} on $\kappa^{-1}(t) \subset SU(2)$ -characters is ergodic.

Theorem (Brown)

There exists t and $\phi \in \mathcal{MCG}$ pseudo anosov such that ϕ does not act ergodically on $\kappa^{-1}(t)$.

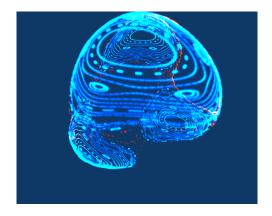


Action on the SU(2) representations

Theorem (Goldman)

The action of \mathcal{MCG} on $\kappa^{-1}(t) \subset SU(2)$ -characters is ergodic.

Question (Funar): Does every non elementary subgroup of \mathcal{MCG} act ergodically?



Non orientable surfaces

Non orientable surfaces $PGL(2, \mathbb{R})$

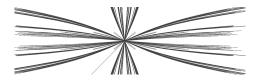
- $C_{2,0}$ = One holed Moebius band, \mathcal{MCG} finite
- $C_{1,1} = \text{One holed Klein bottle}, MCG infinite dihedral$

Want to use traces again to embed the character variety in \mathbb{R}^3 . Trick: the stabiliser of a plane $\mathbb{H} \subset \mathbb{H}^3$ in $PSL(2, \mathbb{C})$ is isomorphic to $PGL(2, \mathbb{R})$.

The orientation reversing reflections in \mathbb{H} are restrictions of rotations of \mathbb{H}^3 through an angle π around an axis in \mathbb{H} .

$$z\mapsto -z\leftrightarrow egin{pmatrix} i&0\0&-i\end{pmatrix}\in SL(2,\mathbb{C})$$

Non orientable surfaces $PGL(2, \mathbb{R})$



Theorem

$$\Gamma := PGL(2, \mathbb{Z})$$

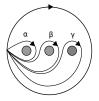
$$\kappa(x, y, z) := -x^2 - y^2 + z^2 + xyz - 2$$

- 1. The action of Γ on Γ . $\mathcal{F}(C_{2,0})$ is proper.
- 2. For t < 2 the action on the complement of $\kappa^{-1}(t) \setminus \Gamma(C_{2,0})$ is ergodic
- 3. The action of Γ on Γ . $\mathcal{F}(C_{1,1})$ is proper.

The complement of Γ . $\mathcal{F}(C_{1,1})$ is a closed, nowhere dense subset. If the connected components of the complement of the dihedral representations are properly embedded copies of \mathbb{R}

Four holed spheres

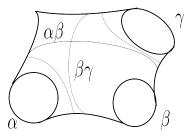
Four holed sphere: $\pi_1 = \langle \alpha, \beta, \gamma, \delta, \delta = \gamma \beta \alpha \rangle$.



- fix boundary lengths $I_{\alpha}, I_{\beta}, I_{\gamma} \ge 0$.
- vary the fourth $I_{\delta} = i\theta \Rightarrow |\mathrm{tr}\,\delta| = 2\cos(\theta/2))$

 $\begin{array}{ccc} \text{character variety} & \hookrightarrow & (\mathsf{SAS.} \subset \mathbb{R}^7) \\ \rho & \mapsto & \text{traces of 4 peripheral elts} \\ & & +\text{traces of 3 other elts} \\ \text{relative character variety} & \hookrightarrow & (\mathsf{SAS.} \subset \mathbb{R}^3) \\ \rho & & \mapsto & \text{traces of 3 other elts} \end{array}$

Four holed sphere



Theorem (Fricke, Goldman, Gauglhofer-Semmler, Cantat-Loray)

The relative character variety defined by $\operatorname{tr} \rho(\alpha) = 2 \cosh(\ell_{\alpha}/2), \operatorname{tr} \rho(\beta) = 2 \cosh(\ell_{\beta}/2)$ $\operatorname{tr} \rho(\gamma) = 2 \cosh(\ell_{\gamma}/2)$ and $\operatorname{tr} \rho(\delta) = 2 \cos(\theta/2)$ is identified with a semi-algebraic subset of \mathbb{R}^3 whose points satisfy

$$x^2 + y^2 + z^2 + xyz = Ax + By + Cz + D$$

by $\rho \mapsto (\operatorname{tr} \rho(\alpha \beta), \operatorname{tr} \rho(\beta \gamma), \operatorname{tr} \rho(\gamma \alpha)).$

 \mathcal{MCG} dynamics on the relative character

\exists three involutions

induced by homeomorphisms of the four holed sphere

► that preserve a function $\rho \mapsto \operatorname{tr} \rho(\delta)$ (analogous to κ) Because, though $x^2 + y^2 + z^2 + xyz = Ax + By + Cz + D$ is cubic, it is quadratic in x so there is an involution (on the SAS) that swaps the two roots of

$$x^{2} + x(yz - A) + y^{2} + z^{2} - By - Cz - D = 0$$

and this is induced by an orientation reversing homeomorphisms of the sphere.

 \mathcal{MCG} dynamics when all the peripheral elements are parabolic

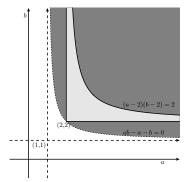
Observation

Involutions are good because the dynamics is determined by configuration of fixed point sets.

\mathcal{MCG} dynamics: fixed point sets of involutions

When α, β, γ parabolic. \exists a simpler model for the dynamics, (semi) conjugate to the action of 3 involutions on a subset of $\{(a, b)\} \subset \mathbb{R}^3$.

Fixed point sets of involutions



\mathcal{MCG} dynamics: volume

Theorem (M)

When the peripheral elements ($\neq \delta$) are parabolic, $\theta < 2\pi$:

- ► the three involutiuons generate a group isomorphic to Z/2 * Z/2 * Z/2
- this group contains the pure braid group (MCG) as a finite index subgroup.
- there is a fundamental domain which is a SAS.

(Wolpert's) symplectic form on $\mathcal{T}(\Sigma)_{ heta}$

$$\omega_{WP} = rac{\mathit{da} \wedge \mathit{db}}{\mathit{ab} - \mathit{b} - \mathit{a}}$$

Corollary $Vol(\mathcal{T}(\Sigma)_{\theta}) = \frac{1}{2}(4\pi^2 - \theta^2)$

Where does the extra volume come from: Algebraic limits

Fix a sequence $\theta_n \to 2\pi$ consider limits of ρ_n = holonomy of a 3 holed sphere with cone point of angle θ_n .

Theorem (M)

In the relative character variety of the 4 holed sphere.

- ▶ space of possible limits of [ρ_n] is a disc.
- ▶ this disc contains a single global fixed point for MCG-action.
- MCG-action is
 - wandering off a closed set on the disc if

$$I_{\alpha}^2 + I_{\beta}^2 + I_{\gamma}^2 > 0$$

• ergodic if $l_{\alpha}^2 = l_{\beta}^2 = l_{\gamma}^2 = 0$

Algebraic limits

Extra volume comes from the quotient of the wandering part.

$$V_0(l_{\alpha}, l_{\beta}, l_{\gamma}, 2\pi i) = \frac{1}{2}(4\pi^2 + l_{\alpha}^2 + l_{\beta}^2 + l_{\gamma}^2 - 4\pi^2)$$

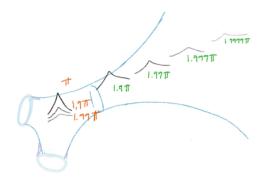
= $\frac{1}{2}(l_{\alpha}^2 + l_{\beta}^2 + l_{\gamma}^2)$

 $\rho_n(\delta) \rightarrow$ parabolic element. The fixed point is out one of the funnels on the 3-holed sphere.

From far away an elliptic element can look like a parabolic element:

$$\begin{pmatrix} e^t & 0\\ 0 & e^{-t} \end{pmatrix} \begin{pmatrix} \cos(\theta) & \sin(\theta)\\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} e^{-t} & 0\\ 0 & e^t \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta)e^{2t}\\ -\sin(\theta)e^{-2t} & \cos(\theta) \end{pmatrix}$$

Algebraic limits



From far away an elliptic element can look like a parabolic element:

$$\begin{pmatrix} e^t & 0\\ 0 & e^{-t} \end{pmatrix} \begin{pmatrix} \cos(\theta) & \sin(\theta)\\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} e^{-t} & 0\\ 0 & e^t \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta)e^{2t}\\ -\sin(\theta)e^{-2t} & \cos(\theta) \end{pmatrix}$$