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Intro

I Σ = a surface of χ(Σ) < 0, boundary ∂Σ

I Fricke space F(Σ) (Teichmueller space)
:= isotopy classes of marked hyperbolic structures on Σ
+ ∂Σ geodesic.

I Fricke space ↪→ Character variety of π1 = π1(Σ)

I Mapping class group MCG = Diff/Isotopies

Definition G a Lie group then χ(π1,G ) = G -character variety
:= {representations ρ : π1 → G} // G
”= {representations ρ : π1 → G} up to conjugation. ”



Representations and actions
ρ ∈ Hom(π1,G )
[ρ] ∈ Hom(π1,G )//G = χ(π1,G )

I Action on the representation variety

f ∈ Aut(π1), ρ ∈ Hom(π1,G ), f ∗ρ = ρ ◦ f −1

I Example: Action of interior automorphism f : γ 7→ αγα−1

(f ∗ρ)(γ) = ρ(α−1γα) = ρ(α−1)(γ)ρ(α). ⇒ [f ρ] = [ρ]

I Action of Out on Hom(π1,G )//G

[f ], [ρ] 7→ [f ∗ρ]

Outer automorphisms Out := Aut/Inn



The three big questions

1. What is the biggest subset on which MCG acts properly
discontinuously?

2. On the complement of this set is the action ergodic?

3. Does the answer agree with “geometric intuition”?

On Teichmueller space the action is proper.

action proper ↔ geometric structure associated to ρ.

When the action is proper one can take a quotient to form a
”moduli space”.

I How big is this moduli space?

I How does it degenerate?

What is the geography of the character variety relative to this
action?



Decomposition of a group action

Γ torsion free, Kleinian group
acts on Riemann sphere Ĉ = Ω t Λ

I Ω - discontinuity domain
∀x ,∃Ux , g(Ux) ∩ Ux = ∅, ∀g 6= 1

I Λ- limit set

I ∀U,∃g 6= 1, g(U) ∩ U 6= ∅
I Topo transitive i.e. ∃x , Γ.{x} ∩ U 6= ∅

(Γ.U = U)⇒ U = Λ, ∅
⇔ Every invariant continuous function is constant.

I Ergodic U meas.
(Γ.U = U)⇒ m(U)×m(Uc) = 0
⇔ Every invariant measurable function is constant.



Ergodic?

I Irrational rotation of the circle

z 7→ e iθz

I Hyperbolic toral automorphism(
x
y

)
7→

(
2 1
1 1

)(
x
y

)
mod 1

I SL(2,Z) action on ∂H = P(R2)

I SL(2,Z) action on R2

I Semigroup generated by two irrational rotations with distinct
fixed points.



I Semigroup generated by one irrational rotation on R2 NOT
ergodic

I Semigroup generated by two irrational rotations with distinct
fixed points.



I Semigroup generated by one irrational rotation on R2 NOT
ergodic

I Semigroup generated by two irrational rotations with distinct
fixed points.





Motivation



Motivation: Do,Norbury

Weil-Petersson volumes and cone surfaces, ( 2005)

I Mapping class group MCG.

I ωWP – MCG-invar. symplectic form.

I ⇒ Moduli space admits a symplectic vol. form

Symplectic volume of the moduli space of a surface

I = a number for surface with marked points.
Wolpert (1982), Penner, Harer-Zagier

I = a polynomial for surface with boundary.
Nakanishi-Naatanen (2001), Mirzakhani(2003).

torus, one hole, V1(l1) =
1

24
(4π2 + l2

1 )

torus, two hole, V1(l1, l2) =
1

192
(4π2 + l2

1 + l2
2 )(12π2 + l2

1 + l2
2 )
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Motivation: Interpolating the forgetful map

∂

∂ln
V1(l1, . . . ln−1, 2πi) = −2πi × χ(Σg ,n)× V1(l1, . . . ln−1)

Cone point = geodesic boundary with complex length iθ
Use cone surface with a cone point of angle 0 < θ < 2π.



∂

∂ln
V1(l1, . . . ln−1, 2πi) = −2πi × χ(Σg ,n)× V1(l1, . . . ln−1)

Cone point = geodesic boundary with complex length iθ
Use cone surface with a cone point of angle 0 < θ < 2π :

I to interpolate the forgetful map (Σg , p)→ Σg

I study degeneration of associated fibration(s)

Σg → T (Σg ,1)/MCG → T (Σg )/MCG

I Volume should go to zero (Schumacher-Trappani + some
work)

Vg (±2πi) = 0

I What happens to the topology of the moduli space.

I What happens to the dynamics of MCG
as θ → 2π.



Four holed sphere

V0(lα, lβ, lγ , lδ) =
1

2
(4π2 + l2

α + l2
β + l2

γ + l2
δ )

What happens to

I the topology of the moduli space

I the dynamics of MCG
as lδ → 2πi ?



Four holed sphere

V0(lα, lβ, lγ , lδ) =
1

2
(4π2 + l2

α + l2
β + l2

γ + l2
δ )

What happens to

I the topology of the moduli space

I the dynamics of MCG
as lδ → 2πi ?
Σ = Four-holed sphere = (pair of pants) t (pair of pants) / ∼



Example: torus with a hole



Σ = torus with a hole/cone point
Definition SL(2,R)-character variety

:= {traces of representations ρ : π1 → SL(2,R)}
”= {representations ρ : π1 → SL(2,R)} up to conjugation. ”
= {representations ρ : π1 → SL(2,R)} // SL(2,R)

π1(torus \ {pt}) = 〈α, β〉 ' Z ∗ Z

Theorem (Fricke/Vogt)

The SL(2,R)-character variety can be identified with
a semi algebraic set (SAS) of R3 via

χ : ρ 7→ (tr ρ(α), tr ρ(β), tr ρ(βα)).



Is χ : Hom(π1, SL(2,R))→ R3 surjective?

The character map is injective χ → R3

Is it surjective?Try to make a section:

ρ(α) =

(
x −1
1 0

)
, ρ(α) =

(
0 ζ−1

−ζ y

)
, ρ(αβ) =

(
ζ xζ−1 + y
0 ζ−1

)

z = ζ + ζ−1

Conclusion

I ∃SL(2,R) representation with traces (x , y , z)
if (at least ) one of |x |, |y |, |z | ≥ 2.

I if ζ /∈ R then ∃SU(2) representation with traces (x , y , z).



Slicing the character variety: Peripheral element

Lemma
δ = αβα−1β−1, f ∈ Aut(Z ∗Z) then f (δ) is conjugate to δ or δ−1.

Corollary

κ : ρ 7→ 2 + tr (ρ(δ)) is an invariant function for MCG action (so
action is not ergodic).

Calculate `δ from the traces

κ(ρ) := 2 + tr ρ(δ)

= tr 2ρ(α) + tr 2ρ(β) + tr 2ρ(γ)− tr ρ(α).tr ρ(β).tr ρ(γ)

= 2− 2 cosh(`δ/2)

The Fricke space of a holed torus is homeomorphic to (a
connected component) of

(x , y , z) ∈ R3, κ(x , y , z) := x2 + y 2 + z2 − xyz ≤ 0,



Geography of character variety

Loop round the hole δ = [α, β] ∈ π1

SU(2)
reducible

reducible

re
d
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ci
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trivial

Teichmueller



Geography of character variety

Loop round the hole δ = [α, β] ∈ π1



Topology of level sets of κ

Theorem (Fricke)

If ρ ∈ Hom(Z ∗ Z, SL(2,R)) is reducible then its image is in

κ−1(4)⇔ x2 + y 2 + z2 − xyz = 4.

.

1. Easy calculation ⇒ κ−1(t) singular iff t = 4

2. The singular points are permuted by the action.

3. The chararacter of the trivial representation is a singular
point. It is a global fixed point.



Topology of level sets of κ−1(t)

κ(x , y , z) := x2 + y 2 + z2 − xyz

] connected compents topology
of κ−1(t)

t = 4 single component complicated

t < 0 4 components 4 discs

0 ≤ t < 4 5 components 4 discs
a sphere

4 < t single component 4 holed sphere

Remark: The sphere component ⊂ {|x |, |y |, |z | ≤ 2}



Finally

SU(2)
reducible

reducible

re
d
u
ci
b
le

trivial

Teichmueller



Action of MCG

tα–Dehn twist round α.

I (tα)∗ : π1 → π1, α 7→ α, β 7→ β.α

I Automorphism of R3

R3 → R3

(x , y , z) 7→ (x , xy − z , y)

I Similarly Dehn twist round β

(x , y , z) 7→ (xy − z , y , x)

Dehn twists generate MCG.
⇒ The mapping class group acts on the whole of R3 by
polynomial automorphisms.



Dynamical decomposition

Theorem (Goldman)

κ−1(t) topology dynamics

t = 4 complicated finite number of
minimal sets

t < 0 4 discs proper

0 ≤ t < 4 4 discs proper
a sphere ergodic

4 < t ≤ 20 4 holed sphere ergodic

20 < t ” wandering domains

Definition an open set U is a wandering domain for the action of
a group Γ iff

g(U) ∩ U 6= ∅ ⇒ g = 1Γ



Faithful discrete ⇒ action proper

1. κ−1(t < 0) = 4 × Fricke space of a holed torus

length spectrum of a hyperbolic surface is discrete
⇒ action proper.

But if 0 ≤ t < 4 then 4 discs ⊂ κ−1(t) and action is still proper.
κ(ρ) = 2 + tr ρ(δ) = 2 + 2 cosh(`δ/2) ≥ 4 if `δ ∈ R
κ(ρ) = 2 + tr ρ(δ) = 2 + 2 cosh(iθ/2) ≤ 4

The discs are in the Fricke space of a torus with a cone point.



ρ not discrete, faithful for 0 < θ < 2π

If ρ : π1 → SL(2,R) discrete, faithful then ρ(γ) is hyperbolic
∀γ(6= 1) ∈ π1.

ρ(δ) is elliptic, but peripheral

Definition: Simple Hyperbolicity

∀γ ∈ π1 essential, simple loop the element ρ(γ) is hyperbolic.

⇒ length function still well defined i.e.

∃`γ(ρ) > 0, |tr ρ(γ)| = 2 cosh(`γ(ρ)/2)

Definition: Simple Spectrum

Simple spectrum : = {`γ(ρ), γ essential, simple loop}.
want to show that the simple spectrum grows as quickly as for a
discrete representation.



Theorem (Tan-Wong-Zhang)

For θ < 2π: ∃ε(ρ) > 0 such that ∀γ essential simple loop

`γ(ρ) ≥ ε`γ(ρ0).

where ρ0 a fixed discrete faithful representation
and H/ρ0 is a complete, hyperbolic one holed torus.

Corollary

The action of MCG is proper on the discs.

Proper ↔ geometric structure.





Wolpert’s Volume Calculation
Invariant area form on the level sets κ−1(t):

dx ∧ dy

xy − 2z

When the action is proper one can associate a volume and
calculate it by finding a fundamental domain.

Nakashini/Nataanen generalised Wolpert’s method to
surfaces with boundary :
one holed torus V1(l) = 1

24
(4π2 + l2)

ρ reducible ⇒ κ = 4 = 2− 2 cosh(i`δ/2)⇒ i`δ = 2πi
and V1(2πi) = 0

Theorem (Goldman)

The SL(2,Z) <MCG action on the SL(2,R)-reducibles is ergodic
in fact it is conjugate to the usual linear action of SL(2,Z) on
R2/v → −v.



Action on the SU(2) representations

Theorem (Goldman)

The action of MCG on the SU(2)-reducibles is ergodic in fact it is
conjugate to the usual linear action of SL(2,Z) on
(S1 × S1)/inversion.

I Any φ ∈MCG pseudo anosov acts ergodically on reducibles.

I But any φ ∈MCG Dehn twist preserves non constant
function.

Theorem (Goldman)

The action of MCG on κ−1(t) ⊂ SU(2)-characters is ergodic.

Theorem (Brown)

There exists t and φ ∈MCG pseudo anosov such that φ does not
act ergodically on κ−1(t).



Action on the SU(2) representations

Theorem (Goldman)

The action of MCG on κ−1(t) ⊂ SU(2)-characters is ergodic.

Theorem (Brown)

There exists t and φ ∈MCG pseudo anosov such that φ does not
act ergodically on κ−1(t).



Action on the SU(2) representations

Theorem (Goldman)

The action of MCG on κ−1(t) ⊂ SU(2)-characters is ergodic.

Question (Funar): Does every non elementary subgroup of
MCG act ergodically?



Non orientable surfaces



Non orientable surfaces PGL(2,R)

I C2,0 = One holed Moebius band, MCG finite

I C1,1 = One holed Klein bottle, MCG infinite dihedral

Want to use traces again to embed the character variety in R3.

Trick: the stabiliser of a plane H ⊂ H3 in PSL(2,C) is
isomorphic to PGL(2,R).

The orientation reversing reflections in H are restrictions of
rotations of H3 through an angle π around an axis in H.

z 7→ −z ↔
(

i 0
0 −i

)
∈ SL(2,C)



Non orientable surfaces PGL(2,R)

Theorem
Γ := PGL(2,Z)
κ(x , y , z) := −x2 − y 2 + z2 + xyz − 2

1. The action of Γ on Γ.F(C2,0) is proper.

2. For t < 2 the action on the complement of κ−1(t) \ Γ.(C2,0)
is ergodic

3. The action of Γ on Γ.F(C1,1) is proper.

The complement of Γ.F(C1,1) is a closed, nowhere dense subset. If
the connected components of the complement of the dihedral
representations are properly embedded copies of R



Four holed spheres



Four holed sphere: π1 = 〈α, β, γ, δ, δ = γβα〉.

α β γ

I fix boundary lengths lα, lβ, lγ ≥ 0.

I vary the fourth lδ = iθ ⇒ |tr δ| = 2 cos(θ/2))

character variety ↪→ (SAS. ⊂ R7)
ρ 7→ traces of 4 peripheral elts

+traces of 3 other elts
relative character variety ↪→ (SAS. ⊂ R3)

ρ 7→ traces of 3 other elts



Four holed sphere

Theorem (Fricke, Goldman, Gauglhofer-Semmler,
Cantat-Loray)

The relative character variety defined by
tr ρ(α) = 2 cosh(`α/2), tr ρ(β) = 2 cosh(`β/2)
tr ρ(γ) = 2 cosh(`γ/2) and tr ρ(δ) = 2 cos(θ/2)
is identified with a semi-algebraic subset of R3 whose points satisfy

x2 + y 2 + z2 + xyz = Ax + By + Cz + D

by ρ 7→ (tr ρ(αβ), tr ρ(βγ), tr ρ(γα)).



MCG dynamics on the relative character

∃ three involutions

I induced by homeomorphisms of the four holed sphere

I that preserve a function ρ 7→ tr ρ(δ) (analogous to κ)

Because, though x2 + y 2 + z2 + xyz = Ax + By + Cz + D
is cubic, it is quadratic in x so there is an involution (on the SAS)
that swaps the two roots of

x2 + x(yz − A) + y 2 + z2 − By − Cz − D = 0

and this is induced by an orientation reversing homeomorphisms of
the sphere.



MCG dynamics when all the peripheral elements are
parabolic

Observation
Involutions are good because the dynamics is determined
by configuration of fixed point sets.



MCG dynamics: fixed point sets of involutions
When α, β, γ parabolic. ∃ a simpler model for the dynamics,
(semi) conjugate to the action of 3 involutions on a subset of
{(a, b)} ⊂ R3.

Fixed point sets of involutions

{a = 2}, {b = 2}
{c(a, b) = 2} = {(a− 2)(b − 2) = 2 cos( θ2 ) + 2}.

a

b

(2,2)

(1,1)

(a− 2)(b− 2) = 2

ab− a− b = 0

Observation
Involutions are good because fixed point sets determine a
fundamental domain.



MCG dynamics: volume

Theorem (M)

When the peripheral elements ( 6= δ) are parabolic, θ < 2π:

I the three involutiuons generate a group isomorphic to
Z/2 ∗ Z/2 ∗ Z/2

I this group contains the pure braid group (MCG) as a finite
index subgroup.

I there is a fundamental domain which is a SAS.

(Wolpert’s) symplectic form on T (Σ)θ

ωWP =
da ∧ db

ab − b − a

Corollary

Vol(T (Σ)θ) = 1
2 (4π2 − θ2)



Where does the extra volume come from: Algebraic limits
Fix a sequence θn → 2π consider limits of ρn = holonomy of a 3
holed sphere with cone point of angle θn.

Theorem (M)

In the relative character variety of the 4 holed sphere.

I space of possible limits of [ρn] is a disc.

I this disc contains a single global fixed point for MCG-action.
I MCG-action is

I wandering off a closed set on the disc if

l2
α + l2

β + l2
γ > 0

I ergodic if l2
α = l2

β = l2
γ = 0



Algebraic limits

Extra volume comes from the quotient of the wandering part.

V0(lα, lβ, lγ , 2πi) =
1

2
(4π2 + l2

α + l2
β + l2

γ − 4π2)

=
1

2
(l2
α + l2

β + l2
γ )

ρn(δ)→ parabolic element. The fixed point is out one of the
funnels on the 3-holed sphere.
From far away an elliptic element can look like a parabolic element:

(
et 0
0 e−t

)(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
e−t 0

0 et

)
=

(
cos(θ) sin(θ)e2t

− sin(θ)e−2t cos(θ)

)



Algebraic limits

From far away an elliptic element can look like a parabolic element:

(
et 0
0 e−t

)(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
e−t 0

0 et

)
=

(
cos(θ) sin(θ)e2t

− sin(θ)e−2t cos(θ)

)
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