Subgroups of mapping class groups generated by Dehn kwisks around meridians on splitting surfaces

Ken'ichi Ohshika (Osaka University)

Séminaire franco-japonais 2012
Aspects of representation theory in low-dimensional topology and
3-dimensional invariants

Splittings we consider

1. Heegaard splittings

A Heegaard splitting is a decomposition of a closed 3-manifold into two handlebodies glued along their boundaries.

For a Heegaard splitting $M=H_{1} \cup_{S} H_{2}$, we define $\Delta_{j}(j=1,2)$ to be the set of meridians (simple closed curves on S bounding compressing discs in H_{j}) in the curve complex $C(S)$ of S.

The Hempel (or Heegaard) distance of the splitting is defined to be the distance between Δ_{1} and Δ_{2} in the curve complex $C(S)$.

It is known that M is hyperbolic if the Hempel distance is greater than 2 .

2. Bridge decomposition of knots/links

An n-bridge decomposition is a decomposition of a link in the 3 -sphere into two trivial n-tangles (along $2 n$-times punctured sphere).

More generally, we can consider a link L in a closed 3-manifold M and its Heegaard decomposition $M=H_{l} \cup H_{2}$ such that both $H_{l} \cap L$ and $H_{2} \cap L$ are trivial tangles. This can be regarded a relative version of a Heegaard splitting.

The most well-known are two-bridge decomposition of a link in the 3-sphere:

We can define the sets of meridians Δ_{1}, Δ_{2} in the same way as Heegaard splittings, where meridians are assumed to be disjoint from the strands.

We define the Hempel distance to be the distance between Δ_{1} and Δ_{2} in the curve complex of the splitting punctured sphere for a link in the 3 -sphere, or the splitting punctured surface in the general case.

Automorphism groups for splittings

Let $M=H_{1} \cup_{S} H_{2}$ be a Heegaard splitting or a bridge decomposition.

For $j=1,2$, we consider the inclusion $\iota_{j}: \pi_{0} \operatorname{Diff}^{+}\left(H_{j}\right) \rightarrow \pi_{0} \operatorname{Diff}^{+}(S)=\operatorname{Mod}(S)$.
The image of t_{j} is denoted by Γ_{j}.
Let $\operatorname{Diff}^{0}\left(H_{j}\right)$ be the subgroup of $\operatorname{Diff}^{+}\left(H_{j}\right)$ consisting of diffeomorphisms homotopic to the identity.
We define G_{j} to be $l_{j}\left(\pi_{0} \operatorname{Diff}^{0}\left(H_{j}\right)\right)$.
It is know that this group is generated by Dehn twist around meridians.

Minsky's questions:

1. Is $\Gamma_{1} \cap \Gamma_{2}$ finite if the Hempel distance is greater than 2 ?
2. Let $\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle$ be the subgroup of $\operatorname{Mod}(S)$ generated by Γ_{1} and Γ_{2}.

Does this group admit a decomposition $\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle=\Gamma_{1}{ }^{*} \Gamma_{\cap} \cap \Gamma_{2} \Gamma_{2}$?

Namazi showed the answer to 1 is yes when the Hempel distance is large enough.
Johnson showed the same when the Hempel distance is greater than 2.

Questions posed by Sakuma (our problems):

1. Is $G_{1} \cap G_{2}$ trivial if the Hempel distance is large enough?
2. Let $\left\langle G_{1}, G_{2}\right\rangle$ be the subgroup of $\operatorname{Mod}(S)$ generated by G_{1} and G_{2}.

Does this group admit a free-product decomposition $\left\langle G_{1}, G_{2}\right\rangle=G_{1} * G_{2}$?
3. Characterise curves on S which are null-homotopic in M.

Does the set of curves null-homotopic in M coincide with $\left\langle G_{1}, G_{2}\right\rangle\left(\Delta_{1} \cup \Delta_{2}\right)$ if the Hempel distance is large enough?

4. Is there an open set in $\mathscr{P C H C L}(S)$ in which no curves are null-homotopic in M ?
 discontinuity if the Hempel distance is large enough?
6. Let Δ^{*} be the closure of $\left\langle G_{1}, G_{2}\right\rangle\left(\Delta_{1} \cup \Delta_{2}\right)$ in $\mathscr{P Y} \mathcal{P}(S)$. Does Δ^{*} have measure 0 ?
D. Lee and Sakuma showed that all of these are true for two-bridge link complements.

Structure of automorphism groups: Answers to Sakuma's Questions 1 and 2

Theorem 1 (Bowditch-O-Sakuma).
There is a constant K depending only on the topological type of S such that for any Heegaard splitting or bridge decomposition with Hempel distance greater than K, the following hold.
(a) $G_{1} \cap G_{2}$ is trivial.
(b) $\left\langle G_{1}, G_{2}\right\rangle=G_{1} * G_{2}$.

Remark: We have not yet succeeded in getting the same kind of answer to Minsky's Question 2.

Sketch of Proof

Ingredients:

1. The hyperbolicity of curve complexes. (Masur-Minsky)
2. The acylindricity of the action of the mapping class group on a curve complex. (Bowditch)
3. The quasi-convexity of Δ_{1}, Δ_{2} (Minsky, Namazi).
4. The hyperbolicity: there is a constant δ depending only on the topological type of S such that every geodesic triangle in $C(S)$ is δ-thin.

isometric on each side of the triangle
Δ is said to be δ-thin when $d(x, y) \leq \delta$ for every x, y with $f_{\Delta}(x)=f_{\Delta}(y)$.
5. Acylindricity:

For any $K \geq 0$, there exist D and N depending only on the topological type of S with the following property.

For any points $x, y \in C(S)$ with $d(x, y) \geq D$, there are at most N elements of $g \in \operatorname{Mod}(S)$ such that $d(x, g x) \leq K$ and $d(y, g y) \leq K$.
3. Quasi-convexity:

There exists a constant L depending only on the topological type of S such that every geodesic segment connecting two points in Δ_{j} is contained in the L-neighbourhood of Δ_{j}.

(A) $G_{1} \cap G_{2}$ is trivial.

The hyperbolicity and the acylindricity imply that $G_{1} \cap G_{2}$ is finite if K is large.
(This part was shown by Namazi, we present a simplified version of his idea.)

Connect Δ_{1} and Δ_{2} by a shortest geodesic γ with endpoints $x \in \Delta_{1}$ and $y \in \Delta_{2}$.
For $g \in G_{1} \cap G_{2}$, the distances $d(x, g x)$ and $d(y, g y)$ are uniformly bounded.
(Otherwise, we would have an arc shorter than γ connecting Δ_{1} and Δ_{2} by the hyperbolicity and the quasi-convexity of Δ_{1} and Δ_{2}.)

The acylindricity implies there are only finitely many elements in $G_{1} \cap G_{2}$ provided that γ is sufficiently long.

It is known that G_{1} (or G_{2}) is torsion free (Otal).
contradiction

(B) $G=G_{1} * G_{2}$.

For $g \in G_{j}$, we connect the (non-fixed) endpoints of γ and $g \gamma$ by a geodesics c and d, and consider the quadrilateral $\gamma \cup d \cup g \gamma \cup c$.

Then the acylindricity of the action and the quasi-convexity of Δ_{1} and Δ_{2} give us a bound L for the lengths of the legs of the tree on which each pair of γ, d and $g \gamma$ is identified.

Express $g \in\left\langle G_{1}, G_{2}\right\rangle$ as a reduced product $g_{1} \ldots g_{k}$ of elements of G_{1}, G_{2}.
Consider the translates $\gamma, g_{k} \gamma, g_{k-1} g_{k} \gamma \ldots, g \gamma$.
Connect their endpoints by geodesics as d above.
These constitute a uniform quasi-geodesic (if the Hempel distance is large enough) and never comes back to the initial point.
Therefore g cannot be the identity.

Open sets containing no null-homotopic curves: An answer to Sakuma's problem 4

Theorem 2 (O-Sakuma). There is a non-empty open set U in \mathscr{P} PrG (S) in

 which no curves are null-homotopic in M if the Hempel distance is large enough.Basic tool:

We use model manifolds of Heegaard splittings/bridge decomposition by Namazi (partially collaborating with Brock, Minsky and Souto).

If the Hempel distance is larger than K, then there is an L-bilipschitz model manifold N of M with L depending on K and the genus of S.

The model manifold is constructed from hyperbolic compression bodies.

A compression body is a connected 3-manifold obtained from finitely many produce I-bundles by attaching finitely many 1 -handles.

We regard a handle body also as a compression body where the interior boundary is empty.

Namazi's model construction

This model is realised as a negatively curved manifold close to a hyperbolic manifold.

Sketch of Proof:

Consider a measured lamination λ which can be realised by a pleated surface homotopic to the inclusion of S in the pasting margin of along S.

We take λ to have rational depth 0 , i.e. so that every complementary region of λ is an ideal triangle.

This is always possible since the set of projective laminations of rational depth 0 is an open dense set.

Then, there is an open neighbourhood U of $[\lambda]$ in $\mathscr{P} \mathscr{H}(S)$ such that every measured lamination in U can also be realised by a pleated surface near the realisation of λ.

In particular, no simple closed curves in U are null-homotopic in M. This is an open set as we wanted.

Non-empty domain of discontinuity: an answer to Sakuma's problem 2

Theorem 3. There is a non-empty domain of discontinuity for the action of $\left\langle G_{1}, G_{2}\right\rangle$ on \mathscr{P} Y/C (S) if the Hempel distance if large enough. To be more precise, there is an open set U such that $\left\{g \in\left\langle G_{1}, G_{2}\right\rangle \mid g U \cap U \neq \varnothing\right\}=\{i d\}$.

Proof:

We take U to be an open set as in the proof of Theorem 2 .
Suppose that $g U \cap U \neq \varnothing$.

Then for any simple closed curve $a \in g U \cap U$, there is $b \in U$ such that $a=g(b)$.
Since $g \in\left\langle G_{1}, G_{2}\right\rangle$, this implies $a=b$ by the property of U.
Therefore g fixes all simple closed curves in $g U \cap U$.
Since simple closed curves are dense in $g U \cap U$, this shows g fixes all points in $g U \cap U$.
This is possible only when $g=i d$.

Special case:

gluing by iterations of a pseudo-Anosov map

Let $S^{3}=H_{1} \cup_{l} H_{2}$ be a standard Heegaard splitting of S^{3} along S pasted by $\imath: \partial H_{1} \rightarrow \partial H_{2}$.
Alternatively, we consider an n-bridge decomposition of unknot $V=H_{1} \cup_{l} H_{2}$.
Let $\varphi: S \rightarrow S$ be a pseudo-Anosov map which does not extend any compression body in H_{2}. μ_{φ} : a stable lamination of φ. (cf. Cyril Lecuire's talk)

Consider a Heegaard splitting $M_{n}=H_{1} \cup ⿺ \circ \iota^{n} H_{2}$.
G_{1} : the subgroup of the mapping class group of H_{1} represented by homeomorphisms homotopic to the identity in H_{1}, regarded as a subgroup of the mapping class group of S.
$G^{n}{ }_{2}$: the subgroup of the mapping class group of H_{2} in M represented by homeomorphisms homotopic to the identity in H_{2}, regarded as a subgroup of the mapping class group of $S \subset M_{n}$.
$\mathscr{P} \mathscr{O}\left(H_{1}\right)=\left\{[\lambda] \in \mathscr{P} \mathscr{P} \mathcal{C}(S) \mid \exists \eta>0\right.$ such that $i(\lambda, m)>\eta$ for any meridian m of $\left.H_{1}\right\}$

Theorem 3. For any projective lamination $[\lambda]$ in $\mathscr{R}\left(H_{1}\right) \backslash G_{1} l\left(\mu_{\varphi}\right)$ there exist an open neighbourhood U of $[\lambda]$ and n_{0} such that $\left\{g \in\left\langle G_{1}, G^{n}{ }_{2}\right\rangle\right.$ $\mid g U \cap U \neq \varnothing\}=\{$ id $\}$ if $n \geq n_{0}$.
In other words, $\mathscr{O O}\left(H_{1}\right) \backslash G_{1} l\left(\mu_{\varphi}\right)$ is covered by the domain of discontinuity of $\left\langle G_{1}, G^{n}\right\rangle$ as $n \rightarrow \infty$.

Sketch of Proof:

Namazi-Souto showed that if we put a basepoint in H_{1}, the manifold M_{n} (which is hyperbolic for large n) converges geometrically to a hyperbolic 3-manifold N such that $\pi_{1}(N)=\pi_{1}\left(H_{1}\right)$, and its ending lamination is $l\left(\mu_{\varphi}\right)$.

This implies that any lamination in $\mathscr{P} \mathscr{(}\left(H_{1}\right) \backslash G_{1} l\left(\mu_{\varphi}\right)$ can be realised by a pleated surface in N.

Using the geometric convergence of $\left\{M_{n}\right\}$ to N, it follows that any $[\lambda] \in \mathscr{P} \mathscr{O}\left(H_{1}\right) \backslash G_{1} l\left(\mu_{\varphi}\right)$ has a neighbourhood in which no simple closed curves are null-homotopic in M_{n} for $n \geq n_{0}$.

The same argument as in the proof of Theorem 2 shows that $[\lambda]$ has a neighbourhood U such that $\left.\left\{g \in\left\langle G_{1}, G^{n}{ }_{2}\right\rangle\right\} \mid g U \cap U \neq \varnothing\right\}=\{\mathrm{id}\}$ for $n \geq n_{0}$.

Related topics and prospects

1. A systematic construction of epimorphisms between n-bridge link groups.

For two-bridge links this was done by Ohtsuki-Riley-Sakuma.
Lee-Sakuma gave a necessary and sufficient condition for the existence of epimorphisms preserving meridians for two bridge link complements.

To get a similar result for n-bridge link complements, we need to refine Theorem 1 .

For instance, if we can solve Sakuma's problem 1 affirmatively, and can give a lower bound of Hempel distances concretely, we are done.

Recall the problem 1:
Does the set of curves null-homotopic in M coincide with $\left\langle G_{1}, G_{2}\right\rangle\left(\Delta_{1} \cup \Delta_{2}\right)$ if the Hempel distance is large enough?

2. (Yet another) variation of McShane's identity

The original version of McShane's identity:
Fix a hyperbolic once-punctured torus S.
C is the set of essential simple closed curves on S.

$$
\sum_{\gamma \in \mathcal{C}} \frac{1}{1+\exp (l(\gamma))}=\frac{1}{2}
$$ l denotes the hyperbolic length on S.

There are generalisations and variations of this equality to various settings. McShane, Bowditch, Akiyoshi-Miyachi-Sakuma, Tan-Wong-Zhang, Mirzakhani, etc.

Lee and Sakuma obtained a variation of McShane's identity for two bridge link complement. In this case, $\mathscr{P} Y \mathscr{Y}(S) \cong S^{1}$ and it was shown that $S^{1} \backslash\left\langle G_{1}, G_{2}\right\rangle\{r, \infty\}$ is the domain of discontinuity of $\left\langle G_{1}, G_{2}\right\rangle$.
We can take two intervals I_{1}, I_{2} such that $I_{1} \cup I_{2}$ is the fundamental domain of the action on the domain of discontinuity.

$$
2 \sum_{s \in \operatorname{Int} I_{1}} \frac{1}{1+\exp l(s)}+2 \sum_{s \in \operatorname{Int} I_{2}} \frac{1}{1+\exp l(s)}+\sum_{s \in \partial I_{1} \cup \partial I_{2}} \frac{1}{1+\exp l(s)}=-1
$$

Can we generalise this to n-bridge link complements?

3. Points of discrete representations in the character variety of $\pi_{1}(S)$

If we put a basepoint in the "pasting margin" of two biggest compression bodies, M converges to a hyperbolic manifold homeomorphic to $S \times \mathbf{R}$ as the Hempel distance goes to ∞.

Can we realise this convergence as a continuous deformation of cone manifolds?

This can be done in the case of two bridge link complement.
(Akiyoshi-Sakuma-Wada-Yamashita $+\alpha$)

This would lead to some understanding of the characteristic variety outside the closure of the quasi-Fuchsian space.

