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Splittings we consider

1. Heegaard splittings

A Heegaard splitting is a decomposition of a closed 3-manifold into two
handlebodies glued along their boundaries.

For a Heegaard splitting M=H, UsH,, we define A;(j=1,2) to be the set of meridians

(simple closed curves on § bounding compressing discs in H;) in the curve complex C(S) of S.

The Hempel (or Heegaard) distance of the splitting is defined to be the distance between A
and A, 1n the curve complex C(S).

It 1s known that M 1s hyperbolic if the Hempel distance 1s greater than 2.




2. Bridge decomposition of knots/links

An n-bridge decomposition is a decomposition of a link in the 3-sphere into two trivial

n-tangles (along 2n-times punctured sphere).

More generally, we can consider a link L in a closed 3-manifold M and its Heegaard
decomposition M=H;UH? such that both H;NL and H>NL are trivial tangles.

This can be regarded a relative version of a Heegaard splitting.

The most well-known are two-bridge decomposition of a link in the 3-sphere:

We can define the sets of meridians A,A; in the same way as Heegaard splittings,

where meridians are assumed to be disjoint from the strands.

We define the Hempel distance to be the distance between A; and A, in the curve

complex of the splitting punctured sphere for a link in the 3-sphere, or the splitting
punctured surface in the general case.




Automorphism groups for splittings

Let M=H,UsH, be a Heegaard splitting or a bridge decomposition.

For j=1,2, we consider the inclusion ; : myDiff *(H;)— moDift "(S$)=Mod(S).
The 1mage of 1; 18 denoted by I';.

Let DiﬁO(Hj) be the subgroup of Diff"(H) consisting of diffeomorphisms homotopic
to the identity.

We define G; to be 1,(mDiff’(H))).
It 1s know that this group 1s generated by Dehn twist around meridians.

Minsky's questions:

1. Is I'yNI, finite 1if the Hempel distance 1s greater than 27
2. Let (I';,I) be the subgroup of Mod(S) generated by I'; and 1.

Does this group admit a decomposition (I';,I)=I"*rr.l%?

Namazi showed the answer to 1 1s yes when the Hempel distance 1s large enough.
Johnson showed the same when the Hempel distance is greater than 2.




Questions posed by Sakuma (our problems):

1. Is GiNG, trivial if the Hempel distance is large enough?

2. Let (G1,G,) be the subgroup of Mod(S) generated by G; and G,.
Does this group admit a free-product decomposition (G,G>)=G1*G,?

3. Characterise curves on S which are null-homotopic in M.
Does the set of curves null-homotopic in M coincide with

(G1,G2)(A1UA)) if the Hempel distance is large enough?

Let 72U AS) denote the projective measured lamination space on S.

4. Is there an open set in 22/¢/(S) in which no curves are null-homotopic
in M?




5. Does the action of (G;,G,) on ML S) have non-empty domain of
discontinuity 1f the Hempel distance 1s large enough?

6. Let A” be the closure of (G,G,)(AUA,) in &2 H(S).

Does A™ have measure O ?

D. Lee and Sakuma showed that all of these are true for two-bridge link complements.




Structure of automorphism groups:
Answers to Sakuma’s Questions 1 and 2

Theorem 1 (Bowditch-O-Sakuma).
There 1s a constant K depending only on the topological type of S

such that for any Heegaard splitting or bridge decomposition with
Hempel distance greater than K, the following hold.

(a) GiNG, 1s trivial.
(b) (G1,G2)=G1*Go.

Remark: We have not yet succeeded in getting the same kind of answer to Minsky's
Question 2.




Sketch of Proof

Ingredients:

1. The hyperbolicity of curve complexes. (Masur-Minsky)
2. The acylindricity of the action of the mapping class group
on a curve complex. (Bowditch)

3. The quasi-convexity of A,A; (Minsky, Namazi)

1. The hyperbolicity: there 1s a constant 6 depending only on the
topological type of S such that every geodesic triangle in C(S) 1s o-thin.

isometric on each side of the triangle

A 1s said to be o6-thin when d(x,y)<¢ for every x,y with fa(x)=fA(y).




2. Acylindricity:

For any K>0, there exist D and N depending only on the
topological type of S with the following property.

For any points x,yeC(S) with d(x,y)>D, there are at most N

elements of geMod(S) such that d(x,gx)<K and d(y,gy)<K.

3. Quasi-convexity:
There exists a constant L depending only on the topological type of S

such that every geodesic segment connecting two points in A; 1s

contained 1n the L-neighbourhood of A;.




(A) GiNGH 1s trivial.

The hyperbolicity and the acylindricity imply that GiNG-, is finite if K 1s large.
(This part was shown by Namazi, we present a simplified version of his idea.)

Connect A; and A, by a shortest geodesic y with endpoints x€A; and yEA,.
For geGNG,, the distances d(x,gx) and d(y,gy) are uniformly bounded.
(Otherwise, we would have an arc shorter than y connecting A; and A, by the hyperbolicity

and the quasi-convexity of A; and A,.)

The acylindricity implies there are only finitely many elements in G;NG, provided that y 1s

sufficiently long.

It is known that G, (or G») 1s torsion free (Otal).

—> contradiction




(B) G=G1*G2.

For geG;, we connect the (non-fixed) endpoints of y and gy by a geodesics
¢ and d, and consider the quadrilateral yudugyuUc.

&

Then the acylindricity of the action and the
quasi-convexity of A; and A, give us a bound

L for the lengths of the legs of the tree on
which each pair of y, d and gy 1s 1dentified.




Express ge(G,G») as a reduced product g; ... g, of elements of G{,G».

Consider the translates v, 9x7Y, 9k—19%7Y - - -, 97-

Connect their endpoints by geodesics as d above.

These constitute a uniform quasi-geodesic (if the Hempel distance 1s
large enough) and never comes back to the initial point.

Therefore g cannot be the identity.
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Open sets containing no null-homotopic curves:
An answer to Sakuma’s problem 4

Theorem 2 (O-Sakuma). There is a non-empty open set U in &2 /CAS) In

which no curves are null-homotopic in M if the Hempel distance is large
enough.

Basic tool:

We use model manifolds of Heegaard splittings/bridge decomposition by Namazi (partially
collaborating with Brock, Minsky and Souto).

If the Hempel distance 1s larger than K, then there 1s an L-bilipschitz model manifold N of M
with L depending on K and the genus of §.

The model manifold i1s constructed from hyperbolic compression bodies.




A compression body is a connected 3-manifold obtained from finitely many produce /-bundles

by attaching finitely many 1-handles.

Exterior boundary: compressible

interior boundary: incompressible

We regard a handle body also as a compression body where the interior boundary 1s
empty.




H,

Here is a pasting
margin nearly

Namazi’s model construction

The interior boundary of a
bigger compression body is

isometric to a "doubly
degenerate" hyperbolic
3-manifold.

pasted to the exterior
boundary of a smaller
compression body.

This model is realised as a negatively curved manifold close to a hyperbolic manifold.




Sketch of Proof:

Consider a measured lamination 4 which can be realised by a pleated surface homotopic to the

inclusion of S in the pasting margin of along S.

We take A to have rational depth 0, 1.e. so that every complementary region of A 1s an ideal

triangle.

This 1s always possible since the set of projective laminations of rational depth O is an open
dense set.

Then, there is an open neighbourhood U of [A] in &27/¢AS) such that every measured

lamination in U can also be realised by a pleated surface near the realisation of A.

In particular, no simple closed curves in U are null-homotopic in M.

This 1s an open set as we wanted.




Non-empty domain of discontinuity:
an answer to Sakuma’s problem 2

Theorem 3. There 1s a non-empty domain of discontinuity for the
action of (G1,G,) on &2/ (S) if the Hempel distance if large

enough. To be more precise, there 1s an open set U such that
{8€(G1,G2)|gUnU#2}={id}.

Proof:

We take U to be an open set as in the proof of Theorem 2.
Suppose that gUNU#Q.

Then for any simple closed curve acgUNU, there 1s b€ U such that a=g(b).
Since g€(G4,G,), this implies a=b by the property of U.
Therefore g fixes all simple closed curves in gUNU.

Since simple closed curves are dense in gUNU, this shows g fixes all points in gUNU.
This 1s possible only when g=id.




Special case:
gluing by iterations of a pseudo-Anosov map

Let S°=H,U,H, be a standard Heegaard splitting of S° along S pasted by 1:0H,— 0H,.

Alternatively, we consider an n-bridge decomposition of unknot V=H,U.H,.

Let ¢:5—S§ be a pseudo-Anosov map which does not extend any compression body in H,,
U,: a stable lamination of ¢. (ct. Cyril Lecuire’s talk)

Consider a Heegaard splitting M,,=HU:-¢"H,.

G: the subgroup of the mapping class group of H; represented by homeomorphisms homotopic to

the identity in H;, regarded as a subgroup of the mapping class group of §.

G",: the subgroup of the mapping class group of H, in M represented by homeomorphisms

homotopic to the identity in H,, regarded as a subgroup of the mapping class group of SCM,,.

oC)(Hy)={[Ale 2°v(S)|An>0 such that i(4,m)>n for any meridian m of H,}




Theorem 3. For any projective lamination [A] in 9% (H)\Gi(u,) there
exist an open neighbourhood U of [A] and ny such that {ge(G,,G",)
leUNU#g} ={id} if n>n,.

In other words, 9/ (H)\G1(u,) 1s covered by the domain of discontinuity
of (G,G",) as n—co.

Sketch of Proof:

Namazi-Souto showed that if we put a basepoint in H, the manifold M,, (which is hyperbolic
for large n) converges geometrically to a hyperbolic 3-manifold N such that z;(N)=n(H;), and

its ending lamination 1s ().

This implies that any lamination in &% (H)\G,1(u,,) can be realised by a pleated surface
in N.

Using the geometric convergence of {M, } to N, it follows that any [1]€ 24 (H)\G1(u,,) has a

neighbourhood in which no simple closed curves are null-homotopic in M), for n>n,.

The same argument as in the proof of Theorem 2 shows that [A] has a neighbourhood U such that
{ge(G1,G™) } gUN U #@} ={id} for n>ny.




Related topics and prospects

1. A systematic construction of epimorphisms between n-bridge
link groups.

For two-bridge links this was done by Ohtsuki-Riley-Sakuma.
Lee-Sakuma gave a necessary and sufficient condition for the existence of epimorphisms preserving
meridians for two bridge link complements.

To get a similar result for n-bridge link complements, we need to refine Theorem 1.

For 1nstance, 1if we can solve Sakuma’s problem 1 affirmatively, and can give a lower bound of

Hempel distances concretely, we are done.

Recall the problem 1:
Does the set of curves null-homotopic in M coincide with (G;,G,)(AUA,) if the Hempel distance is

large enough?




2. (Yet another) variation of McShane’s 1dentity

The original version of McShane’s 1dentity:

Fix a hyperbolic once-punctured torus S.

(C'is the set of essential simple closed curves on S.

[ denotes the hyperbolic length on S.

There are generalisations and variations of this equality to various settings.
McShane, Bowditch, Akiyoshi-Miyachi-Sakuma, Tan-Wong-Zhang, Mirzakhani, etc.

Lee and Sakuma obtained a variation of McShane's identity for two bridge link complement.
In this case, 2/(S)=S' and it was shown that S™\(G;,G,){r,00} is the domain of

discontinuity of (G1,G»).
We can take two intervals /;,/, such that I;Ul, 1s the fundamental domain of the action on the
domain of discontinuity.

1 1 1
2 = —1
Z 1 4+ expl(s) " Z 1 4+ expl(s) i Z 1 4 expl(s)

se€lnt I s€lnt I se0l1U0ls

Can we generalise this to n-bridge link complements?



3. Points of discrete representations in the character variety of m1(S)

If we put a basepoint in the "pasting margin" of two biggest compression bodies, M
converges to a hyperbolic manifold homeomorphic to $XR as the Hempel distance goes

o 00.

Can we realise this convergence as a continuous deformation of cone manifolds?

This can be done in the case of two bridge link complement.
(Akiyoshi-Sakuma-Wada-Yamashita + )

This would lead to some understanding of the characteristic variety outside the closure of
the quasi-Fuchsian space.




