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Splittings we consider

1. Heegaard splittings

A Heegaard splitting is a decomposition of a closed 3-manifold into two 
handlebodies glued along their boundaries.

For a Heegaard splitting M=H1∪SH2, we define Δj (j=1,2) to be the set of meridians 
(simple closed curves on S bounding compressing discs in Hj) in the curve complex C(S) of S. 

The Hempel (or Heegaard) distance of the splitting is defined to be the distance between Δ1 
and Δ2 in the curve complex C(S).

It is known that M is hyperbolic if the Hempel distance is greater than 2.



2. Bridge decomposition of knots/links
An n-bridge decomposition is a decomposition of a link in the 3-sphere into two trivial 
n-tangles (along 2n-times punctured sphere).

More generally, we can consider a link L in a closed 3-manifold M and its Heegaard 
decomposition M=H1⋃H2 such that both H1⋂L and H2⋂L are trivial tangles.
This can be regarded a relative version of a Heegaard splitting.

The most well-known are two-bridge decomposition of a link in the 3-sphere:

-a1
a2

-a3

We can define the sets of meridians Δ1,Δ2 in the same way as Heegaard splittings, 
where meridians are assumed to be disjoint from the strands.

We define the Hempel distance to be the distance between Δ1 and Δ2 in the curve 
complex of the splitting punctured sphere for a link in the 3-sphere, or the splitting  
punctured surface in the general case.



Automorphism groups for splittings

Let M=H1∪SH2 be a Heegaard splitting or a bridge decomposition.

For j=1,2, we consider the inclusion ιj : π0Diff+(Hj)→π0Diff+(S)=Mod(S). 
The image of ιj is denoted by Γj. 

Let Diff0(Hj) be the subgroup of Diff+(Hj) consisting of diffeomorphisms homotopic 
to the identity. 
We define Gj to be ιj(π0Diff0(Hj)). 
It is know that this group is generated by Dehn twist around meridians.

1. Is Γ1∩Γ2 finite if the Hempel distance is greater than 2? 
2. Let 〈Γ1,Γ2〉 be the subgroup of Mod(S) generated by Γ1 and Γ2. 
Does this group admit a decomposition 〈Γ1,Γ2〉=Γ1*Γ1∩Γ2Γ2?

Namazi showed the answer to 1 is yes when the Hempel distance is large enough.
Johnson showed the same when the Hempel distance is greater than 2.

Minsky's questions: 



Questions posed by Sakuma (our problems):

1. Is G1∩G2 trivial if the Hempel distance is large enough? 

2. Let 〈G1,G2〉 be the subgroup of Mod(S) generated by G1 and G2. 
    Does this group admit a free-product decomposition 〈G1,G2〉=G1*G2?

Let Pℳℒ(S) denote the projective measured lamination space on S.

3. Characterise curves on S which are null-homotopic in M.
    Does the set of curves null-homotopic in M coincide with
    〈G1,G2〉(Δ1∪Δ2) if the Hempel distance is large enough?

4. Is there an open set in PML (S) in which no curves are null-homotopic                   
in M?



5. Does the action of 〈G1,G2〉 on Pℳℒ(S) have non-empty domain of 
discontinuity if the Hempel distance is large enough?

6. Let Δ* be the closure of 〈G1,G2〉(Δ1∪Δ2) in PML (S). 
   Does Δ* have measure 0 ?

D. Lee and Sakuma showed that all of these are true for two-bridge link complements.



Structure of automorphism groups:
Answers to Sakuma’s Questions 1 and 2

Theorem 1 (Bowditch-O-Sakuma).
There is a constant K depending only on the topological type of S 
such that for any Heegaard splitting or bridge decomposition with 
Hempel distance greater than K, the following hold. 
(a) G1∩G2 is trivial. 
(b) 〈G1,G2〉=G1*G2.

Remark: We have not yet succeeded in getting the same kind of answer to Minsky's 
Question 2.



Sketch of Proof

Ingredients: 
1. The hyperbolicity of curve complexes. (Masur-Minsky)
2. The acylindricity of the action of the mapping class group 
on a curve complex.   (Bowditch)
3. The quasi-convexity of Δ1,Δ2 (Minsky, Namazi).

1. The hyperbolicity: there is a constant δ depending only on the 
topological type of S such that every geodesic triangle in C(S) is δ-thin.

fΔ

Δ

Δ is said to be δ-thin when d(x,y)≤δ for every x,y with fΔ(x)=fΔ(y).



2. Acylindricity: 
For any K≥0, there exist D and N depending only on the 
topological type of S with the following property. 
For any points x,y∈C(S) with d(x,y)≥D, there are at most N 
elements of g∈Mod(S) such that d(x,gx)≤K and d(y,gy)≤K.

3. Quasi-convexity: 
There exists a constant L depending only on the topological type of S 
such that every geodesic segment connecting two points in Δj is 
contained in the L-neighbourhood of Δj.



(A) G1∩G2 is trivial.

The hyperbolicity and the acylindricity imply that G1∩G2 is finite if K is large.
(This part was shown by Namazi, we present a simplified version of his idea.)

Connect Δ1 and Δ2 by a shortest geodesic γ with endpoints x∈Δ1 and y∈Δ2. 
For g∈G1∩G2, the distances d(x,gx) and d(y,gy) are uniformly bounded. 
(Otherwise, we would have an arc shorter than γ connecting Δ1 and Δ2 by the hyperbolicity 
and the quasi-convexity of Δ1 and Δ2.)

The acylindricity implies there are only finitely many elements in G1∩G2 provided that γ is 
sufficiently long.

It is known that G1 (or G2) is torsion free (Otal).

contradiction



(B) G=G1*G2.

For g∈Gj, we connect the (non-fixed) endpoints of γ and gγ by a geodesics 
c and d, and consider the quadrilateral γ∪d∪gγ∪c.

Then the acylindricity of the action and the 
quasi-convexity of Δ1 and Δ2  give us a bound 
L for the lengths of the legs of the tree on 
which each pair of γ, d and gγ is identified.



Express g∈〈G1,G2〉 as a reduced product g1 ... gk of elements of G1,G2. 
Consider the translates             
Connect their endpoints by geodesics as d above.
These constitute a uniform quasi-geodesic (if the Hempel distance is 
large enough)  and never comes back to the initial point. 
Therefore g cannot be the identity.

�, gk�, gk�1gk� . . . , g�.



Open sets containing no null-homotopic curves:
An answer to Sakuma’s problem 4

Theorem 2 (O-Sakuma). There is a non-empty open set U in PML(S) in 
which no curves are null-homotopic in M if the Hempel distance is large 
enough.

Basic tool:

We use model manifolds of Heegaard splittings/bridge decomposition by Namazi (partially 
collaborating with Brock, Minsky and Souto).

If the Hempel distance is larger than K, then there is an L-bilipschitz model manifold N of M
with L depending on K and the genus of S.

The model manifold is constructed from hyperbolic compression bodies.



A compression body is a connected 3-manifold obtained from finitely many produce I-bundles 
by attaching finitely many 1-handles.

We regard a handle body also as a compression body where the interior boundary is 
empty.

Exterior boundary: compressible

interior boundary: incompressible



Namazi’s model construction

H1

H2

The interior boundary of  a 
bigger compression body is 

pasted to the exterior 
boundary of a smaller 

compression body.

This model is realised as a negatively curved manifold close to a hyperbolic manifold.

Here is a pasting 
margin nearly 
isometric to a "doubly 
degenerate" hyperbolic 
3-manifold.



Sketch of Proof:
 
Consider a measured lamination λ which can be realised by a pleated surface homotopic to the 
inclusion of S in the pasting margin of along S.

We take λ to have rational depth 0, i.e. so that every complementary region of λ is an ideal 
triangle.

This is always possible since the set of projective laminations of rational depth 0 is an open 
dense set.

Then, there is an open neighbourhood U of [λ] in PML(S) such that every measured 
lamination in U can also be realised by a pleated surface near the realisation of λ.

In particular, no simple closed curves in U are null-homotopic in M. 
This is an open set as we wanted.



Non-empty domain of discontinuity: 
an answer to Sakuma’s problem 2 

Theorem 3. There is a non-empty domain of discontinuity for the 
action of 〈G1,G2〉 on PML  (S) if the Hempel distance if large 
enough. To be more precise, there is an open set U such that 
{g∈〈G1,G2〉∣gU∩U≠∅}={id}.

Proof: 

We take U to be an open set as in the proof of Theorem 2.
Suppose that gU∩U≠∅.

Then for any simple closed curve a∈gU∩U, there is b∈U such that a=g(b). 
Since g∈〈G1,G2〉, this implies a=b by the property of U. 
Therefore g fixes all simple closed curves in gU∩U. 
Since simple closed curves are dense in gU∩U, this shows g fixes all points in gU∩U. 
This is possible only when g=id.



Special case: 
gluing by iterations of a pseudo-Anosov map

Let φ:S→S be a pseudo-Anosov map which does not extend any compression body in H2.

μφ: a stable lamination of φ.  (cf. Cyril Lecuire’s talk)

Let S3=H1∪ιH2 be a standard Heegaard splitting of S3 along S pasted by ι:∂H1→∂H2.

Alternatively, we consider an n-bridge decomposition of unknot V=H1∪ιH2.

Consider a Heegaard splitting Mn=H1∪ι∘φnH2.

G1: the subgroup of the mapping class group of H1 represented by homeomorphisms homotopic to 
the identity in H1, regarded as a subgroup of the mapping class group of S.

Gn
2: the subgroup of the mapping class group of H2 in M represented by homeomorphisms 

homotopic to the identity in H2, regarded as a subgroup of the mapping class group of S⊂Mn.

PD (H1)={[λ]∈PML (S)∣∃η>0 such that i(λ,m)>η for any meridian m of H1}



Theorem 3.  For any projective lamination [λ] in PD (H1)\G1ι(μφ) there 
exist an open neighbourhood U of [λ] and n0 such that {g∈〈G1,Gn

2〉
∣gU∩U≠∅} ={id} if n≥n0. 
In other words, PD (H1)\G1ι(μφ) is covered by the domain of discontinuity 
of 〈G1,Gn

2〉 as n→∞.

Sketch of Proof:

Namazi-Souto showed that if we put a basepoint in H1, the manifold Mn (which is hyperbolic 
for large n) converges geometrically to a hyperbolic 3-manifold N such that π1(N)=π1(H1), and 
its ending lamination is ι(μφ).

This implies that any lamination in PD (H1)\G1ι(μφ) can be realised by a pleated surface 
in N.

Using the geometric convergence of {Mn} to N, it follows that any [λ]∈PD (H1)\G1ι(μφ) has a 
neighbourhood in which no simple closed curves are null-homotopic in Mn for n≥n0.

The same argument as in the proof of Theorem 2 shows that [λ] has a neighbourhood U such that 
{g∈〈G1,Gn

2〉}| gU∩ U ≠∅} ={id} for n≥n0.



Related topics and prospects

1. A systematic construction of epimorphisms between n-bridge 
link groups.

For two-bridge links this was done by Ohtsuki-Riley-Sakuma. 
Lee-Sakuma gave a necessary and sufficient condition for the existence of epimorphisms preserving 
meridians for two bridge link complements.

To get a similar result for n-bridge link complements, we need to refine Theorem 1.

For instance, if we can solve Sakuma’s problem 1 affirmatively, and can give a lower bound of 
Hempel distances concretely, we are done.   
  
Recall the problem 1:
Does the set of curves null-homotopic in M coincide with 〈G1,G2〉(Δ1∪Δ2) if the Hempel distance is 
large enough?



2.  (Yet another) variation of McShane’s identity

The original version of McShane’s identity: 
�

��C

1
1 + exp(l(�))

=
1
2

Fix a hyperbolic once-punctured torus S. 
C is the set of essential simple closed curves on S. 
l denotes the hyperbolic length on S.

There are generalisations and variations of this equality to various settings.
McShane, Bowditch, Akiyoshi-Miyachi-Sakuma, Tan-Wong-Zhang, Mirzakhani, etc.

Lee and Sakuma obtained a variation of McShane's identity for two bridge link complement. 
In this case, PML (S)≅S1 and it was shown that S1\〈G1,G2〉{r,∞} is the domain of 
discontinuity of 〈G1,G2〉. 
We can take two intervals I1,I2 such that I1∪I2 is the fundamental domain of the action on the 
domain of discontinuity.

2
�

s�Int I1

1
1 + exp l(s)

+ 2
�

s�Int I2

1
1 + exp l(s)

+
�

s��I1��I2

1
1 + exp l(s)

= �1

Can we generalise this to n-bridge link complements?



3. Points of discrete representations in the character variety of π1(S)

If we put a basepoint in the "pasting margin" of two biggest compression bodies, M 
converges to a hyperbolic manifold homeomorphic to S×R as the Hempel distance goes 
to ∞.

Can we realise this convergence as a continuous deformation of cone manifolds?

This can be done in the case of two bridge link complement. 
(Akiyoshi-Sakuma-Wada-Yamashita + α)

This would lead to some understanding of the characteristic variety outside the closure of 
the quasi-Fuchsian space.


