Subgroups of mapping class groups generated by Dehn twists around meridians on splitting surfaces

> Ken'ichi Ohshika (Osaka University)

Séminaire franco-japonais 2012 Aspects of representation theory in low-dimensional topology and 3-dimensional invariants

Splittings we consider

1. Heegaard splittings

A Heegaard splitting is a decomposition of a closed 3-manifold into two handlebodies glued along their boundaries.

For a Heegaard splitting $M=H_1\cup_S H_2$, we define Δ_j (j=1,2) to be the set of meridians (simple closed curves on *S* bounding compressing discs in H_j) in the curve complex C(S) of *S*.

The Hempel (or Heegaard) distance of the splitting is defined to be the distance between Δ_1 and Δ_2 in the curve complex *C*(*S*).

It is known that *M* is hyperbolic if the Hempel distance is greater than 2.

2. Bridge decomposition of knots/links

An *n*-bridge decomposition is a decomposition of a link in the 3-sphere into two trivial *n*-tangles (along *2n*-times punctured sphere).

More generally, we can consider a link *L* in a closed 3-manifold *M* and its Heegaard decomposition $M=H_1\cup H_2$ such that both $H_1\cap L$ and $H_2\cap L$ are trivial tangles. This can be regarded a relative version of a Heegaard splitting.

The most well-known are two-bridge decomposition of a link in the 3-sphere:

We can define the sets of meridians Δ_1, Δ_2 in the same way as Heegaard splittings, where meridians are assumed to be disjoint from the strands.

We define the Hempel distance to be the distance between Δ_1 and Δ_2 in the curve complex of the splitting punctured sphere for a link in the 3-sphere, or the splitting punctured surface in the general case.

Automorphism groups for splittings

Let $M=H_1\cup_S H_2$ be a Heegaard splitting or a bridge decomposition.

For j=1,2, we consider the inclusion $\iota_j : \pi_0 \text{Diff}^+(H_j) \rightarrow \pi_0 \text{Diff}^+(S) = \text{Mod}(S)$. The image of ι_j is denoted by Γ_j .

Let $\text{Diff}^0(H_j)$ be the subgroup of $\text{Diff}^+(H_j)$ consisting of diffeomorphisms homotopic to the identity.

We define G_j to be $\iota_j(\pi_0 \text{Diff}^0(H_j))$.

It is know that this group is generated by Dehn twist around meridians.

Minsky's questions:

1. Is $\Gamma_1 \cap \Gamma_2$ finite if the Hempel distance is greater than 2? 2. Let $\langle \Gamma_1, \Gamma_2 \rangle$ be the subgroup of Mod(*S*) generated by Γ_1 and Γ_2 . Does this group admit a decomposition $\langle \Gamma_1, \Gamma_2 \rangle = \Gamma_1^* \Gamma_1 \cap \Gamma_2 \Gamma_2$?

Namazi showed the answer to 1 is yes when the Hempel distance is large enough. Johnson showed the same when the Hempel distance is greater than 2.

Questions posed by Sakuma (our problems):

- 1. Is $G_1 \cap G_2$ trivial if the Hempel distance is large enough?
- 2. Let $\langle G_1, G_2 \rangle$ be the subgroup of Mod(*S*) generated by G_1 and G_2 . Does this group admit a free-product decomposition $\langle G_1, G_2 \rangle = G_1 * G_2$?

3. Characterise curves on *S* which are null-homotopic in *M*. Does the set of curves null-homotopic in *M* coincide with $\langle G_1, G_2 \rangle (\Delta_1 \cup \Delta_2)$ if the Hempel distance is large enough?

Let $\mathcal{PML}(S)$ denote the projective measured lamination space on S.

4. Is there an open set in $\mathcal{PMQ}(S)$ in which no curves are null-homotopic in M?

5. Does the action of $\langle G_1, G_2 \rangle$ on $\mathcal{PML}(S)$ have non-empty domain of discontinuity if the Hempel distance is large enough?

6. Let Δ^* be the closure of $\langle G_1, G_2 \rangle (\Delta_1 \cup \Delta_2)$ in $\mathcal{PMQ}(S)$. Does Δ^* have measure 0 ?

D. Lee and Sakuma showed that all of these are true for two-bridge link complements.

Structure of automorphism groups: Answers to Sakuma's Questions 1 and 2

Theorem 1 (Bowditch-O-Sakuma).

There is a constant K depending only on the topological type of S such that for any Heegaard splitting or bridge decomposition with Hempel distance greater than K, the following hold.

- (a) $G_1 \cap G_2$ is trivial.
- (b) $\langle G_1, G_2 \rangle = G_1 * G_2$.

Remark: We have not yet succeeded in getting the same kind of answer to Minsky's Question 2.

Sketch of Proof

Ingredients:

 The hyperbolicity of curve complexes. (Masur-Minsky)
The acylindricity of the action of the mapping class group on a curve complex. (Bowditch)

3. The quasi-convexity of Δ_1, Δ_2 (Minsky, Namazi).

1. The hyperbolicity: there is a constant δ depending only on the topological type of *S* such that every geodesic triangle in *C*(*S*) is δ -thin.

 Δ is said to be δ -thin when $d(x,y) \leq \delta$ for every x, y with $f_{\Delta}(x) = f_{\Delta}(y)$.

2. Acylindricity:

For any $K \ge 0$, there exist D and N depending only on the topological type of S with the following property. For any points $x,y \in C(S)$ with $d(x,y) \ge D$, there are at most N elements of $g \in Mod(S)$ such that $d(x,gx) \le K$ and $d(y,gy) \le K$.

3. Quasi-convexity:

There exists a constant *L* depending only on the topological type of *S* such that every geodesic segment connecting two points in Δ_j is contained in the *L*-neighbourhood of Δ_j .

(A) $G_1 \cap G_2$ is trivial.

The hyperbolicity and the acylindricity imply that $G_1 \cap G_2$ is finite if *K* is large. (This part was shown by Namazi, we present a simplified version of his idea.)

Connect Δ_1 and Δ_2 by a shortest geodesic γ with endpoints $x \in \Delta_1$ and $y \in \Delta_2$. For $g \in G_1 \cap G_2$, the distances d(x,gx) and d(y,gy) are uniformly bounded. (Otherwise, we would have an arc shorter than γ connecting Δ_1 and Δ_2 by the hyperbolicity and the quasi-convexity of Δ_1 and Δ_2 .)

The acylindricity implies there are only finitely many elements in $G_1 \cap G_2$ provided that γ is sufficiently long.

It is known that G_1 (or G_2) is torsion free (Otal).

contradiction

(B) $G = G_1 * G_2$.

For $g \in G_j$, we connect the (non-fixed) endpoints of γ and $g\gamma$ by a geodesics c and d, and consider the quadrilateral $\gamma \cup d \cup g\gamma \cup c$.

Then the acylindricity of the action and the quasi-convexity of Δ_1 and Δ_2 give us a bound *L* for the lengths of the legs of the tree on which each pair of γ , *d* and $g\gamma$ is identified.

Express $g \in \langle G_1, G_2 \rangle$ as a reduced product $g_1 \dots g_k$ of elements of G_1, G_2 . Consider the translates $\gamma, g_k \gamma, g_{k-1} g_k \gamma \dots, g \gamma$. Connect their endpoints by geodesics as *d* above. These constitute a uniform quasi-geodesic (if the Hempel distance is large enough) and never comes back to the initial point. Therefore *g* cannot be the identity.

Open sets containing no null-homotopic curves: An answer to Sakuma's problem 4

Theorem 2 (O-Sakuma). There is a non-empty open set U in $\mathcal{PMQ}(S)$ in which no curves are null-homotopic in M if the Hempel distance is large enough.

Basic tool:

We use model manifolds of Heegaard splittings/bridge decomposition by Namazi (partially collaborating with Brock, Minsky and Souto).

If the Hempel distance is larger than K, then there is an L-bilipschitz model manifold N of M with L depending on K and the genus of S.

The model manifold is constructed from hyperbolic compression bodies.

A compression body is a connected 3-manifold obtained from finitely many produce *I*-bundles by attaching finitely many 1-handles.

We regard a handle body also as a compression body where the interior boundary is empty.

Namazi's model construction

This model is realised as a negatively curved manifold close to a hyperbolic manifold.

Sketch of Proof:

Consider a measured lamination λ which can be realised by a pleated surface homotopic to the inclusion of *S* in the pasting margin of along *S*.

We take λ to have rational depth 0, i.e. so that every complementary region of λ is an ideal triangle.

This is always possible since the set of projective laminations of rational depth 0 is an open dense set.

Then, there is an open neighbourhood U of $[\lambda]$ in $\mathcal{PMQ}(S)$ such that every measured lamination in U can also be realised by a pleated surface near the realisation of λ .

In particular, no simple closed curves in U are null-homotopic in M. This is an open set as we wanted.

Non-empty domain of discontinuity: an answer to Sakuma's problem 2

Theorem 3. There is a non-empty domain of discontinuity for the action of $\langle G_1, G_2 \rangle$ on $\mathcal{PMQ}(S)$ if the Hempel distance if large enough. To be more precise, there is an open set *U* such that $\{g \in \langle G_1, G_2 \rangle | gU \cap U \neq \emptyset\} = \{id\}.$

Proof:

We take *U* to be an open set as in the proof of Theorem 2. Suppose that $gU \cap U \neq \emptyset$.

Then for any simple closed curve $a \in gU \cap U$, there is $b \in U$ such that a=g(b). Since $g \in \langle G_1, G_2 \rangle$, this implies a=b by the property of U. Therefore g fixes all simple closed curves in $gU \cap U$. Since simple closed curves are dense in $gU \cap U$, this shows g fixes all points in $gU \cap U$. This is possible only when g=id.

Special case: gluing by iterations of a pseudo-Anosov map

Let $S^3 = H_1 \cup_{\iota} H_2$ be a standard Heegaard splitting of S^3 along *S* pasted by $\iota: \partial H_1 \rightarrow \partial H_2$.

Alternatively, we consider an *n*-bridge decomposition of unknot $V=H_1\cup_i H_2$.

Let $\varphi: S \to S$ be a pseudo-Anosov map which does not extend any compression body in H_{2} . μ_{φ} : a stable lamination of φ . (cf. Cyril Lecuire's talk)

Consider a Heegaard splitting $M_n = H_1 \cup \iota \circ \varphi^n H_2$.

 G_1 : the subgroup of the mapping class group of H_1 represented by homeomorphisms homotopic to the identity in H_1 , regarded as a subgroup of the mapping class group of S.

 G^{n}_{2} : the subgroup of the mapping class group of H_{2} in M represented by homeomorphisms homotopic to the identity in H_{2} , regarded as a subgroup of the mapping class group of $S \subset M_{n}$.

 $\mathcal{PD}(H_1) = \{ [\lambda] \in \mathcal{PMQ}(S) | \exists \eta > 0 \text{ such that } i(\lambda, m) > \eta \text{ for any meridian } m \text{ of } H_1 \}$

Theorem 3. For any projective lamination $[\lambda]$ in $\mathcal{PO}(H_1)\backslash G_1\iota(\mu_{\varphi})$ there exist an open neighbourhood U of $[\lambda]$ and n_0 such that $\{g \in \langle G_1, G^n_2 \rangle | gU \cap U \neq \emptyset\} = \{id\}$ if $n \ge n_0$. In other words, $\mathcal{PO}(H_1)\backslash G_1\iota(\mu_{\varphi})$ is covered by the domain of discontinuity of $\langle G_1, G^n_2 \rangle$ as $n \to \infty$.

Sketch of Proof:

Namazi-Souto showed that if we put a basepoint in H_1 , the manifold M_n (which is hyperbolic for large *n*) converges geometrically to a hyperbolic 3-manifold *N* such that $\pi_1(N) = \pi_1(H_1)$, and its ending lamination is $\iota(\mu_{\varphi})$.

This implies that any lamination in $\mathcal{PD}(H_1)\backslash G_1\iota(\mu_{\varphi})$ can be realised by a pleated surface in *N*.

Using the geometric convergence of $\{M_n\}$ to N, it follows that any $[\lambda] \in \mathscr{PD}(H_1) \setminus G_1 \iota(\mu_{\varphi})$ has a neighbourhood in which no simple closed curves are null-homotopic in M_n for $n \ge n_0$.

The same argument as in the proof of Theorem 2 shows that $[\lambda]$ has a neighbourhood U such that $\{g \in \langle G_1, G_2^n \rangle\} | gU \cap U \neq \emptyset\} = \{id\}$ for $n \ge n_0$.

Related topics and prospects

1. A systematic construction of epimorphisms between n-bridge link groups.

For two-bridge links this was done by Ohtsuki-Riley-Sakuma.

Lee-Sakuma gave a necessary and sufficient condition for the existence of epimorphisms preserving meridians for two bridge link complements.

To get a similar result for *n*-bridge link complements, we need to refine Theorem 1.

For instance, if we can solve Sakuma's problem 1 affirmatively, and can give a lower bound of Hempel distances concretely, we are done.

Recall the problem 1: Does the set of curves null-homotopic in *M* coincide with $\langle G_1, G_2 \rangle (\Delta_1 \cup \Delta_2)$ if the Hempel distance is large enough?

2. (Yet another) variation of McShane's identity

The original version of McShane's identity:

Fix a hyperbolic once-punctured torus S.*C* is the set of essential simple closed curves on S.*l* denotes the hyperbolic length on S.

 $\sum_{\gamma \in \mathcal{C}} \frac{1}{1 + \exp(l(\gamma))} = \frac{1}{2}$

There are generalisations and variations of this equality to various settings. McShane, Bowditch, Akiyoshi-Miyachi-Sakuma, Tan-Wong-Zhang, Mirzakhani, etc.

Lee and Sakuma obtained a variation of McShane's identity for two bridge link complement. In this case, $\mathcal{PMQ}(S)\cong S^1$ and it was shown that $S^1 \setminus \langle G_1, G_2 \rangle \{r, \infty\}$ is the domain of discontinuity of $\langle G_1, G_2 \rangle$.

We can take two intervals I_1, I_2 such that $I_1 \cup I_2$ is the fundamental domain of the action on the domain of discontinuity.

$$2\sum_{s\in\operatorname{Int}I_1}\frac{1}{1+\exp l(s)}+2\sum_{s\in\operatorname{Int}I_2}\frac{1}{1+\exp l(s)}+\sum_{s\in\partial I_1\cup\partial I_2}\frac{1}{1+\exp l(s)}=-1$$

Can we generalise this to n-bridge link complements?

3. Points of discrete representations in the character variety of $\pi_1(S)$

If we put a basepoint in the "pasting margin" of two biggest compression bodies, M converges to a hyperbolic manifold homeomorphic to $S \times \mathbf{R}$ as the Hempel distance goes to ∞ .

Can we realise this convergence as a continuous deformation of cone manifolds?

This can be done in the case of two bridge link complement. (Akiyoshi-Sakuma-Wada-Yamashita + α)

This would lead to some understanding of the characteristic variety outside the closure of the quasi-Fuchsian space.