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1. Introduction

This is joint work with Victor Gerasimov
(Belo Horisonté, Brazil)

Let G be a discrete group acting by homeomorphisms on a
compact Hausdorff space (compactum) X .

We say that the action G y X is convergence (or
3-discontinuous) if the induced action on the space of distinct

triples Θ3X =
{
{x1, x2, x3} | xi ∈ X

}
is discontinuous.
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Let G be a discrete group acting by homeomorphisms on a
compact Hausdorff space (compactum) X .

We say that the action G y X is convergence (or
3-discontinuous) if the induced action on the space of distinct

triples Θ3X =
{
{x1, x2, x3} | xi ∈ X

}
is discontinuous.

Leonid Potyagailo (University of Lille 1) Quasiconvexity in Relatively Hyperbolic Groups



1. Introduction

This is joint work with Victor Gerasimov
(Belo Horisonté, Brazil)
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The limit set T = ΛG is the set of accumulation points of a
G -orbit.
Λ(G ) = ∅ if G is finite, Λ(G ) is one or two points if the action is
parabolic or loxodromic; or Λ(G ) is uncountable if the action is
non-elementary.
The set of all parabolic points we denote by Par.

The set ΩG = X \ T is the set of discontinuity which we denote
by A.
We always suppose that G is infinite, so up to adding a discrete
G -orbit we always have that A 6= ∅ and |X | > 2.

Furthermore A will be always a discrete and G -finite set (i.e.
|A/G | <∞) which we identify with with the vertex set Γ0 of a
G -graph Γ.

We also assume that |Γ1/G | <∞, i.e. Γ is cofinite and connected
graph where Γ1 ⊂ Θ2A = {{a1, a2} | ai ∈ A}.
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If G is finitely generated then w.l.o.g. Γ is the Cayley graph, if not
we consider a graph of entourages on X for which all these
properties are true too ([Gerasimov-P., Geometry, Groups,
Dynamics], to appear).

The action G y X is said 2-cocompact if Θ2X/G is compact
where Θ2X = {{x1, x2} | xi ∈ X} is the space of distinct pairs.

Definition (RH32). A group G is said relatively hyperbolic (RH
or RHG) if it admits a 3-discontinuous and 2-cocompact action
(RH32-action) on a compactum X .
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Remark

Advantages of the RH32 Definition:
a) Works in the case of non-metrizable spaces and uncountable
groups;
b) All previously known other definitions of RHG (due to M.
Gromov, B. Farb, B. Bowditch and P. Tukia) are equivalent to it if
X is metrizable or G is countable.
c) It implies B. Bowditch’s, D. Osin’s and P. Tukia’s definitions of
RHG in any case.

Disadvantages of the RH32 Definition: Not known yet.
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A parabolic point p ∈ T is called bounded parabolic if
(T \ p)/StGp is compact where StGp denotes the stabilizer of p in
G .

It is known (Gerasimov, GAFA 09) that if the action is RH32 then
every point of T is either bounded parabolic or conical.
One says that G is relatively hyperbolic with respect to the
maximal finite set P of the non-conjugate stabilizers of the
parabolic points.
If P = ∅ then G is hyperbolic and in particular finitely generated.
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2. Quasiconvexity. Part I : Equivalence of different notions.

Convention. In this section we will assume that G is a finitely
generated RHG.
A. α−quasiconvexity.

Let α : N→ R+ be a non-decreasing function s.t. α(n) = αn ≥ n.
A curve γ : I → Γ is called α-distorted geodesic (α−geodesic) if
diam(J) ≤ α(diam(γ(∂J)) for every finite J ⊂ I .

Examples. α ≡ id ⇐⇒ γ is a geodesic;
α(n) = C · n ⇐⇒ γ is Lipschitz;
α(n) = C · n + D ⇐⇒ γ is quasigeodesic.
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Definition. For a set F ⊂ Γ0 the set
Hα(F ) = {Imγ | γ : I → Γ is α− geodesic in Γ : ∂γ ⊂ F} is called
α-hull.
Important partial case:
Hα(p) = {γ : Z→ Γ− α− geodesic : lim

n→±∞
γ(n) = p ∈ T} is

α-horosphere at p and γ is an α-horocycle.

Property. Horospheres and horocycles can only exist at parabolic
points.
Pf Follows from the facts that the boundary of the (α)-convex hull
of a set coincides with the boundary of the set if the action has
convergence property.QED.

NB Do not compare this situation with Hn as in our case the
horospheres are defined on a discrete set.
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p

Figure: Horocycles at the parabolic point p.
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Definition. A set F ⊂ Γ0 is α−quasiconvex if Hα(F ) ⊂ Nr (F )
where Nr (·) is an r-neighborhood in Γ.

Important partial case: F is H-invariant subset of Γ for a subgroup
H of G. Then H is α−quasiconvex if F is.
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B. Relarive quasiconvexity.

Definition

A relative graph ∆ is obtained from Γ by adding an edge between
every pair of distinct points of each horosphere Sp (p ∈ Par).

Since Γ0 = ∆0 define for F ⊂ Γ0 its relative convex hull as

Hrel(F ) =
{

Im(δ) | δ is a geodesic in ∆ ∧ ∂δ ⊂ F
}
.

Put

Hα,e(F ) =
{
γ(i) | γ is alpha− geodesic : ∂γ ⊂ F ∧ depthα(γ(i)) ≤ e

}
where depthα(i , γ) is the maximal ε > 0 such that γ(]i − ε, i + ε[)
belongs to an α-horosphere.
The ”relativization” of the notion of (α)-quasiconvexity is the
following:
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Definition

1 F ⊂ Γ0 is relatively quasiconvex if Hrel(F ) ⊂ Nr (F ).

2 F ⊂ Γ0 is relatively α−quasiconvex if Hα,e(F ) ⊂ Nr (F ) for
some e > 0.

ii

jj
−

− +

+

b

horosphere

=γ(0)

c
p
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The following Proposition establishes the link between these two
notions:

Proposition

Let G y X be a 3-discontinuous and 2-cocompact action. Then
there exists a quadratic polynomial α such that any lift γ of any
geodesic δ in the relative graph is α-distorted in Γ. Moreover,
depthα(v , γ) is uniformly bounded for every v∈Imδ.

The lift of a geodesic from the relative graph to the absolute one is
obtained by replacing every ”horospherical” edge in the relative
graph ∆ by a geodesic path in the absolute graph Γ.
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C.Visible quasiconvexity.
We use the following construction due to W. Floyd in the case of
geometrically finite Kleinian groups (Inventionnes, 1980).

Let f : N→ R>0 be a positive scalar function satisfying:

1 ∃ λ > 0 ∀n : λ ≤ fn/fn+1 ≤ 1,

2 Σnfn <∞

For a fixed v ∈ Γ0 define a new metric δv ,f = δv on Γ as the path
metric obtained by the rescaling of the length of every edge e ∈ Γ1

to be f (d(v , e)).
Let Γv be the Cauchy completion of the space (Γ, δv ) called Floyd
completion.
The set ∂vΓ = Γv \ Γ is called Floyd boundary.
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Known fact: If G is RH then there exists an equivariant map
F : Γv → X ([Gerasimov, GAFA, 2012]).

Furthermore F is injective on conical points and
F−1(p) = ∂v (StGp) is the Floyd boundary of the stabilizer of
p ∈ Par ([Gerasimov-P, to appear in JEMS]; [Gerasimov-P, to
appear in GGD]). �

Using the map F we transfer the metric δv to a metric on X
which we call shortcut metric and denote it by δw .

δw (x , y) = inf δv (F−1(x),F−1(y)), w = F (v).
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For F ⊂ X and ε > 0 the set

Visε(F ) = {v ∈ Γ0 | diamδw
(F ) ≥ ε}

is visibility hull.

Definition

Quasiconvex visibility F ⊂ Γ0 is visibly quasiconvex if

∀ε > 0 ∃r Visε(F ) ⊂ Nr (F ).

The following property clarifies this notion (originally due to A.
Karlsson for the case of geodesics in a Cayley graph):

Property of δw (Karlsson Lemma). Suppose Σnα2n+1fn <∞ then

∀ε > 0 ∃r = K (ε) ∀α−geodesic γ ⊂ Γ diamδw
(∂γ) ≥ ε =⇒ d(v , γ) ≤ r .
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The following is one of the main results :

Theorem A. Let a finitely generated discrete group G act
3-discontinuously and 2-cocompactly on a compactum X . The
following properties of a subset F of the discontinuity domain of
the action are equivalent:
— F is relatively quasiconvex;
— F is visibly quasiconvex;
— F is relatively α−quasiconvex where α is a quadratic
polynomial with big enough coefficients. �

The proof uses the Proposition above and Karlsson Lemma.
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To formulate a corollary introduce one more type quasiconvexity
(due to B. Bowditch)

Definition

A subgroup H of G is dynamically quasiconvex if for any two
closed disjoint subsets K and L of T = Λ(G ) the set
{g ∈ G : g(Λ(H)) ∩K 6= ∅ ∧ g(Λ(H)) ∩ L 6= ∅} is at most finite.

The following is a Corollary from Theorem A:

Corollary

If H < G and F ⊂ Γ0 is H-invariant and H-finite (|F/H| <∞)
then the quasiconvex visibility of F is equivalent to the dynamical
quasiconvexity of H.
In particular a finitely generated subgroup H of the relatively
hyperbolic group G is relatively quasiconvex if and only if it is
dynamically quasiconvex. �

The second part of the Corollary answers a question of D. Osin
[Mem of AMS, 2006].
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3. Quasiconvexity. Part 2 : Hierarchy of subgroup
”goodness” properties (decreasing order).

Different subgroups of a fixed relatively hyperbolic (or even
convergence) group can be ordered according to their
undistortedness in the ambiant group. We provide a short
hierarchy of these properties starting with the strongest one
(absolute quasiconvexity) and finishing by so called dynamical
boundness (definition follows).

First Level (Cocompactness outside the limit set). A subgroup
H of a RHG G is weakly α−quasiconvex if every two points of an
H-orbit can be joined by an α−geodesic belonging to a fixed
bounded neighborhood of H-orbit.
If the word ”weakly” is omitted then this is true for any
α−geodesic and so this is the (absolute) α−quasiconvexity.
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The following result characterizes the Level 1 of the quasiconvexity:

Theorem B. Let a finitely generated group G act
3-discontinuously and 2-cocompactly on a compactum X . Then
there exists a constant λ0 ∈]1,+∞[ such that the following
properties of a subgroup H of G are equivalent:

1 H is weakly α−quasiconvex for some distortion function α for
which α(n)6λn0 (n ∈ N), and for every p∈Par the subgroup
H∩StGp is either finite or has finite index in StGp;

2 the space (X \ ΛH)/H is compact;

3 for every distortion function α bounded by λn0 (n ∈ N), every
H-invariant H-finite set E⊂A is α−quasiconvex and for every
p∈Par the subgroup H∩StGp is either finite or has finite
index in StGp.

�
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Corollary 1. Cocompactness outside the limit set is equivalent to
the strongest quasiconvexity such that the subgroup either avoid a
parabolic subgroup of the ambiant group or intersects it in a finite
index.
Moreover the ”weak” and absolute quasiconvexities are equivalent.

Corollary 2 (of the method). Suppose that G y X is
RH32-action. Let H be a subgroup of G acting cocompactly on
X \ ΛH then if G is finitely presented then H is finitely presented
too.
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Last level of ”subgroup goodness”.

Definition

A subgroup H of G is called dynamically bounded if every infinite
set of elements S⊂G contains an infinite subset S0 such that
ΛG \

⋃
s∈S0

s(ΛH) has a non-empty interior.

The following implications show the hierarchy between different
types of subgroup properties:

Cocompactness on X \ ΛH =⇒
Strong absolute Quasiconvexity of H =⇒
Relative Quasiconvexity of H =⇒
H is dynamically bounded.
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We finish this section by some questions and speculations.

Remark 1. In the case G = IsomH3 C. McMullen showed that the
most of the points of the limit set of any known geometrically
infinite Kleinian group H < G do not satisfy dynamical boundness
condition.

The following is intriguing

Question

Suppose G is a RHG and H < G is a finitely generated subgroup
such that ΛH & ΛG . Is H dynamically bounded ?

Remark 2. One cannot drop the condition of finite generatedness
of H as any lattice admits an infinitely generated subgroup which
is not dynamically bounded (this was pointed out to us by M.
Kapovich).
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4. Applications.

We provide several applications for infinitely generated (and not in
general countable) RHG.
Anti-Convention. In this Section we do not assume an RH group
to be countable.
Recall that due to B. Bowditch a cofinite graph Γ (i.e.
|Γ1/G | <∞) is called fine if for every n ∈ N and for every edge e
the set of simple loops in Γ passing through e of length n is finite.

We prove the following:
Proposition. Let G y X be a RH32-action. Then there exists a
hyperbolic, G -cofinite graph Γ whose vertex stabilizers are all finite
except the vertices corresponding to the parabolic points for the
action G y X . Furthermore the graph Γ is fine.

This Proposition generalizes A. Yaman’s theorem to the case of
uncountable RH groups. Furthermore we provide a self-contained
independent argument in finitely generated case too.
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The proof for infinitely generated groups is based on our Theorem
[Gerasimov-P, GGD, to appear] claiming that any RH group G
admits a star-graph of groups decomposition whose central vertex
group is a finitely generated RH group H and all other vertex
groups are maximal parabolic subgroups Pi (i = 1, ..., n).

H

Q1

P1

Q2

P2

Qn Pn

Figure: Star graph of groups.
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One can show that the converse statement is also true: the above
graph of groups gives an example of RH group G with respect to
uncountable parabolic subgroups Pi .
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Another application. Using our methods we have

Theorem C. Let G be a group admitting non-elementary
RH32-actions on compacta X and Y such that every parabolic
subgroup for the action on X is parabolic for the action on Y .
Then there exists an G -equivariant map F : X → Y .
Furthermore there exists a compactum Z with a RH32-action of G
and two G -equivariant maps F1 : Z → X and F2 : Z → Y . �
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Remarks. 1. In case when G is countable and X and Y are
metrizable spaces the Theorem above is due to Y. Matsuda, A.
Oguni and S. Yamagata (preprint, 2012)
We provide an independent and self-contained argument valid for
non-metrizable spaces and uncountable groups.

2. The existence of such universal space Z for any two
RH32-actions was open so called ”pullback problem” (formulated
first in [Gerasimov, GAFA, 2009]). It is true if G is finitely
generated and follows from the existence of the Floyd map.
However we provide a counter-example for the existence of such a
space if G is infinitely generated (in fact a countable free group).
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non-metrizable spaces and uncountable groups.

2. The existence of such universal space Z for any two
RH32-actions was open so called ”pullback problem” (formulated
first in [Gerasimov, GAFA, 2009]). It is true if G is finitely
generated and follows from the existence of the Floyd map.
However we provide a counter-example for the existence of such a
space if G is infinitely generated (in fact a countable free group).
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Most of the above results are in the preprint

”Quasiconvexity in the relatively hyperbolic groups”

ArXiv:1103.1211v2

The last part with Theorem C will be in a coming preprint.
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END OF THE TALK
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