Rapid Decay and 3-manifolds

François Gautero

Université de Nice - Sophia Antipolis, Laboratoire J.A. Dieudonné (UMR CNRS 6621)

16 septembre 2010

François Gautero Rapid Decay and 3-manifolds

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Group algebra

G discrete group. We denote by |.| the length function on *G* associated to a given generating set $S = S^{-1}$: For $\gamma \in G$, $|\gamma|$ is the minimal number of elements in *S* needed to write γ .

 $\mathbb{C}G = \{f \colon G \to \mathbb{C}; |\operatorname{supp}(f)| < \infty\}.$

This is the set of all the sums $\sum_{\gamma \in G} a_{\gamma} \gamma$ with $a_{\gamma} \in \mathbb{C}$ and $a_{\gamma} = 0$ outside a finite number of elements $\gamma \in G$. Convolution product :

$$(f * g)(\gamma) = \sum_{\mu \in G} f(\mu)g(\mu^{-1}\gamma)$$

Group algebra

G discrete group. We denote by |.| the length function on *G* associated to a given generating set $S = S^{-1}$: For $\gamma \in G$, $|\gamma|$ is the minimal number of elements in *S* needed to write γ .

 $\mathbb{C}G = \{f \colon G \to \mathbb{C}; |\operatorname{supp}(f)| < \infty\}.$

This is the set of all the sums $\sum_{\gamma \in G} a_{\gamma} \gamma$ with $a_{\gamma} \in \mathbb{C}$ and $a_{\gamma} = 0$ outside a finite number of elements $\gamma \in G$. Convolution product :

$$(f * g)(\gamma) = \sum_{\mu \in G} f(\mu)g(\mu^{-1}\gamma)$$

•
$$I^2$$
-norm : $||f||_2 = \sqrt{\sum_{\gamma \in G} |f(\gamma)|^2}$

• Operator-norm : $||f||_* = \sup_{||g||_2=1} ||f * g||_2$

• Weighted-norm : $||f||_s = \sqrt{\sum_{\gamma \in G} |f(\gamma)|^2 (1 + |\gamma|)^{2s}}$

(ロ) (四) (三) (三) (三)

王

Definition (Haagerup, Jolissaint)

A discrete group G satisfies the property of Rapid Decay if and only if there exist two positive constants C and s such that for any function f in $\mathbb{C}G$ we have

$||f||_* \leq C||f||_s$

《曰》 《聞》 《臣》 《臣》 三臣

Characterizations of property (RD)

- There exists a polynome *P* such that for any r > 0and for any $f \in \mathbb{R}^+G$ with $supp(f) \subset B_r(e)$ we have $||f||_* \leq P(r)||f||_2$.
- Let *χ_m* be the characteristic function of the sphere of radius *m* centered at *e*. There exist *C*, *r* > 0 such that for any non-negative integers *k*, *l*, *m* and for any functions *f*, *g* ∈ ℂ*G* with supp(*f*) ⊂ ∂*B_k*(*e*) and supp(*g*) ⊂ ∂*B_l*(*e*) we have

$$||(f * g)\chi_m||_2 \le C||f||_r||g||_2$$
 if $|k - l| \le m \le k + l$

and $||(f * g)\chi_m||_2 = 0$ otherwise.

Some groups with (RD)

- Finite groups.
- Groups with polynomial growth (Jolissaint).
- Since and hyperbolic groups (Haagerup, de la Harpe).
- Discrete, finite co-volume subgroups of the isometry group of a complete, simply-connected Riemannian manifold with pinched negative curvature (Chatterji, Drutu-Sapir).
- Mapping-tori G ⋊_α Z where G has property (RD) and α is a polynomially growing automorphism (Jolissaint).
- Any mapping-torus of a free group (G.-Lustig).

An obstruction

A discrete group *G* is amenable if and only if there exists a finitely additive probability measure μ which is *left-invariant* : for any $\gamma \in G$ and for any measurable set $M \subset G$, $\mu(\gamma M) = \mu(M)$.

Proposition (Jolissaint)

An amenable group has property (RD) if and only if it has polynomial growth.

Consequence

The group $\mathbb{Z}^2 \rtimes_A \mathbb{Z}$, where *A* is an Anosov map, does not have property (RD).

Anosov map : 2×2 integer matrix with eigenvalues $\lambda > 1$ and $\frac{1}{\lambda}$. For instance

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

Question

Under which condition(s) the fundamental group of a closed 3-manifold has property (RD)?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Theorem (G.)

Work in progress The fundamental group of a closed irreducible 3-manifold has property (RD) if and only if M³ is not finitely covered by the suspension of an Anosov of the torus.

<ロト <四ト <注ト <注ト = 三

Remark

 \Rightarrow Jolissaint.

Theorem (3-manifold decomposition)

Let M^3 be a closed, irreducible, orientable 3-manifold. There exists a finite collection T_1, \dots, T_n of disjointly embedded incompressible tori, such that the closure of each connected component of $M^3 \setminus \bigcup_{i=1}^n T_i$ is :

 either a compact 3-manifold of hyperbolic interior the boundary of which is a union of tori,

《曰》 《聞》 《臣》 《臣》 三臣

or a graph-manifold.

Topologie and Geometry of 3-manifolds II

Definition

A graph-manifold is an orientable irreducible 3-manifold whose boundary is a (possibly empty) union of tori and which admits a finite collection T_1, \dots, T_n of disjointly embedded incompressible tori such that the closure of each connected component of $M^3 \setminus \bigcup_{i=1}^n T_i$ is a Seifert manifold.

Definition

A Seifert-manifold is an orientable 3-manifold which is a disjoint union of circles C_{α} . Each circle C_{α} in the interior admits a neighborhood $N(C_{\alpha})$ which is homeomorphic to the suspension of the disc under a rotation with angle $2\pi p/q$. This homeomorphism maps C_{α} to the orbit of the center of the disc and each circle $C_{\beta} \subset N(C_{\alpha})$ to some orbit of this suspension.

Example (of a Seifert manifold)

The mapping-torus $S \times [0, 1]/(x, 1) \sim (h(x), 0)$ of an orientation-preserving periodic homeomorphism *h* of a compact orientable surface *S*.

Example (of a graph-manifold)

The mapping-torus $S \times [0, 1]/(x, 1) \sim (h(x), 0)$ of an orientation-preserving linearly growing homeomorphism h of a compact orientable surface S. The manifold $\mathbb{T}^2 \rtimes_A \mathbb{S}^1$ where A is an Anosov map, for instance

$$A = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right)$$

Geometry of groups and 3-manifolds I

Notion of relative hyperbolicity introduced by Gromov and elaborated by Farb, Bowditch, Osin.

Definition

G is strongly hyperbolic relative to a subgroup *H* if and only if *G* acts isometrically and properly discontinuously on a complete Gromov hyperbolic geodesic metric space X such that the quotient X/G is quasi isometric to a ray and *H* stabilizes the end of this ray.

Theorem (Druti-Sapir)

Let G be a group which is strongly hyperbolic relative to a finite collection of subgroups with property (RD). Then G also has property (RD).

Geometry of groups and 3-manifolds II

Theorem (Dahmani, G.)

The fundamental group of an orientable irreducible 3-manifold is strongly hyperbolic relative to the subgroups associated to the maximal graph-submanifolds.

Proposition (G.)

The fundamental group of a graph-manifold M^3 has property (RD) if and only if M^3 is not finitely covered by the suspension of an Anosov of the torus.

《曰》 《聞》 《臣》 《臣》 三臣

- The previous proposition holds for 3-manifolds which fiber over the circle.
- By Kapovich-Leeb the fundamental group of any graph-manifold is quasi isometric to the fundamental group of a 3-manifold which fibers over the circle, hence the conclusion.

< ロ > (四 > (四 > (三 > (三 >))) 문 (-)

- The previous proposition holds for 3-manifolds which fiber over the circle.
- By Kapovich-Leeb the fundamental group of any graph-manifold is quasi isometric to the fundamental group of a 3-manifold which fibers over the circle, hence the conclusion.

3 BUT....

- The previous proposition holds for 3-manifolds which fiber over the circle.
- By Kapovich-Leeb the fundamental group of any graph-manifold is quasi isometric to the fundamental group of a 3-manifold which fibers over the circle, hence the conclusion.
- BUT....

It is not known whether property (RD) is a quasi isometry invariant.

Theorem (G.)

The fundamental group of a closed irreducible 3-manifold M^3 has property (RD) if and only if M^3 is not finitely covered by the suspension of an Anosov of the torus.

Proof

 \Rightarrow Jolissaint.

 \Leftarrow Since (RD) passes to finite covers, we can assume M^3 is orientable. $\pi_1(M^3)$ is strongly hyperbolic relative to the subgroups associated to the maximal graph-submanifolds. Since none of these components is finitely covered by the suspension of an Anosov of the torus, they have property (RD). By Drutu-Sapir, $\pi_1(M^3)$ also has property (RD).