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1. Introduction and overview

1.1. A brief overview. Heegaard Floer homology is a family of related invariants of
objects in low-dimensional topology. The first of these invariants were introduced by
Ozsváth-Szabó: invariants of closed 3-manifolds [OSz04d] and smooth 4-dimensional
cobordisms [OSz06]. Later, Ozsváth-Szabó and, independently, Rasmussen introduced
invariants of knots in 3-manifolds [OSz04b, Ras03]. (There are also several other invari-
ants, including invariants of contact structures, more invariants of knots and 3-manifolds,
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and invariants of Legendrian and transverse knots.) The subject has had many applica-
tions; I will not even try to list them here, though we will see a few in the lectures.

In the first three of these lectures, we will focus on a generalization of one variant
of these invariants: an invariant of sutured 3-manifolds, due to Juhász, called sutured
Floer homology [Juh06]. The main goal will be to relate these invariants to ideas in
more classical 3-manifold topology. In particular, we will sketch a proof that sutured
Floer homology detects the genus of a knot. The proof uses Gabai’s theory of sutured
manifolds and sutured hierarchies, which we will review briefly in the first lecture.

In the fourth lecture, we go in a different direction: we will talk about the surgery exact
sequence in Heegaard Floer homology. The goal is to sketch a (much studied) relationship
between Heegaard Floer homology and Khovanov homology: a spectral sequence due to
Ozsváth-Szabó [OSz05].

1.2. A more precise overview. Heegaard Floer homology assigns to each closed, ori-

ented, connected 3-manifold Y an abelian group ĤF (Y ), and Z[U ]-modules HF +(Y ),

HF−(Y ) and HF∞(Y ). These are the homologies of chain complexes ĈF (Y ), CF +(Y ),
CF−(Y ) and CF∞(Y ). These chain complexes are related by short exact sequences

0 −→ CF−(Y ) −→ CF∞(Y ) −→ CF +(Y ) −→ 0

0 −→ CF−(Y )
·U−→ CF−(Y ) −→ ĈF (Y ) −→ 0

0 −→ ĈF (Y ) −→ CF +(Y )
·U−→ CF +(Y ) −→ 0

which, of course, induce long exact sequences in homology. In particular, either of

CF +(Y ) or CF−(Y ) determines ĈF (Y ). (The complexes CF +(Y ) and CF−(Y ) also
have equivalent information, though this does not quite follow from what we’ve said so
far.) These invariants are defined in [OSz04d]. (Some people report finding it helpful
to read [Lip06] in conjunction with [OSz04d].) It is now known, by work of Hutchings,
Taubes, and Kutluhan-Lee-Taubes or Colin-Ghiggini-Honda, that these invariants corre-
spond to certain Seiberg-Witten Floer homology groups.

Roughly, smooth, compact, connected 4-dimensional cobordisms between connected

3-manifolds induce chain maps on ĈF , CF± and CF∞, and composition of cobordisms
corresponds to composition of maps. From the maps on CF± and the exact sequences
above, one can recover the Seiberg-Witten invariant, or at least something very much

like it. (See [OSz06].) Note, in particular, that ĈF does not have enough information to
recover the Seiberg-Witten invariant.

There is an extension of the Heegaard Floer homology groups to nullhomologous knots
in 3-manifolds, called knot Floer homology [OSz04b, Ras03]. Given a knot K in a 3-

manifold Y there is an induced filtration of ĈF (Y ), CF +(Y ), and so on. In particular,

we can define the knot Floer homology groups ĤFK (Y,K), the homology of the associ-

ated graded complex to the filtration on ĈF (Y ). (So, there is a spectral sequence from

ĤFK (Y,K) to ĤF (Y ).)

The gradings in the subject are quite subtle. The chain complexes ĈF (Y ), CF +(Y ),
. . . , decompose as direct sums according to spinc-structures on Y , i.e.,

ĈF (Y ) =
⊕

s∈spinc(Y )

ĈF (Y, s).

(We will discuss spinc structures more in Section 3.4.1.) Each of the ĈF (Y, s) is relatively
graded by some Z/nZ (where n is the divisibility of c1(s)). In particular, if c1(s) = 0 (i.e.,
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s is torsion) then ĈF (Y, s) has a relative Z grading. Similarly, ĤFK (Y,K) decomposes
as a direct sum of groups, one per relative spinc structure on (Y,K).

In the special case that Y = S3, there is a canonical identification spinc(S3, K) ∼= Z, and

each ĤFK (Y,K, s) in fact has an absolute Z-grading. That is, ĤFK (Y,K) is a bigraded

abelian group; we will write ĤFK (S3, K) = ĤFK (K) =
⊕

i,j ĤFK i(K, j), where j stands
for the spinc grading. The grading j is also called the Alexander grading, because∑

i,j

(−1)itj rank ĤFK i(K, j) = ∆K(t),

the (Conway normalized) Alexander polynomial of K.
The breadth of the Alexander polynomial ∆K(t), or equivalently the degree of the

symmetrized Alexander polynomial, gives a lower bound on the genus of K (i.e., the
minimal genus of any Seifert surface for K). One of the main goals of these lectures will
be to sketch a proof of the following refinement:

Theorem 1.1. [OSz04a] Given a knot K in S3,

g(K) = max{j |
(⊕

i

ĤFK i(K, j)
)
6= 0}.

Rather than giving the original proof of Theorem 1.1, we will give a proof using an

extension of ĤF and ĤFK , due to Juhász, called sutured Floer homology. Sutured man-
ifolds were introduced by Gabai in his work on foliations, fibrations, the Thurston norm,
and knot genus [Gab83,Gab84,Gab86,Gab87]; we will review some aspects of this theory
in the first lecture. Sutured Floer homology associates to each sutured manifold (Y,Γ)
satisfying certain conditions (called being balanced) a chain complex SFC (Y,Γ) whose
homology SFH (Y,Γ) is an invariant of the sutured manifold. These chain complexes
behave in a particular way under Gabai’s surface decompositions, allowing us to prove
Theorem 1.1.

In the last lecture, we turn to a different topic: the behavior of Heegaard Floer ho-
mology under knot surgery. The goal is to relate these lectures to the lecture series on
Khovanov homology. In particular, we will sketch the origins of Ozsváth-Szabó’s spectral

sequence K̃h(m(K))⇒ ĤF (Σ(K)) from the (reduced) Khovanov homology of the mirror
of K to the Heegaard Floer homology of the branched double cover of K [OSz05].

1.3. References for further reading. There are a number of survey articles on Hee-
gaard Floer homology. Two by Ozsváth-Szabó [OS05a, OS06a, OS06b] give nice intro-
ductions to the Heegaard Floer invariants of 3- and 4-manifolds and knots. Juhász’s
recent survey [Juh13] contains an introduction to sutured Floer homology, which is the
main subject of these lectures. There are also some more focused surveys of other recent
developments [Man14,LOT11].

Sutured Floer homology, as we will discuss it, is developed in a pair of papers by
Juhász [Juh06,Juh08]. For a somewhat different approach to relating sutured manifolds
and Floer theory, see the work of Ni (starting with [Ni09]).

2. Sutured manifolds, foliations and sutured hierarchies

2.1. The Thurston norm and foliations.

Definition 2.1. Given a knot K ⊂ S3, the genus of K is the minimal genus of any
Seifert surface for K (i.e., of any embedded surface F ⊂ S3 with ∂F = K).

Thurston found a useful generalization of this notion to arbitrary 3-manifolds and,
more generally, to link complements in arbitrary 3-manifolds:
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Definition 2.2. Given a 3-manifold Y with boundary ∂Y a disjoint union of tori, the
Thurston norm

x : H2(Y, ∂Y )→ Z
is defined as follows. Given a compact, oriented surface F (not necessarily connected,
possibly with boundary) define the complexity of F to be

x(F ) =
∑

χ(Fi)≤0

|χ(Fi)|,

where the sum is over the connected components Fi of F .
Given an element h ∈ H2(Y, ∂Y ) and a surface F ⊂ Y with ∂F ⊂ ∂Y we say that F

represents h if the inclusion map sends the fundamental class of F in H2(F, ∂F ) to h.
Define

x(h) = min{x(F ) | F represents h}.

For this definition to make sense, we need to know the surface F exists:

Lemma 2.3. Any element h ∈ H2(Y, ∂Y ) is represented by some surface F .

Idea of Proof. The class h is Poincaré dual to a class in H1(Y ), which in turn is repre-
sented by a map fh : Y → K(Z, 1) = S1. The preimage of a regular value of fh represents
h. See [Thu86] for more details. �

Proposition 2.4. If (Y, ∂Y ) has no essential spheres (Y is irreducible) or disks (∂Y is
incompressible) then x defines a pseudo-norm on H2(Y, ∂Y ) (i.e., a norm except for the
non-degeneracy axiom). If moreover Y has no essential annuli or tori (Y is atoroidal)
then x defines a norm on H2(Y, ∂Y ), and induces a norm on H2(Y, ∂Y ;Q).

Idea of Proof. Again, see [Thu86] for details. The main points to check are that:

(1) x(n · h) = n · x(h) for n ∈ N.
(2) x(h+ k) ≤ x(h) + x(k).

For the first point, a little argument shows that a surface representing n · h (with h
indivisible) necessarily has n connected components, each representing h. The second is
a little more complicated. Roughly, one takes surfaces representing h and k and does
surgery on their circles and arcs of intersection to get a new surface representing h + k
without changing the Euler characteristic. (More precisely, one first has to eliminate
intersections which are inessential on both surfaces, as doing surgery along them would
create disjoint S2 or D2 components.) �

Example 2.5. If Y = S3 \ nbd(K) is the exterior of a knot then H2(Y, ∂Y ) ∼= Z and
surfaces representing a generator for H2(Y, ∂Y ) are Seifert surfaces for K. The Thurston
norm of a generator is given by 2g(K)− 1.

Example 2.6. Consider Y = S1 × Σg. Fix a collection of curves γi, i = 1, . . . , 2g, in
Σ giving a basis for H1(Σ). Then H2(Y ) ∼= Z2g+1, with basis (the homology classes
represented by) S1 × γi, i = 1, . . . , 2g, and {pt} × Σ. We have x([S1 × γi]) = 0, from
which it follows (why?) that x is determined by x([{pt} × Σg]). One can show using
elementary algebraic topology that x([{pt} × Σg]) = 2g − 2; see Exercise 1.

Remark 2.7. A norm is determined by its unit ball. The Thurston norm ball turns out
to be a polytope defined by inequalities with integer coefficients [Thu86, Theorem 2].

A priori, the Thurston norm looks impossible to compute in general. Remarkably,
however, it can be understood. The two key ingredients are foliations, which we discuss
now, and a decomposition technique, due to Gabai, which we discuss next.
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Definition 2.8. A smooth, codimension-1 foliation F of M is a collection of disjoint,
codimension-1 immersed submanifolds {Nj ⊂ M}j∈J so that each immersion is injective
and every point in M is in (exactly) one of the Nj. The Nj are called the leaves of the
foliation.

We will only be interested in smooth, codimension-1 foliations, so we will refer to these
simply as foliations. (Actually, there are good reasons to consider non-smooth foliations
in this setting. Higher codimension foliations are also, of course, interesting.)

In a small enough neighborhood of any point, the Nj look like pages of a book, though
each Nj may correspond to many pages. The standard examples are foliations of the
torus T 2 = [0, 1] × [0, 1]/ ∼ by the curves {y = mx + b} for fixed m ∈ R and b allowed
to vary. If m is rational then the leaves are circles. If m is irrational then the leaves are
immersed copies of R.

The tangent spaces to the leaves Nj in a foliation F of Mn define an (n−1)-plane field
in TM ; I will call this the tangent space to F and write it as TF . An orientation of F is
an orientation TF , and a co-orientation is an orientation of the orthogonal complement
TF⊥ of TF . Since we are only interested in oriented 3-manifolds, the two notions are
equivalent.

A curve is transverse to F if it is transverse TF .

Definition 2.9. A foliation F of M is called taut if there is a curve γ transverse to F
such that γ intersects every leaf of F .

Theorem 2.10. [Thu86, Corollary 2, p. 119] Let F be a taut foliation of Y so that for
every component T of ∂Y either:

• T is a leaf of F or
• T is transverse to F and F ∩ T is taut in T .

Then every compact leaf of F is genus minimizing.

(The proof is not so easy.)
Remarkably, as we discuss next, Gabai shows that Theorem 2.10 can always be used

to determine the Thurston norm.

2.2. Sutured manifolds.

Definition 2.11. A sutured manifold is a 3-manifold Y together with a decomposition
of ∂Y into three parts (codimension-0 submanifolds with boundary): the bottom part R−,
the top part R+, and the vertical part γ. This decomposition is required to satisfy the
properties that:

(1) Every component of γ is either an annulus or a torus.
(2) ∂R+ ∩ ∂R− = ∅ (so ∂γ = ∂R+ q ∂R−).
(3) Each annulus in γ shares one boundary component with R+ and one boundary

component with R−.
(4) Orient R+ (respectively R−) using the orientation of Y and the outward-pointing

(respectively inward-pointing) normal vector. That is, the orientation of R+ agrees
with the standard orientation of ∂Y , and the orientation of R− agrees with −∂Y .
Then both R+ and Ri induce orientations of the cores of the annuli in γ, and we
require that these orientations agree. FixedFixed

(See [Gab83, Section 2].)
Let T (γ) denote the union of the toroidal components of γ and A(γ) the union of the

annular components of γ. We will often denote a sutured manifold by (Y, γ), since γ
determines R±.
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A sutured manifold is called taut if Y is irreducible (every S2 bounds a D3) and R+

and R− are norm-minimizing in their homology classes.
A sutured manifold is called balanced if:

(1) T (γ) = ∅.
(2) R+ and R− have no closed components.
(3) Y has no closed components.
(4) χ(R+) = χ(R−).

Let Γ denote the cores of the annular components of γ. Then for a balanced sutured
manifold, (Y,Γ) determines the whole sutured structure, so we may refer to (Y,Γ) as a
sutured manifold.

Example 2.12. Given a surface R with boundary, consider Y = [0, 1] × R. Make this
into a sutured manifold by defining R+ = {1} × R, R− = {0} × R and γ = [0, 1] × ∂R.
Sutured manifolds of this form are called product sutured manifolds.

Product sutured manifolds are taut and, if R has no closed components, balanced.

Example 2.13. Let Y be a closed, connected 3-manifold. We can view Y as a somewhat
trivial example of a sutured 3-manifold. This sutured 3-manifold may or may not be
taut, but is not balanced.

We can also delete a ball D3 from Y and place, say, a single annular suture on the
resulting S2 boundary. (So, R+ = D2, R− = D2, and γ = [0, 1] × S1.) This sutured
manifold is not taut (unless Y = S3)—a sphere parallel to the boundary does not bound
a disk—but it is balanced.

Example 2.14. Let Y be a closed, connected 3-manifold and let K ⊂ Y be a knot.
Consider Y \ nbd(K), the exterior of K. We can view this as a sutured manifold by
defining γ to be the whole torus boundary. This sutured manifold is not balanced.

More relevant to our later constructions, we can define a balanced sutured manifold
by letting Γ consist of 2n meridional circles, so R+ and R− each consists of n annuli. See
Figure 1. (In my head, this looks like a knotted sea monster biting its own tail: R+ is
the part above the water.)

Definition 2.15. A foliation F on Y is compatible with γ if

(1) F is transverse to γ.
(2) R+ and R− are unions of leaves of F , and the orientations of these leaves agree

with the orientations of R±.

(I think this is not a standard term.)
A foliation F on (Y, γ) is taut if

(1) F is compatible with γ.
(2) F is taut.
(3) For each component S of γ, F ∩ S is taut, as a foliation of S.

Example 2.16. Every product sutured manifold admits an obvious taut foliation, where
the leaves are {t} ×R.

Definition 2.17. We call a sutured manifold rational homology trivial or RHT if the
homology group H2(Y ) vanishes. (This is not a standard term.)

Example 2.18. A knot complement in S3 is RHT. If Y is a closed 3-manifold then Y \D3

is RHT if and only if Y is a rational homology sphere.
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Figure 1. A sutured manifold decomposition. Left: the complement
of the unknot, with four meridional sutures, together with a (gray) decom-
posing disk. Only the cores of the annular sutures are drawn, as green
circles. Right: the result of performing a surface decomposition to this
sutured manifold.

2.3. Surface decompositions and Gabai’s theorem.

Definition 2.19. [Gab83, Definition 3.1] A decomposing surface in a sutured manifold
(Y, γ) is a compact, oriented surface with boundary (S, ∂S) ⊂ (Y, ∂Y ) so that for every
component λ of ∂S ∩ γ, either:

(1) λ is a properly embedded, non-separating arc in γ, or
(2) λ is a circle which is essential in the component of γ containing λ.

We also require that in each torus component T of γ, the orientations of all circles in
S∩T agree, and in each annular component A of γ, the orientation of all circles in S∩A
agree with the orientation of the core of A.

Given a sutured manifold (Y, γ) and a decomposing surface S we can form a new sutured
manifold (Y ′, γ′) as follows. Topologically, Y ′ = Y \ nbd(S). Let S+, S− ⊂ ∂Y ′ denote
the positive and negative pushoffs of S, respectively. Then R′+ = (R+ ∩ ∂Y ′)∪S ′+ (minus
a neighborhood of its boundary), R′− = (R− ∩ ∂Y ′) ∪ S ′− (minus a neighborhood of its
boundary), and γ′ is the rest of ∂Y ′ (cf. Exercise 2). We call this operation sutured

manifold decomposition and write (Y, γ)
S
 (Y ′, γ′).

Example 2.20. If K is a knot in S3, say, Y = S3\nbd(K), and γ consists of 2n meridional
sutures as in Example 2.14 then any Seifert surface for K is a decomposing surface for
(Y, γ).

If K is a fibered knot and F is a Seifert surface for K which is a fiber of the fibration
then the result of doing a surface decomposition to the exterior (Y, γ) of K is a product
sutured manifold. The case that K is the unknot is illustrated in Figure 1.

It is maybe better to think of the inverse operation to surface decomposition; perhaps
I will say that (Y,Γ) is obtained from (Y ′,Γ′) by a suture-compatible gluing if (Y ′,Γ′) is
obtained from (Y,Γ) by surface decomposition. (This is not a standard term.) Unlike
surface decomposition, suture-compatible gluing is not a well-defined operation: it de-
pends on both a choice of subsurface S ′ ⊂ ∂Y ′ and a choice of homeomorphism S ′+

∼= S ′−.
I think this is why it is not talked about.

Definition 2.21. We call a decomposing surface S in a balanced sutured manifold (Y, γ)
balanced-admissible if S has no closed components and for every component R of R+

and R−, the set of closed components of S ∩ R is a union of parallel curves (where each FixedFixed
of these curves has orientation induced by the boundary of S), and if these curves are
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null-homotopic then they are oriented as the boundary of their interiors. (This is not a
standard term.)

Lemma 2.22. If (Y,Γ)
S
 (Y ′,Γ′), (Y,Γ) is balanced, and S is balanced-admissible then

(Y ′,Γ′) is balanced.

The proof is Exercise 4.
A particularly simple kind of sutured decomposition is the following:

Definition 2.23. A product disk in (Y,Γ) is a decomposing surface S for (Y,Γ) so
that S ∼= D2 and S ∩ Γ consists of two points. A product decomposition is a sutured

decomposition (Y,Γ)
S
 (Y ′,Γ′) where S is a product disk.

Lemma 2.24. Suppose that (Y,Γ)
S
 (Y ′,Γ′), where ∂S is disjoint from any toroidal

sutures of Y . Let F ′ be a foliation on (Y ′,Γ′). Then there is an induced foliation F on
(Y,Γ) with the property that S is a leaf of F .

In other words, suture-compatible gluing takes foliations to foliations with S as a leaf.
This is the easy case in the proof of [Gab83, Theorem 5.1]; the proof is Exercise 5. The
harder case, when ∂S intersects some toroidal sutures, takes up most of the proof.

Theorem 2.25. [Gab83, Theorems 4.2 and 5.1] Let (Y, γ) be a taut sutured manifold.
Then there is a sequence of surface decompositions

(Y, γ) = (Y1, γ1)
S1 (Y2, γ2)

S2 · · · Sn−1
 (Yn, γn)

so that (Yn, γn) is a product sutured manifold, and so that moreover there is an induced
taut foliation on (Y, γ).

Comments on Proof. Gabai’s proof of existence of the sequence of decompositions (su-
tured hierarchy), Theorem 4.2 in his paper, is an intricate induction; even saying what
it is an induction on is not easy. Once one has the hierarchy, one uses Lemma 2.24 and
its harder cousin for decomposing surfaces intersecting T (γ) to reassemble the obvious
foliation of the product sutured manifold (Yn, γn) to a foliation for (Y, γ); this part is
Theorem 5.1 in his paper. �

In fact, Theorem 2.25 has two modest refinement:

Proposition 2.26. ( [Sch89, Theorem 4.19], see also [Juh08, Theorem 8.2]) With nota-
tion as in Theorem 2.25, if (Y, γ) is balanced then we can assume the surfaces Si are all
balanced-admissible.

Definition 2.27. A balanced-admissible decomposing surface S is called good if every
component of ∂S intersects both R+ and R−. (This is Juhász’s term [Juh08, Definition
4.6].)

Proposition 2.28. [Juh08, Lemma 4.5] Any balanced-admissible decomposing surface S
is isotopic to a good decomposing surface S ′ so that decomposing along S and decomposing
along S ′ give the same result. In particular, in Proposition 2.26, we can assume the
decomposing surfaces are all good.

2.4. Suggested exercises.

(1) Show, using algebraic topology, that in S1 × Σg, the fiber Σg is a minimal genus
representative of its homology class.

(2) Give an explicit description of γ′ from Definition 2.19.

(3) Prove that if (Y, γ)
S
 (Y ′, γ′) and (Y ′, γ′) is taut then either Y is taut of Y =

D2 × S1 and S is a disk. (This is [Gab83, Lemma 3.5].)
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Figure 2. Diagrams for knot complements from knot diagrams.
Left: the usual diagram for the trefoil and a corresponding sutured Hee-
gaard diagram for its exterior. The gray dots are holes in the Heegaard
surface. Right: a 2-bridge presentation of the trefoil and a corresponding
sutured Heegaard diagram. The surface Σ is S2 minus 4 disks. In this
Heegaard diagram, the thin red and blue circles are not part of the diagram.

(4) Prove Lemma 2.22.
(5) Prove Lemma 2.24.

3. Heegaard diagrams and holomorphic disks

Except as noted, the definitions and theorems in this lecture are all due to Juhász [Juh06]
(building on earlier work of Ozsváth-Szabó, Rasmussen, and others). Many of the exam-
ples predate his work, but I will state them in his language.

Throughout this lecture, sutured manifold will mean balanced sutured manifold.

3.1. Heegaard diagrams for sutured manifolds.

Definition 3.1. A sutured Heegaard diagram is a surface Σ with boundary and tuples
α = {α1, . . . , αn} and β = {β1, . . . , βn} of pairwise disjoint circles so that the result F−
(respectively F+) of performing surgery on the α-circles (respectively β-circles) has no
closed components.

A sutured Heegaard diagram H = (Σ,α,β) specifies a sutured 3-manifold Y (H) as
follows:

• As a topological space, Y (H) is obtained from a thickened copy Σ× [0, 1] of Σ by
attaching 2-dimensional 1-handles along the αi × {0} and the βi × {1}.
• The boundary of Y (H) is F− ∪

(
(∂Σ)× [0, 1]

)
∪ F+. We let R− = F−, R+ = F+

and Γ = (∂Σ)× {1/2}.

Example 3.2. Fix a knot K ⊂ S3 and a knot diagram D for K with n crossings. Consider
the 3-manifold Y = S3 \ nbd(K). We can find a Heegaard diagram for Y with 2n merid-
ional sutures as on the left of Figure 2. More generally, given an n-bridge presentation
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Figure 3. A toroidal grid diagram for the trefoil. The left and right
edges of the diagram are identified. The knot itself is shown in light gray.

Figure 4. Heegaard diagrams for 3-manifolds with S2 boundary.
Left: a Heegaard diagram for S2 × S1. Center: a Heegaard diagram for
RP 3. Right: a Heegaard diagram for a surgery on the trefoil. The α
circles are red, β circles are blue, and the labeled empty circles indicate
handles. (So, the first two pictures lie on punctured tori, and the third on
a punctured surface of genus 2.

of K, there is a corresponding sutured Heegaard diagram for K with 2n sutures; see the
right of Figure 2.

These kinds of Heegaard diagram are exploited in [OSS09, OS09] to give a cube of
resolutions description of knot Floer homology.

Example 3.3. An n× n toroidal grid diagram is a special kind of sutured Heegaard dia-
gram in which the α-circles (respectively β-circles) are n horizontal (respectively vertical)
circles on a torus with 2n disks removed. (Each horizontal (respectively vertical) annu-
lus between two adjacent α-circles (respectively β-circles) should have two punctures.)
See Figure 3. A toroidal grid diagram represents the complement of a link in S3, with
meridional sutures on the link components. Toroidal grid diagrams have received a lot
of attention because, as we will discuss later, their Heegaard Floer invariants have nice
combinatorial descriptions [MOS09]; see Section 3.3.3.

Example 3.4. Suppose Y is a closed manifold. Fix a Heegaard splitting for Y , i.e., a
decomposition Y = H1 ∪Σ H2, where the Hi are handlebodies. We can obtain Heegaard

10
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Figure 5. Sutured Heegaard diagrams for fibered knot comple-
ments. This is a Heegaard diagram for the genus 1, fibered knot with
monodromy ab−1. The α-circles are in red and the β-circles are in blue.
The two black arcs in the boundary are meant to be glued together in the
obvious way.

diagrams for Y \ D3 as follows. Suppose Σ has genus g. Fix pairwise-disjoint circles
α1, . . . , αg ⊂ Σ so that:

• Each αi bounds a disk in H1 and
• The αi are linearly independent in H1(Σ).

Fix circles βi with the same property, but with H2 in place of H1. Let Σ′ be the result
of deleting a disk D from Σ (chosen so that D is disjoint from the αi and βi). Then
(Σ′, α1, . . . , αg, β1, . . . , βg) is a sutured Heegaard diagram for Y \D3 (with a single suture
on the S2 boundary). See Figure 4 for some examples.

In the early days of the subject, these were the only kinds of diagrams considered in
Heegaard Floer homology.

Example 3.5. Suppose K is a fibered knot in Y , with fiber surface F and monodromy
φ : F → F . Divide ∂F into two sub-arcs, A and B, so that ∂F = A ∪ B and A ∩ B =
∂A = ∂B. Choose φ so that φ(A) = A and φ(B) = B.

Choose 2k disjoint, embedded arcs a1, . . . , a2k in F with boundary in A, giving a basis
for H1(F, ∂F ). Let b1, . . . , b2k be a set of dual arcs to a1, . . . , a2k, with boundary in B.
(That is, ai and bi intersect transversely in a single point and ai ∩ bj = ∅ if i 6= j.)

Let Σ = [F ∪ (−F )] \ nbd(A ∩B) be the result of gluing together two copies of F and
deleting a neighborhood of the endpoints A. Let αi = ai ∪ ai and let βi = bi ∪ φ(bi).
Then (Σ, α1, . . . , α2k, β1, . . . , β2k) is a sutured Heegaard diagram for Y \ nbd(K), with
two meridional sutures along K. See Figure 5.

To see this, let f : (Y \ nbd(K)) → S1 be the fibration. Write S1 = [0, π] ∪∂ [π, 2π].
We can think of Σ as(

f−1(0)
)
∪
(
f−1(π)

)
∪
(
[0, π]× ∂ nbd(A)

)
∪
(
[π, 2π]× ∂ nbd(B)

)
.

Use the monodromy along [0, π] to identify F = f−1(0) and −F = f−1(π). Then each αi
bounds a disk in f−1([0, π]), and each βi bounds a disk in f−1([π, 2π]).

Notice that the sutured manifolds specified by a Heegaard diagram are balanced. (We
could have specified unbalanced ones by allowing the number of α and β circles to be

11
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Figure 6. Heegaard moves. Left: a sutured Heegaard diagram for the
trefoil complement. Center: the result of a handleslide among the β circles.
Right: the standard diagram used in the stabilization move, and the result
of a stabilization.

different and dropping our restriction on closed components, but we will not be able to
define invariants of such unbalanced diagrams.

Theorem 3.6. Any balanced sutured manifold (Y,Γ) is represented by a sutured Heegaard
diagram.

Proof sketch. We will build a Morse function f : Y → R with certain properties and use
f to construct the Heegaard diagram. Specifically, we want a Morse function f so that:

(1) f : Y → [0, 3].
(2) f−1(0) = R◦− and f−1(3) = R◦+, where R◦± = R± \ nbd(Γ).
(3) f has no critical points of index 0 or 3.
(4) f is self-indexing, i.e., for any p ∈ Crit(f), f(p) = ind(p).
(5) f |nbd(Γ)⊂∂Y : nbd(Γ) ∼= [0, 3]× Γ→ [0, 3] is projection.

To construct such a Morse function, first define f by hand in a neighborhood of ∂Y .
Extend f to a Morse function on all of Y ; this is possible since Morse functions are
generic. Finally, move around / cancel critical points to achieve points points (3) and (4);
see [Mil65] for a discussion of how to do that.

Fix also a metric g, so that (∇f)|nbd(Γ) is tangent to ∂Y .
Now, the Heegaard diagram is given as follows:

• Σ = f−1(3/2).
• The α-circles are the ascending (stable) spheres of the index 1 critical points.
• The β-circles are the descending (unstable) spheres of the index 2 critical points.

It follows from standard results in Morse theory that the resulting Heegaard diagram
represents the original sutured manifold; see [Mil65] or [Mil63]. �

We will associate an abelian group SFH (H) to each sutured Heegaard diagram H. To
prove that these groups depend only on Y (H) (which we will not actually do), it is useful
to have a set of moves connecting any two sutured Heegaard diagrams:

Theorem 3.7. If H and H′ represent homeomorphic sutured manifolds then H and H′
can be made homeomorphic by a sequence of the following moves:

• Isotopies of α and β.
• Handleslides of one α-circle over another or one β-circle over another. (See

Figure 6.)

12
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• Stabilizations and destabilizations, i.e., taking the connected sum with the diagram
in Figure 6.

Again, the proof I know uses Morse theory.

Remark 3.8. If one wants to study maps on sutured Floer homology associated to cobor-
disms [Juh09], one needs a more refined statement than Theorem 3.7. See [JT12].

3.2. Holomorphic disks in the symmetric product and SFH . Brief version:

Definition 3.9. Fix a sutured Heegaard diagram (Σ, α1, . . . , αn, β1, . . . , βn). Then SFH (H)
is the Lagrangian intersection Floer homology of

Tα = α1 × · · · × αn, Tβ = β1 × · · · × βn ⊂ Symn(Σ),

the nth symmetric product of Σ.

Longer version:

3.2.1. Generators. As its name suggests, the Lagrangian intersection Floer homology is
the homology of a complex SFC (H) generated by the intersection points between Tα and
Tβ:

SFC (H) = F2〈Tα ∩ Tβ〉.
Unpacking the definition, a point in Tα ∩ Tβ is an n-tuple of points {xi}ni=1, where xi ∈
αi ∩ βσ(i) for some permutation σ ∈ Sn.

3.2.2. Differential. The differential, unfortunately, is harder: it counts holomorphic disks.
Recall that an almost complex structure on M is a map J : TM → TM so that J2 = −I.
For instance, given a complex manifold, multiplication by i on the tangent spaces is an
almost complex structure.

To count holomorphic disks, one must work with an appropriate almost complex struc-
ture J on Symn(Σ):

(1) The manifold Symn(Σ) can be given a reasonably natural smooth structure, and
in fact has a symplectic form ω. Moreover, the form ω can be chosen so that Tα
and Tβ are Lagrangian.1 In order to know that the moduli spaces of holomorphic
disks are compact (or have nice compactifications) one wants J to be compatible
with ω, in the sense that ω(v, Jw) is a Riemannian metric.

(2) One wants J to be generic enough that the moduli spaces of holomorphic disks
are transversely cut out.

In practice, one can often work with a split almost complex structure. That is, fix an
almost complex structure j on Σ. The almost complex structure j induces an almost
complex structure j×n on Σ×n. There is a unique almost complex structure Symn(j) on
Symn(Σ) so that the projection map Σ×n → Symn(Σ) is (j×n, Symn(j))-holomorphic.

The point of choosing a complex structure is so that we can talk about holomorphic
disks in Symn(Σ): a continuous map u : D2 → Symn(Σ) is J-holomorphic if J ◦du = du◦j
at all interior points of D2, where j is the almost complex structure on D2 = {z ∈ C |
|z| ≤ 1} induced by the complex structure on C.

Definition 3.10. Given x,y ∈ Tα ∩ Tβ, let M(x,y) be the set of non-constant J-
holomorphic disks u : D2 → Symn(Σ) so that

• u(−i) = x,
• u(+i) = y,
• u({z ∈ ∂D2 | <(z) ≥ 0}) ⊂ Tα and

1The original formulation of Heegaard Floer avoided using this fact, by a short but clever argument.

13
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• u({z ∈ ∂D2 | <(z) ≤ 0}) ⊂ Tβ.

There is an R-action on M(x,y), coming from the 1-parameter family of conformal
transformations of D2 fixing ±i. (If we identify D2 \ {±i} with [0, 1] × R, this R-action
is simply translation in R.)

Definition 3.11. Suppose that H represents a RHT sutured 3-manifold. Then define
∂ : SFC (Y )→ SFC (Y ) by

∂(x) =
∑
y

(#M(x,y)/R) y.

Here, # denotes the number of elements modulo 2, and if M(x,y)/R is infinite then we
declare #M(x,y)/R = 0.

At first glance, this definition looks hard to use: how does one understand a holomor-
phic disk in Symg(Σ)? Somewhat miraculously, these disks often can be understood, as
we will see in the next section.

If H represents a non-RHT sutured 3-manifold, one needs a slightly more compli-
cated definition. Maps D2 → Symg(Σ) decompose into homotopy classes (correspond-
ing to elements of H2(Y )), and M(x,y) is a disjoint union over homotopy classes φ,
M(x,y) = qφMφ(x,y). One then defines ∂(x) =

∑
y

∑
φ

(
#Mφ(x,y)/R

)
y, with the

same convention about # as before. One also needs to add a requirement on the sutured
Heegaard diagram, called admissibility, which ensure that #Mφ(x,y) = 0 for all but
finitely-many homotopy classes φ. (Admissibility is needed to get well-defined invariants
even if the counts happen to be finite for other reasons.)

3.3. First computations of sutured Floer homology.

3.3.1. Some n = 1 examples. If n = 1 we’re just looking at disks in Sym1(Σ) = Σ.

Lemma 3.12. The 0-dimensional moduli spaces of holomorphic disks in (Σ, α ∪ β) cor-
respond to isotopy classes of orientation-preserving immersions D → Σ (with boundary
as specified in Definition 3.10), with 90◦ corners at x and y.

(This follows from the Riemann mapping theorem—exercise.)
Here are some examples.
Consider the diagram in Figure 7. This represents S3\D3 = D3, with a single suture on

the boundary S2. The complex SFC (H) has five generators, a, b, c, d, e. The differential
is given by

∂(a) = b+ d ∂(b) = c ∂(c) = 0

∂(d) = c ∂(e) = b+ d

or graphically
a

��
''

e

ww
��

b

��

d

��
c

So,
SFH (D3) ∼= F2.

See Figure 7 for a hint of why ∂2 = 0, and [LOT12, Section 3.1] for further discussion
of this point.

14
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Figure 7. A genus-1 Heegaard diagram for S3 \ D3. Top: the dia-
gram, with generators labeled. The big, black disk indicates a hole in Σ.
Bottom: a hint of why ∂2 = 0. This diagram is adapted from [LOT12].

Figure 8. A diagram for the figure-8 complement. The two black
disks indicate holes in Σ.

Note that the fact that the maps must be orientation-preserving mean that the disk
from a to b can not be read backwards as a disk from b to a.

Next, consider the Heegaard diagram in Figure 8. This is the same as Figure 7, except
with different holes. With the new holes, the differential becomes trivial: the disks we
counted before now have holes in them. So,

SFH (S3 \ 41,Γ) ∼= (F2)5.

These examples can be generalized to compute the Floer homology of (the complement
of) any 2-bridge knot or, more generally, any (1,1)-knot.

3.3.2. A stabilized diagram for D3. Consider the diagram H in Figure 9. This diagram
again represents D3, but now has genus 2. The complex SFC (H) has three generators:
{r, v}, {s, v} and {t, v}. (Notice that one of the α-circles is disjoint from one of the
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Figure 9. A more complicated diagram for D3. The α-circles are in
red and the β-circles are in blue; intersection points which form parts of
generators are labeled. On the right are two interesting domains, the first
from {t, v} to {s, v} and the second from {r, v} to {t, v}. The annulus At
is also shown.

β-circles, reducing the number of generators.) Since SFH (H) = SFH (D3) = F2, the
differential must be nontrivial.

There are no obvious bigons in the diagram (or in Sym1(Σ)), but there is a disk in
Sym2(Σ). Consider the shaded region A in the middle picture in Figure 9. Topologically,
A is an annulus; it inherits a complex structure from the complex structure on Σ. I want
to produce a holomorphic map D2 → Sym2(A) giving a term {s, v} in ∂{t, v}. Consider
the result At of cutting A along α2 starting at v for a distance t. The key point is the
following:

Lemma 3.13. There is (algebraically) one length of cut so that At admits a holomorphic
involution τ which takes α-arcs to α-arcs (and β-arcs to β-arcs and corners to corners).

This is an adaptation of the proof of [OSz04d, Lemma 9.4]. See Exercise 4.
Given Lemma 3.13, we can construct the map u : D2 → Sym2(A) as follows. The

quotient At/τ is analytically isomorphic to D2, via an isomorphism taking the image of
t and one copy of v to −i and the image of s and the other copy of v to +i (and hence
the α-arc to the right half of ∂D2). This gives a 2-fold branched cover uD : At → D2.
Now, the map u sends a point x ∈ D2 to u−1

D (x) ∈ Sym2(A). It is immediate that u is
holomorphic.

This example illustrates an important principal: any holomorphic disk u : (D2, ∂D2)→
(Symg(Σ), Tα ∪ Tβ) has a shadow in Σ, in the form of an element of H2(Σ,α∪β) (i.e., a
cellular 2-chain). This shadow is called the domain of the disk u. The multiplicity of the
domain D(u) at a point p ∈ Σ is given by the intersection number u · [{p}× Symg−1(Σ)].

Note that the domain has multiplicity 0 near ∂Σ. Moreover, it follows from positivity
of intersections [MW95] that the coefficients in the domain of a holomorphic u are always
non-negative (at least if one works with an almost complex structure on Symg(Σ) which
is close to a split one, or agrees with a split one on an appropriate subset of Symg(Σ);
in Heegaard Floer theory one always makes this restriction). Finally, the domain has a
particular kind of behavior near the generators connected by u: if u connects x to y then
∂(∂D(u) ∩α) = y − x = −∂(∂D(u) ∩ β).

From these observations, it is fairly easy to see that the only other possible domain of
a holomorphic curve is shown on the far right of Figure 9. This domain connects {r, v} to
{t, v}. But a curve in this homotopy class would violate ∂2 = 0, so the algebraic number
of such curves is 0.
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It turns out that one can read the dimension of the moduli space of disks from the
domain D(u): see [Lip06, Corollary 4.10].

Of course, in general, computations are more complicated: domains do not need to be
planar (the domain in the right of Figure 9 is not planar), and branched covers of degree
greater than 2 are harder to analyze. Because direct computations are so hard, there has
been a lot of interest in both theoretical and practical techniques for computing Heegaard
Floer homology.

3.3.3. Grid diagrams. Consider a toroidal grid diagram H = (Σ,α,β), and let n be the
number of α-circles (which is, of course, also the number of β-circles). Since each αi
intersects each βj in a single point, the generators {xi ∈ αi ∩ βσ(i)} correspond to the
permutations σ ∈ Sn. (This correspondence is not quite canonical, since we are using the
indexing of the α-circles and β-circles.)

Next, consider two generators x and y such that:

• x ∩ y consists of (n− 2) points.
• There is a rectangle r in Σ so that the lower-left and upper-right corners of r

are x \ y, and the upper-left and lower-right corners of r are y \ x. (This is a
meaningful statement.)
• The interior of r is disjoint from x.

We will say that x and y are connected by an empty rectangle, and call r an empty
rectangle from x to y.

Given an empty rectangle r, we can find a holomorphic disk (with respect to the split
complex structure) with domain r as follows. First, there is a unique holomorphic 2-fold
branched cover uD : r → D2 sending the x-corners of r to −i and the y-corners of r to +i;
see Exercise 14. (This map automatically sends the α-boundary of r to the right half of
∂D2 and the β-boundary to the left half.) Since the preimage of any point in D2 is two
points in r (counted with multiplicity—the branch point is a multiplicity-2 point), we
can view (uD)−1 as a map D2 → Sym2(r). There is an inclusion Sym2(r) ↪→ Sym2(Σ) ↪→
Symg(Σ), where the second inclusion sends p to p × (x ∩ y). (Remember: p is a pair of
points in Σ, and x ∩ y is an (n− 2)-tuple of points in Σ, so p× (x ∩ y) is an n-tuple of
points in Σ. Forgetting the ordering gives a point in Symn(Σ).)

Amazingly, these are the only relevant holomorphic curves in the grid diagram:

Theorem 3.14. [MOS09] The rigid holomorphic disks in a toroidal grid diagram corre-
spond exactly to the empty rectangles. In particular, the differential on SFC (H) counts
empty rectangles in (Σ,α ∪ β).

The proof turns out not to be especially hard: it uses an index formula and some
combinatorics to show that the domain of a rigid holomorphic curve in a toroidal grid
diagram must be a rectangle. The result, however, is both surprising and useful.

A similar construction is possible for other 3-manifolds [SW10]. There is also a forth-
coming textbook about grid diagrams and Floer homology [OSS].

3.4. First properties.

Theorem 3.15. The map ∂ : SFC (H)→ SFC (H) satisfies ∂2 = 0.

This follows from “standard techniques”. The differential ∂ is defined by counting
0-dimensional moduli spaces of disks. The coefficient of z in ∂2(x) is given by # qy

M(x,y) ×M(y, z). One shows that M(x, z) is the interior of a compact 1-manifold
with boundary qyM(x,y) ×M(y, z); it follows that qyM(x,y) ×M(y, z) consists of
an even number of points. The proof that M(x, z) has the desired structure boils down
to three parts:
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(1) A transversality statement, that for a generic almost complex structure, M(x, z)
is a smooth manifold.

(2) A compactness statement, that any sequence of disks inM(x, z) converges either
to a holomorphic disk or a broken holomorphic disk.

(3) A gluing statement, that near any broken holomorphic disk one can find an honest
holomorphic disk (and, in fact, that near a broken disk the space of honest disks
is a 1-manifold).

Theorem 3.16. Up to isomorphism, SFH (H) depends only on the (isomorphism class
of the) sutured 3-manifold (Y,Γ) represented by H.

The proof, which is similar to the invariance proof in [OSz04d], is broken into three
parts: invariance under isotopies and change of almost complex structure; invariance
under handleslides; and invariance under stabilization. Stabilization is easy: it suffices to
stabilize near a boundary component, in which case the two complexes are isomorphic.
Isotopy invariance follows from standard techniques in Floer theory: one considers moduli
spaces of disks with boundary on a family of moving Lagrangians. Handleslide invariance
is a little more complicated—one uses counts of certain holomorphic triangles (rather than
bigons) to define the relevant maps—but fits rather nicely with the modern philosophy
of Fukaya categories.

3.4.1. Decomposition according to spinc structures. Notice in the example of S3\(41) that
there were generators not connected by any topological disk (immersed or otherwise).
This relates to the notion of spinc-structures.

Definition 3.17. Fix a sutured manifold (Y,Γ). Call a vector field v on Y well-behaved
if:

• v is non-vanishing.
• On R+, v points out of Y .
• On R−, v points into Y .
• Along Γ, v is tangent to ∂Y (and points from R− to R+).

(The term “well-behaved” is not standard.)

Definition 3.18. Fix Y connected and a ball D3 in the interior of Y . We say well-behaved
vector fields v and w on Y are homologous if v|Y \D3 and w|Y \D3 are isotopic (through
well-behaved vector fields). This is (obviously) an equivalence relation. Let spinc(Y,Γ)
denote the set of homology classes of vector fields; we refer to elements of spinc(Y,Γ) as
spinc-structures on Y . For Y disconnected we define spinc(Y,Γ) =

∏
i spinc(Yi,Γi), where

the product is over the connected components of Y .

Juhász’s Definition 3.18 is inspired by Turaev’s work [Tur97] (and, of course, the anal-
ogous construction in the closed case from [OSz04d]).

Lemma 3.19. spinc(Y,Γ) is a torseur for (affine copy of) H1(Y ) ∼= H2(Y, ∂Y ).

The first reason spinc structures are of interest to us is the following:

Lemma 3.20. There is a map s : Tα ∩ Tβ → spinc(Y ) with the property that s(x) = s(y)
if and only if x and y can be connected by a bigon (Whitney disk) in (Symg(Σ), Tα, Tβ).

The map s is not hard to construct from the Morse theory picture. Start with the
gradient vector field ∇f . A generator x specifies an n-tuple {ηi} of flow lines connecting
the index 1 and 2 critical points. The vector field ∇f |Y \nbd{ηi} extends to a non-vanishing
vector field on all of Y (easy exercise), which in turn specifies the spinc-structure s(x).
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Corollary 3.21. SFH (Y,Γ) decomposes as a direct sum over spinc structures on Y :

SFH (Y,Γ) =
⊕

s∈spinc(Y,Γ)

SFH (Y,Γ, s).

In fact, SFH (Y,Γ) has a grading by homotopy classes of well-behaved vector fields.
There is a free Z-action on the set of homotopy classes of well-behaved vector fields, so
that the quotient is the set of spinc-structures. If Y is RHT, this action is free, which we
can abbreviate as:

0→ Z→ {well-behaved vector fields}/isotopy→ spinc(Y,Γ)→ 0.

The differential on SFC (Y,Γ) changes the “Z-component” of this grading by 1 (and leaves
the “spinc(Y,Γ) component” unchanged, of course). See [RH11,RH12] for more details.

3.4.2. Definition of ĤF and ĤFK . A few important special cases predated sutured Floer
homology, and so have their own names:

• For Y a closed 3-manifold, ĤF (Y ) := SFH (Y \D3,Γ), where Γ consists of a single
circle on S2. This is one of Ozsváth-Szabó’s original Heegaard Floer homology
groups, from [OSz04d].

• For K a nullhomologous knot in a closed manifold Y , ĤFK (Y,K) := SFH (Y \
nbd(K),Γ), where Γ consists of two meridional sutures. The group ĤFK (Y,K)
is (one variant of) the knot Floer homology group of K, and was introduced by
Ozsváth-Szabó [OSz04b] and Rasmussen [Ras03]. In the special case Y = S3,

ĤFK (Y,K) is often denoted simply by ĤFK (K).

For Y = S3, spinc(Y \nbd(K),Γ) ∼= Z (canonically). So, ĤFK (K) decomposes:

ĤFK (K) =
⊕
j

ĤFK (K, j).

The integer j is called the Alexander grading.
There is also a Z-valued homological grading, the Maslov grading. Further,∑

i,j

(−1)itj dim ĤFK i(K, j) = ∆K(t),

the Alexander polynomial of K. (Here, i denotes the Maslov grading.)

• For L a link in Y each of whose components is nullhomologous, ĤFL(Y, L) :=
SFH (Y \nbd(L),Γ), where Γ consists of two meridional sutures on each component

of ∂ nbd(L). Again, in the special case Y = S3, one often writes simply ĤFL(L).

The group ĤFL(Y, L) is (one variant of) the link Floer homology of L, and was
introduced in [OSz08].

Some other, less well-studied variants also predated sutured Floer homology. For ex-
ample, (one variant of) Eftekhary’s longitude Floer homology [Eft05] corresponds to the
sutured Floer homology of a knot complement with two longitudinal sutures.

3.4.3. Product sutured manifolds. If (Y,Γ) is a product sutured manifold then we can
take Σ = R− = R+, with 0 α and β circles. In this rather degenerate case, Sym0(Σ) is a
single point, and Tα and Tβ are each a single point as well, giving SFC (Y,Γ) = F2 with
trivial differential. There is also a unique spinc structure on (Y,Γ). Thus:

Lemma 3.22. For (Y,Γ) a product sutured manifold, SFH (Y,Γ) = F2, supported in the
unique spinc structure on (Y,Γ).
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Figure 10. The sutured manifold structure on the boundary sum.

(If you are uncomfortable with Sym0, stabilize the diagram once. The computation
remains trivial.)

3.4.4. Product decompositions, disjoint unions, boundary sums and excess S2 boundary
components. In the next lecture we will discuss how sutured Floer homology behaves
under surface decompositions; this behavior is key to its utility. As a simple special case,

however, consider a product decomposition (Y,Γ)
D
 (Y ′,Γ′). One can find a Heegaard

diagram (Σ,α,β) for (Y,Γ) with the following properties:

(1) D ∩ Σ consists of a single arc δ such that
(2) δ is disjoint from α and β.

(See [Juh06, Lemma 9.13].) Cutting Σ along δ gives a sutured Heegaard diagram (Σ,α,β)
for (Y ′,Γ′). With respect to these sutured Heegaard diagrams, there is an obvious corre-
spondence between generators of SFC (Y,Γ) and SFC (Y ′,Γ′). Moreover, since the domain
of any holomorphic curve has multiplicity 0 near ∂Σ, it follows that this identification in-
tertwines the differentials on SFC (H) and SFC (H′). (A little argument, using positivity
of intersections, is needed here.) Thus:

Proposition 3.23. If (Y,Γ) and (Y ′,Γ′) are related by a product decomposition then
SFH (Y,Γ) ∼= SFH (Y ′,Γ′).

In a slightly different direction, suppose we have sutured manifolds (Y1,Γ1) and (Y2,Γ2).
The disjoint union (Y1qY2,Γ1qΓ2) is again a sutured manifold. Moreover, if Hi is a Hee-
gaard diagram for (Yi,Γi) then H1qH2 is a Heegaard diagram for (Y1qY2,Γ1qΓ2). The
symmetric product Symg1+g2(Σ1 q Σ2) decomposes as qi+j=g1+g2 Symi(Σ1) × Symj(Σ2),
but the Heegaard tori lie in the component Symg1(Σ1) × Symg2(Σ2). So (choosing an
appropriate almost complex structure), we get an isomorphism of chain complexes

SFC (H1 qH2) ∼= SFC (H1)⊗ SFC (H2).

Thus:

Proposition 3.24. SFH (Y1 q Y2,Γ1 q Γ2) ∼= SFH (Y1,Γ1)⊗ SFH (Y2,Γ2).

Next, suppose that (Y1,Γ1) and (Y2,Γ2) are sutured manifolds and H1 and H2 are
associated Heegaard diagrams. Fix a point pi ∈ ∂Σi, corresponding to a point qi ∈ ∂Yi.
Then we can form the boundary sum H1\H2 of H1 and H2 at the points p1 and p2.
The diagram H1\H2 represents the boundary sum of Y1 and Y2, which inherits a sutured
manifold structure; see Figure 10. The manifold Y1\Y2 differs from the disjoint union
Y1 q Y2 by a product decomposition, so:

Corollary 3.25. SFH (Y1\Y2,Γ) ∼= SFH (Y1,Γ1)⊗ SFH (Y2,Γ2).
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Figure 11. A Heegaard diagram for (Y1,Γ1). The surface Σ is an
annulus, and there is a single α circle and a single β circle running around
the hole.

(Of course, this is also easy to prove directly.)
Now, consider the special case of (Y1 = [0, 1] × S2,Γ1), where Γ1 consists of a single

suture on each boundary component. A Heegaard diagram for (Y1,Γ1) is shown in Fig-
ure 11. Here, SFC (Y1,Γ1) has two generators, x and y, and there are two disks from x to
y. (This computation is easy, since we are in the first symmetric product.) Consequently,
∂(x) = 2y = 0, so SFH (Y1,Γ1) = (F2)2.

Notice that taking the boundary sum with (Y1,Γ1) has the effect of introducing a new
S2 boundary component, with a single suture. So, we have:

Corollary 3.26. Let (Y,Γ) be a sutured manifold and let (Y ′,Γ′) be the result of deleting a
D3 from the interior of Y and placing a single suture on the resulting boundary component.
Then SFH (Y ′,Γ′) ∼= SFH (Y,Γ)⊗ (F2)2.

Remark 3.27. At first glance, one might expect that SFH (Y1,Γ1) vanishes, as one can
find a Heegaard diagram in which α and β are disjoint. Note that (Y1,Γ1) is not RHT,
so one is in the more complicated situation described at the end of Section 3.2.2. The
need to work with an admissible Heegaard diagram is the reason SFH (Y1,Γ1) 6= 0; but
see also Exercise 11.

3.5. Excess meridional sutures.

Proposition 3.28. If (Y ′,Γ′) is obtained from (Y,Γ) by replacing a suture on a toroidal
boundary component with three parallel sutures then SFH (Y ′,Γ′) ∼= SFH (Y,Γ)⊗ (F2)2.

Corollary 3.29. If H is a grid diagram for K with n α-circles then

SFH (H) ∼= ĤFK (S3, K)⊗ (F2)2n.

Probably this follows from [Juh08, Lemma 8.9] or [Juh08, Proposition 8.6], though I
have not thought it through carefully. This is probably a good exercise. See also [OSz08]
and [MOS09].

3.6. Suggested exercises.

(1) Convince yourself that Figure 8 does, in fact, represent the complement of the
figure-eight knot, with two meridional sutures.

(2) Convince yourself that Figure 9 represents D3 (with one suture on the boundary).
(3) Generalize Example 3.5 to the case of fibered links. What if we want a diagram

for Y \ D3, where Y is the 3-manifold in which the knot (or link) K lies, rather
than Y \ nbd(K)?

(4) Prove Lemma 3.13.
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(5) Show that, given a link L in S3, there is a toroidal grid diagram representing
S3 \ nbd(L), with some number of meridional sutures on each component of L.
Explicitly find toroidal grid diagrams for (p, q) torus knots.

(6) Use grid diagrams to compute SFH for the complement of the unknot with 4
meridional sutures and 6 meridional sutures, and the complement of the Hopf
link with 4 meridional sutures on each component.

(7) Compute SFH for the complements of some other 2-bridge knots.
(8) State Lemma 3.12 precisely, and prove it.
(9) Prove Lemma 3.19.

(10) The group spinc(3) is isomorphic to U(2). There is a map spinc(3) = U(2) →
SO(3) given by dividing out by S1 =

{(
eiθ 0
0 e−iθ

)}
.

The usual definition of a spinc structure is a principal spinc(3)-bundle P over
Y , and a bundle map from P to the bundle of frames of Y , respecting the ac-
tions of spinc(3) and SO(3) in the obvious sense. (This uses the homomorphism
spinc(3)→ SO(3) above.) Identify this definition with Definition 3.18.

(11) Suppose that (Y,Γ) is a sutured manifold so that one component of ∂Y is a sphere
with n > 1 sutures. Prove that SFH (Y,Γ) = 0. (Warning: to give an honest proof,
you probably need to know something about admissibility conditions.)

(12) Find a genus 1 Heegaard diagram for the lens space L(p, q) (or, from the su-

tured perspective, L(p, q) \ D3). Use this diagram to compute ĤF (L(p, q)) =
SFH (L(p, q) \ D3).

(13) Which surgery on the trefoil is shown in Figure 4?
(14) Let r be a rectangle in the plane, i.e., a topological disk with boundary consisting

of four smooth arcs. Show that there is a unique holomorphic 2-fold branched
cover r → D2 sending the corners to ±i. (Hint: start by applying the Riemann
mapping theorem. Then use the fact that branched double covers r → D2 corre-
spond to involutions of r.)

4. Surface decompositions and sutured Floer homology

Recall that to each balanced sutured manifold (Y,Γ) we have associated an F2-vector
space SFH (Y,Γ). Moreover, SFH (Y,Γ) is a direct sum over (relative) spinc-structures
on (Y,Γ),

SFH (Y,Γ) =
⊕

s∈spinc(Y,Γ)

SFH (Y,Γ, s).

Theorem 4.1. [Juh08, Theorem 1.3] Let (Y,Γ) be a balanced sutured and (Y,Γ)
S
 

(Y ′,Γ′) a sutured manifold decomposition. Suppose that S is good (Definition 2.27).
Then

SFH (Y ′,Γ′) ∼=
⊕

s∈O(S)

SFH (Y,Γ, s).

(In fact, Theorem 4.1 holds with “good” replaced by “balanced-admissible”.)
The notation O(S) needs explanation. A spinc structure is called outer with respect to

S if it can be represented by a (non-vanishing) vector field v which is never equal to −νS,
the (negative) normal vector field to S. O(S) denotes the set of outer spinc structures.
(This definition can be rephrased in terms of relative Chern classes; see [Juh08].)

A key step in proving Theorem 4.1 is to study Heegaard diagrams adapted to the
surface decomposition:

22



Lecture 3 Draft of June 24, 2014

Figure 12. A sutured Heegaard diagram adapted to a decompos-
ing surface. This is a Heegaard diagram for the complement of the figure
8 knot, and S(P ) is a minimal-genus Seifert surface for the Figure 8 knot.
The polygon P is shaded. A is the single dashed arc and B is the single
dotted arc.

Definition 4.2. Fix a sutured manifold (Y,Γ) and a decomposing surface S in Y . By
a Heegaard diagram for (Y,Γ) adapted to S we mean a sutured Heegaard diagram H =
(Σ,α,β) for (Y,Γ) together with a subsurface P ⊂ Σ with the following properties:

(1) The boundary of P is the union A ∪ B where A and B are disjoint unions of
smooth arcs.

(2) ∂A = ∂B = A ∩B ⊂ ∂Σ.
(3) A ∩ β = ∅ and B ∩α = ∅.
(4) Let S(P ) = P ∪ A × [1/2, 1] ∪ B × [0, 1/2] ⊂ Y (H) = Y . Then S(P ) is isotopic

to S, where each intermediate surface in the isotopy is a decomposing surface.

See Figure 12.

Proposition 4.3. [Juh08, Proposition 4.4] Let (Y,Γ) be a balanced sutured manifold
and S a good decomposing surface for (Y,Γ). Then there is a sutured Heegaard diagram
for (Y,Γ) adapted to S.

The proof is similar to (but somewhat more intricate than) the proof of Theorem 3.6.
We will return to the proof of Theorem 4.1 in Section 4.2.

4.1. Application: knot genus, (Thurston norm, fiberedness). We recall Theo-
rem 1.1:

Theorem 4.4. [OSz04a, Theorem 1.2] ĤFK (S3, K) detects the genus of K. Specifically

g(K) = max{j | ĤFK ∗(K, j) 6= 0}.

Similarly:

Theorem 4.5. ( [HN10, Theorem 2.2], building on [OSz04a, Theorem 1.1]) For Y 3

closed, ĤF (Y ) detects the Thurston norm: for h ∈ H2(Y ),

x(h) = max{〈c1(s), h〉 | ĤF (Y, s) 6= 0}.

Here, c1(s) denotes the first Chern class of the spinc-structure s (which is the same as the
Euler class of the 2-plane field orthogonal to s, if we think of s as a vector field). Ozsváth-
Szabó proved this result for a twisted version of Heegaard Floer homology; Hedden-Ni
deduce the untwisted statement using the universal coefficient theorem.
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Theorem 4.6. ( [Ni07, Theorem 1.1], building on [Ghi08, Theorem 1.4]) ĤFK (K) de-

tects fibered knots: S3 \K fibers over S1 if and only if
∑

i dim ĤFK i(K, j) = 1.

Ni’s result is, in fact, more general than Theorem 4.6. There is an analogous statement
for closed 3-manifolds; see [Ni09].

In the rest of this section, we will sketch a proof of Theorem 1.1. First, the easy
direction:

Proposition 4.7. [OSz04b] Fix a Seifert surface F for a knot K in S3. Then ĤFK ∗(K, j) =
0 if j < −g(F ) or j > g(F ) (where g(F ) is the genus of F ).

Proof sketch. We can view F as a good decomposing surface for (S3 \ nbd(K),Γ), where
Γ consists of two meridional sutures. Choose a Heegaard diagram (Σ,α,β, P ) adapted

to F . It turns out that the Alexander grading of a generator x ∈ ĤFK (K) is given by
|x∩P |−g(F ), where |x∩P | denotes the number of points in x∩P and g(F ) is the genus
of F . (This is, in fact, fairly close to the original definition of the Alexander grading
in [OSz04b].) It follows that the Alexander grading is bounded below by −g(F ). For the

upper bound we use a symmetry: ĤFK i(K, j) ∼= ĤFK i−2j(K,−j) [OSz04b, Proposition
3.10]. �

Remark 4.8. In the special case of fibered knots, Proposition 4.7 can also be proved using
the Heegaard diagram from Example 3.5. (See also [HKM09].) That construction can be
generalized to give a diagram for Proposition 4.7 in general. The resulting diagrams are,
I think, examples of the ones used in this proof (i.e., they are sutured Heegaard diagrams
adapted to the Seifert surface). One can also prove Proposition 4.7 using grid diagrams;
see [OSS].

In the proof of Proposition 4.7, there are no generators of the chain complex SFC in
Alexander grading < g. For the diagrams discussed in the previous paragraph, there are
also no generators in Alexander grading > g. My guess is that this will be true in general
(for diagrams adapted to a Seifert surface), but I have not thought it through; perhaps
you can prove it (it should not be hard if true) or give a counterexample.

Proof of Theorem 1.1. After Proposition 4.7, it remains to show that ĤFK ∗(K,−g(K)) 6=
0. Let Y0 denote the exterior of K and let Γ0 be two meridional sutures on ∂Y . Fix
a minimal-genus Seifert surface F for K. View F as a decomposing surface for Y0

(with ∂F intersecting each suture once). Let (Y1,Γ1) be the result of a surface de-
composition of (Y0,Γ0) along F . Since F was minimal genus, the resulting sutured
manifold is taut. By Theorem 4.1, SFH (Y1,Γ1) ∼=

⊕
s∈O(F ) SFH (Y,Γ, s). A short ar-

gument, similar to the argument omitted in the proof of Proposition 4.7, shows that⊕
s∈O(F ) SFH (Y,Γ, s) = ĤFK ∗(K,−g(K)).

So, by Theorem 4.1, it suffices to show that SFH (Y1,Γ1) is nontrivial. By Proposi-
tion 2.28, we can find a sequence of sutured manifold decompositions

(Y1,Γ1)
S1 · · · Sn (Yn,Γn)

where each Si is good and (Yn,Γn) is a product sutured manifold. By Lemma 3.22,
SFH (Yn,Γn) = F2. So, applying Theorem 4.1 n times, (Y1,Γ1) has an F2 summand. �

Juhász’s proof, which we have sketched, of Theorem 1.1 is quite different from Ozsváth-
Szabó’s original proof. Theorem 4.6 can also be proved using sutured Floer homology,
though the argument is more intricate, and close in spirit to Ni’s original proof. Appar-
ently, at the time of writing there is no known proof of Theorem 4.5 via sutured Floer
homology.
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4.2. Sketch of proof of Theorem 4.1. We will sketch the proof from [GW10], rather
than Juhász’s original proof from [Juh08]. Juhász’s original proof, which uses Sarkar-
Wang’s nice diagrams [SW10], is technically simpler. Grigsby-Wehrli’s proof has the
advantage that it is more natural (in a sense they make precise). It is also closer in spirit
to bordered Heegaard Floer theory, a subject I am particularly interested in.

I find it somewhat easier to think about the argument in the “cylindrical” formulation
of Heegaard Floer homology [Lip06]. This generalizes the description of holomorphic
maps D2 → Sym2(Σ) used in Sections 3.3.2 and 3.3.3. Specifically:

Proposition 4.9. With respect to a split complex structure on Symg(Σ), there is a cor-
respondence between holomorphic maps

(4.10) v : (D2, ∂D2 ∩ {<(z) ≥ 0}, ∂D2 ∩ {<(z) ≤ 0})→ (Symg(Σ), Tα, Tβ)

and diagrams

(4.11) (S, ∂aS, ∂bS)
uΣ //

uD
��

(Σ,α,β)

(D2, ∂D2 ∩ {<(z) ≥ 0}, ∂D2 ∩ {<(z) ≤ 0})

where S is a Riemann surface with boundary ∂S = ∂aS∪∂bS; uΣ and uD are holomorphic;
and uD is a g-fold branched cover.

Sketch of proof. Given a diagram of the form (4.11) we get a map D2 → Symg(Σ) by
sending a point p ∈ D2 to uΣ(u−1

D (p)) (which is g points in Σ, counted with multiplicity,
or equivalently a point in Symg(Σ)). To go the other way, note that there is a branched
cover π : Σ×Symg−1(Σ)→ Symg(Σ) gotten by forgetting the ordering between the (g−1)-
tuple of points in Σ and the one additional point. This is a g-fold branched cover. Given
v : D2 → Symg(Σ) as in Formula (4.10) we can pull back the branched cover π to get a
branched cover uD : S → D2. The surface S comes equipped with a map to Σ×Symg−1(Σ),
and projecting to Σ gives uΣ:

Σ

S //

uΣ

33

uD
��

Σ× Symg−1(Σ)

π
��

πΣ

88

D2 v // Symg−1(Σ).

It is fairly straightforward to prove that both constructions give holomorphic maps (of
the specified forms) and that the two constructions are inverses of each other. See [Lip06,
Section 13] for more details (though this idea is not due to me). �

Lemma 4.12. Let (Σ,α,β, P ) be a sutured Heegaard diagram adapted to a decomposing
surface. If y occurs as a term in ∂(x) then |x ∩ P | = |y ∩ P |.

Lemma 4.12 follows from various results about spinc-structures, but it is also fairly
easy to prove directly; see Exercise 7. In fact, a slightly stronger statement holds: if
there is a domain connecting x to y then |x ∩ P | = |y ∩ P |.

Lemma 4.13. With notation as in Lemma 4.12, a generator x represents an outer spinc-
structure if and only if x ∩ P = ∅.
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Proof of Theorem 4.1. Fix a Heegaard diagram H = (Σ,α,β) for (Y,Γ) adapted to S (so
there is a distinguished surface P ⊂ Σ). Let H′ = (Σ′,α′,β′) be the sutured Heegaard
diagram obtained as follows. Topologically,

Σ′ =
(
Σ \ int(P )

)
q P q P/ ∼

where ∼ identifies the subset A of ∂
(
Σ \ int(P )

)
with A in the boundary of the first copy

PA of P , and the subset B of ∂
(
Σ\ int(P )

)
with B in the boundary of the second copy PB

of P . There is a projection map π : Σ′ → Σ, which is 2-to-1 on P and 1-to-1 elsewhere.
There is a unique lift α′ of the curves α from Σ to Σ′: the lifted curves are disjoint from
PB. Similarly, there is a unique lift β′ of the curves β, and this lift is disjoint from PA.

Let

SFC P (H) = 〈{x | x ∩ P = ∅}〉 ⊂ SFC (H).

By Lemma 4.12, SFC P (H) is a subcomplex—in fact, a direct summand—of SFC (H).
By Lemma 4.13, an equivalent formulation of Theorem 4.1 is:
There is an isomorphism SFH P (H) ∼= SFH (H′).
This statement has two advantages: it is more concrete (so we can prove it), and it

does not make reference to spinc structures (which we have not discussed much). It has
the disadvantage that it is not intrinsic—it talks about diagrams, not sutured manifolds.

Notice that α′∩β′ corresponds (via the projection π) to α∩β∩ (Σ\P ). This induces
an identification of generators between SFC P (H) and SFC (H′). We will show that for an
appropriate choice of complex structure, this identification intertwines the differentials.
(As usual, we are suppressing transversality issues and assuming we can work with split
almost complex structures.)

Working in the cylindrical formulation (see Proposition 4.9), suppose x and y are

generators of SFC P (H) and that y occurs in ∂(x). Then there is a diagram D uD←− S
uΣ−→

Σ as in Formula (4.11). We want to produce a similar diagram, but in H′.
The idea is to insert long necks in Σ along A and B, or equivalently, to pinch A and B,

decomposing Σ into two parts: P/∂P and Σ/P . (The argument is similar to the first part
of the argument in [LOT08, Chapter 9].) Consider a sequence of curves ui = (uD,i, uΣ,i)
as above, with respect to a sequence of neck lengths converging to ∞.

Claim 1. As A and B collapse, one can find a subsequence of the ui so that:

• The surfaces Si converge to a nodal Riemann surface S∞.
• S∞ has two components, SP∞ and SΣ

∞, attached at a collection of boundary points
(nodes).
• The maps ui converge to holomorphic maps

uΣ
D,∞ : SΣ

∞ → D2 uPD,∞ : SP∞ → D2

uΣ
Σ,∞ : SΣ

∞ → Σ uPΣ,∞ : SP∞ → P.

• The maps uPD,∞ and uΣ
D,∞ send each side of each node to the same point in ∂D2;

that is, uD,∞ extends continuously over the nodes.
• At each node, uPΣ,∞ and uΣ

Σ,∞ map to an arc between two α- or β-circles and,
further, both sides of the node map to the same such arc.

See Figure 13 for a schematic example.
Claim 1 is a version of Gromov’s compactness theorem [Gro85] (see also [BEH+03]),

though the fact that we are considering maps between surfaces make it considerably easier
than the general case.

Claim 2. Near any limiting surface as in Claim 1 there is a sequence of holomorphic
curves converging to it.
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Figure 13. A holomorphic curve after degeneration. The domain of
u is shaded, and P is speckled. In the domain of u, the darkly-shaded part
is covered twice. In P/∂P , the four corners are identified. The conformal
structure of S is not (usually) the one indicated. In S∞, SΣ

∞ is shaded and
SP∞ is speckled.

Claim 2 is called a gluing theorem. (Again, the fact that we are looking at maps
between surfaces means this is a reasonably simple case.)

Together, Claims 1 and 2 mean that we can use this degenerated surface to compute
the differential on SFC P .

Claim 3. The surface SP∞ consists of a disjoint union of bigons (disks with two boundary
nodes). The map uPΣ sends each bigon to a strip in P , with boundary either two α-circles
or two β-circles. The map uPD is constant on each bigon.

Notice that Claim 3 implies that uPΣ and uPD can be reconstructed from uΣ
Σ and uΣ

D,
and that uPΣ and uPD exist if and only if uΣ

Σ and uΣ
D satisfy certain easy-to-state properties

(Exercise 8).
Similar results hold for holomorphic curves in Σ′, after collapsing the arcs A and B

there. The difference is that we now have three components: Σ/P , PA/A and PB/B.
The analogue of Claim 3 says:

Claim 3′. Each of the surfaces SPA∞ and SPB∞ consists of a disjoint union of bigons. The
map uPAΣ sends each bigon to a strip in PA, with boundary on two α-circles. The map

uPBΣ sends each bigon to a strip in PB, with boundary on two β-circles. The map uPD is
constant on each bigon.

Again, Claim 3′ implies that the curves uPAΣ , uPAD , uPBΣ and uPBD can be reconstructed
from uΣ

Σ and uΣ
D. In particular, there is an identification between the curves in Claim 3

and the curves in Claim 3′. Since we can use these degenerated curves to compute the
differentials on SFC P (H) and SFC (H′), this completes the proof. �
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4.3. Some open questions. Here are some questions about sutured Floer homology
which I think are open, and which I would find interesting to have answered. (Whether
or not anyone else would find them interesting I cannot say.)

(1) Can one give a proof of Theorem 4.5 using sutured Floer homology? In this
context [KM10, Section 7.8] seems relevant.

(2) Further explore the constructions in [AE11], or other “minus” variants of sutured
Floer homology.

(3) What can be said about the next-to-outer spinc structures? What topological
information do they contain? (Perhaps the pairing theorem in [Zar09] is relevant.)

4.4. Suggested exercises.

(1) Let (Σ,α,β, P ) be a sutured Heegaard diagram adapted to a decomposing surface
S. How does one compute the genus of S = S(P )?

(2) Deduce Proposition 3.23 from Theorem 4.1.
(3) Convince yourself that Figure 12 represents the figure 8 knot, and that S(P ) is a

minimal genus Seifert surface. (Hint: the figure 8 knot is fibered with monodromy
ab−1.) Give a sutured Heegaard diagram for the trefoil complement, adapted to
a minimal genus Seifert surface.

(4) What is the relationship between the proof of the “easy direction” of Theorem 1.1,
i.e., Proposition 4.7, that we gave and the proof in [OSz04b]? (That is, are the
diagrams used in [OSz04b] examples of diagrams adapted to the Seifert surface F
in the sense of Definition 4.2?)

(5) Prove that if K is a fibered knot then HFK ∗(K,−g(K)) ∼= F2 (i.e., the easy
direction of Theorem 4.6).

(6) Fill in the details in the proof of Proposition 4.9.
(7) Prove Lemma 4.12.
(8) In the proof of Theorem 4.1, say precisely what properties SΣ

∞, uΣ
Σ and uΣ

D must
satisfy for the surface SP∞ and the maps uPΣ and uPD to exist. (See the discussion
immediately after Claim 3.)

5. Miscellaneous further remarks

The main goal of this lecture is to draw some connections with the lecture series
on Khovanov homology. As a side benefit, I will mention another nice applications of
Heegaard Floer homology (mostly without proof, unfortunately).

For most of this talk we will focus on the invariant ĤF (Y ) = SFH (Y \D3,Γ) associated
to a closed 3-manifold Y , as in Section 3.4.2.

5.1. Surgery exact triangle. A framed knot in a 3-manifold Y is a knot K ⊂ Y
together with a slope n (isotopy class of essential simple closed curves) on ∂ nbd(K).
Given a framed knot (K,n) we can do surgery on (K,n) by gluing a thickened disk (3-
dimensional 2-handle) to Y \nbd(K) along n, and then capping the resulting S2 boundary
component with a D3. Let Yn(K) denote the result of doing surgery to Y along (K,n).

Theorem 5.1. [OSz04c] Let n, n′ and n′′ be slopes in ∂ nbd(K) whose intersection
numbers satisfy

n · n′ = n′ · n′′ = n′′ · n = 1.
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Then there is an exact triangle

ĤF (Yn(K))

''

ĤF (Yn′′(K))

77

ĤF (Yn′(K)).oo

In fact, the same result holds for ĤF (Y ) replaced by SFH (Y,Γ) for any sutured 3-
manifold (Y,Γ). The original proof (from [OSz04c]) extends to this case. This also
follows immediately from the exact triangle for bordered solid tori [LOT08, Section 11.2]
together with Zarev’s bordered-sutured theory—particularly [Zar10, Theorem 3.10].

There is always a distinguished slope for K, the meridian, which bounds a disk in
nbd(K). If K ⊂ S3 then K also has a well-defined longitude, a slope which is nullhomol-
ogous in S3 \ nbd(K). For knots in S3, therefore, we can identify slopes with rational
numbers, by declaring that p/q corresponds to p times the meridian plus q times the
longitude.

5.2. Lens space surgery. Theorem 5.1 has many applications. It is a central tool in
computations of 3-manifold invariants; see for instance [JM08] for an intricate example.

In a different direction, let us consider 3-manifolds Y for which ĤF (Y ) is trivial. First,
we must decide what we mean by “trivial”. To start, we have:

Theorem 5.2. [OSz04c, Proposition 5.1] Given a torsion spinc structure s on Y ,

χ(ĤF (Y, s)) = ±1. In particular, for Y a rational homology sphere (meaning H1(Y ;Q) =

0), there is a choice of absolute Z/2Z grading so that χ(ĤF (Y )) = |H1(Y )|, the number
of elements of H1(Y ).

Suppose Y is a rational homology sphere. Saying ĤF (Y ) is trivial, then, should

mean dim(ĤF (Y )) = χ(ĤF (Y )) = |H1(Y )|. In this case, we say that Y is an L-
space. The terminology comes from the fact that the lens spaces L(p, q) are all L-spaces:

|H1(L(p, q))| = p and ĤF (L(p, q)) ∼= (F2)p (Exercise 12).
As a first application of Theorem 5.1, we have:

Corollary 5.3. Let S3
n(K) denote n-surgery on the knot K. If S3

n(K) is an L-space then FixedFixed
so is S3

m(K) for any m > n.

Proof. By induction, it suffices to prove that S3
n+1(K) is an L-space. Applying Theo-

rem 5.1 to the slopes n, n+1 and∞, we see that dim ĤF (S3
n+1(K)) ≤ n+1. Theorem 5.2

gives the opposite inequality, proving the result. �

L-spaces are fairly rare, though many examples are known. (For example, the branched
double cover of any alternating link is an L-space [OSz05]; this follows from the techniques
in Section 5.3.)

Via Theorem 5.1 and its refinements (like the surgery formulas from [OS08, OS11]),
one can give restrictions on which surgeries can yield L spaces and, in particular, lens
spaces. Perhaps the most dramatic example (so far) is a theorem of Kronheimer-Mrowka-
Ozsváth-Szabó, originally proved using monopole (Seiberg-Witten) Floer homology:

Theorem 5.4. [KMOSz07] Suppose that for some p/q ∈ Q, S3
p/q(K) is orientation-

preserving diffeomorphic to the lens space L(p, q). Then K is the unknot.

Many cases of Theorem 5.4 were already known; see the introduction to [KMOSz07]
for a discussion of the history.
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Note that there are nontrivial knots K in S3 admitting lens space surgeries. For
instance, S3

pq+1(Tp,q) = L(pq + 1, q2). A number of other knots (called Berge knots)
are known to have lens space surgeries, and many others have L-space surgeries (see,

for instance, [HLV14], and its references). So, the following is false: if ĤF (S3
p/q(K)) ∼=

ĤF (S3
p/q(U)) then K = U . In particular, the proof of Theorem 5.4 needs (at least) one

more ingredient.
In Theorem 5.4, the case of 0-surgeries is called the property R conjecture, and was

proved by Gabai [Gab87]. So, to prove Theorem 5.4 for q = 1, say, it suffices to show
that if S3

p(K) = L(p, 1) then S3
p−1(K) = L(p − 1, 1). (This is the opposite direction of

induction from Corollary 5.3.)
To accomplish this downward induction, one can either use the absolute Q-grading on

ĤF (Y ), as in the original proof of Theorem 5.4 or, for a quicker proof, the surgery formula
from [OS08]. (In fact, the latter proof is sufficiently simple that Theorem 5.4 makes a
good exercise when learning the surgery formula.)

Theorem 5.4 is one of everyone’s favorite application of low-dimensional Floer theories
(though it does have some stiff competition), and so gets mentioned a lot. For some
other striking applications to lens space surgeries, which are fairly accessible from the
discussion in these lectures, see for instance [OS05b].

5.3. The spectral sequence for the branched double cover. As another application
of the surgery exact triangle (and related techniques), we discuss a relationship between
Heegaard Floer homology and Khovanov homology:

Theorem 5.5. [OSz05, Theorem 1.1] For any link L in S3 there is a spectral sequence

K̃h(m(L))⇒ ĤF (Σ(L)).

Here, K̃h(m(L)) denotes the reduced Khovanov homology of the mirror of L. The
manifold Σ(L) is the double cover of S3 branched along L. That is, the meridians of L
define a canonical isomorphism H1(S3 \ nbd(L)) ∼= Z|L|. The composition

π1(S3 \ nbd(L))→ H1(S3 \ nbd(L)) = Z|L| → Z/2Z,
where the last map sends each basis vector (i.e., meridian) to 1, defines a connected
double cover Ỹ of S3 \ nbd(L). The boundary of Ỹ is a union of tori. Each of these
tori has a distinguished meridian—the total preimage of a meridian of the corresponding
component of L. Filling in these meridians with thickened disks and the resulting S2

boundary components with D3’s gives the double cover of S3 branched along L.
Theorem 5.5 has received a lot of attention. See [LOT10, Section 1.2] for references to

related work. In particular, Kronheimer-Mrowka later used similar ideas to prove that
Khovanov homology detects the unknot [KM11].

Sketch of Proof of Theorem 5.5. The relationship between Theorem 5.5 and Theorem 5.1
comes from the following observation: let L be a link diagram, c a crossing in L, and
L0 and L1 the two resolutions of L at c, as in Figure 14. Let γ be the (vertical) arc in
R3 with boundary on L lying above c. The total preimage γ̃ of γ in Σ(L) is a circle K.
There are surgery slopes n and n′ on ∂ nbd(K) so that n (respectively n′) surgery on K
gives L1 (respectively L0), and (∞, n, n′) satisfy the conditions of Theorem 5.1. Thus,
Theorem 5.1 gives a long exact sequence

· · · → ĤF (Σ(L))→ ĤF (Σ(L1))→ ĤF (Σ(L0))→ ĤF (Σ(L))→ · · · .
There is an analogous skein sequence for Khovanov homology. This skein relation does
not characterize Khovanov homology but, as we will see, it almost implies the existence
of a spectral sequence of the desired form.
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Figure 14. Resolutions of a crossing. The conventions agree
with [Kho00], not [OSz05].

To proceed, we actually need a slight strengthening of Theorem 5.1: with notation as
in that theorem, there is a short exact sequence of chain complexes

(5.6) 0→ ĈF (Yn′(K))→ ĈF (Yn′′(K))→ ĈF (Yn(K))→ 0

(for appropriately chosen Heegaard diagrams). Further, this surgery triangle is local in
the following sense. Fix two disjoint knots K and L in Y , and framings m,m′,m′′ for K
and n, n′, n′′ for K ′ as in Theorem 5.1. Let Ym,n(K ∪ L) be the result of performing m
surgery on K and n surgery on L. Then there is a homotopy-commutative diagram
(5.7)

0

��

0

��

0

��

0 // ĈF (Ym′,n′(K ∪ L))
f00,10 //

f00,01

��

ĈF (Ym′′,n′(K ∪ L)) //

f10,11

��

ĈF (Ym,n′(K ∪ L)) //

��

0

0 // ĈF (Ym′,n′′(K ∪ L))
f01,11 //

��

ĈF (Ym′′,n′′(K ∪ L)) //

��

ĈF (Ym,n′′(K ∪ L)) //

��

0

0 // ĈF (Ym′,n(K ∪ L)) //

��

ĈF (Ym′′,n(K ∪ L)) //

��

ĈF (Ym,n(K ∪ L)) //

��

0

0 0 0

where the rows and columns are the exact sequences of Equation 5.6. Here, homotopy-

commutative means, for instance, that there is a map f00,11 : ĈF (Ym′,n′(K ∪ L)) →
ĈF (Ym′′,n′′(K ∪ L)) so that

∂ ◦ f00,11 + f00,11 ◦ ∂ = f01,11 ◦ f00,01 + f10,11 ◦ f00,10.

The natural analogue holds for surgeries on a link of n > 2 components, as well.
As an algebraic corollary, we have the fact that

(5.8) ĈF (Ym,n(K ∪ L)) ' Cone


ĈF (Ym′,n′(K ∪ L))

f00,10 //

f00,01

��

f00,11

))

ĈF (Ym′′,n′(K ∪ L))

f10,11

��

ĈF (Ym′,n′′(K ∪ L))
f01,11 // ĈF (Ym′′,n′′(K ∪ L))

 ;

see Exercise 2. Here, the Cone means that we take the whole diagram and view it as
a complex. That is, take the direct sum of the complexes at the four vertices, and use
the differentials on the complexes and maps between them to define a differential. For
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instance, if x ∈ ĈF (Ym′,n′(K∪L)) then the differential of x is given by ∂CF (x)+f00,10(x)+
f00,01(x) + f00,11(x). (If we were not working over F2, there would be some signs.) Again,
the analogous results hold for a link with more than two components.

Notice that the complex in Formula 5.8 has an obvious filtration. The terms in the

associated graded complex are ĈF (Ym′,n′(K∪L)), ĈF (Ym′′,n′(K∪L))⊕ĈF (Ym′,n′′(K∪L)),

and ĈF (Ym′′,n′′(K ∪ L)). Thus, there is a spectral sequence with E1 term given by

ĤF (Ym′,n′(K ∪ L))⊕ ĤF (Ym′′,n′(K ∪ L))⊕ ĤF (Ym′,n′′(K ∪ L))⊕ ĤF (Ym′′,n′′(K ∪ L))

converging to ĤF (Ym,n(K ∪ L)). This is called the link surgery spectral sequence.
Returning to the branched double cover, suppose that L has k crossings. Consider

the link K in Σ(L) corresponding to the k crossings, as in the first paragraph of the

proof. The surgery spectral sequence corresponding to this link has E∞-page ĤF (Σ(L)).
It remains to identify the E2-page with Khovanov homology. In fact, the E1-page is
identified with the reduced Khovanov complex. At the level of vertices, notice that the
Floer group corresponding to each vertex is the branched double cover of an unlink.
Hence, by Exercise 3, if the unlink has ` circles in it then this branched double cover has

ĤF given by (F2 ⊕ F2)⊗(n−1), in agreement with the corresponding term in the reduced
Khovanov complex. Identifying the differential on the E1-page is then a fairly short
computation; see [OSz05]. �

5.4. Suggested exercises.

(1) Corollary 5.3 holds for rational surgeries, as well. Prove it.
(2) Prove Formula (5.8) (assuming Formula (5.7)).
(3) Show that the branched double cover of an n-component unlink in S3 is the

connected sum of (n − 1) copies of S2 × S1. Deduce that the branched double

cover has ĤF given by (F2 ⊕ F2)⊗(n−1).
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