Heegaard-Floer homology, ordered groups and exceptional surgeries

Dale Rolfsen
A survey and recent work with Adam Clay
Marseille, September 2010

Khovanov homology ...
'categorification' of the Jones polynomial.

A bigraded homology theory $\widetilde{K h}(K)$ associated to a knot K whose 'Euler characteristic' is the Jones polynomial:

$$
\chi_{\widetilde{K h}}(K)=V_{K}(t)
$$

Today we'll discuss a similar theory - Knot Floer Homology

$$
\widehat{H F K}_{*}(K, i)
$$

and its cousin Heegaard Floer Homology

$$
\widehat{H F}_{*}(M)
$$

Their definition depends on a classical description of a 3-manifold M via...

Heegaard diagrams

Every closed orientable 3-manifold M is the union of two handlebodies:

$$
M^{3} \cong H_{1} \cup_{\Sigma_{g}} H_{2}
$$

The "handles" of a handlebody H of genus g may be regarded as g disjoint disks in H, with their boundaries in $\partial H \cong \Sigma_{g}$, and so that the complement in H of the union of regular neighbourhoods of the disks is a 3 -ball:

$$
H \backslash \cup_{i=1}^{g} N\left(D_{i}\right) \cong B^{3}
$$

The associated Heegaard diagram is

$$
\left(\Sigma_{g}, \vec{a}, \vec{b}\right)
$$

where the curves $\vec{\alpha}=\alpha_{1} \sqcup \cdots \sqcup \alpha_{g}$ bound disks in H_{1} and likewise the curves $\vec{\beta}=\beta_{1} \sqcup \cdots \sqcup \beta_{g}$ bound disjoint disks in H_{2}.

The data of a Heegaard diagram, together with the notion of 'pseudo-holomorphic' discs, produces a chain complex whose homology is $\widehat{H F}(M)$, in the case that M is a rational homology sphere: $b_{1}(M)=0$.

More generally, one needs a spin^{c} structure, which may be regarded as a cohomology class $s \in H^{2}(M ; \mathbb{Z})$, to define $\widehat{H F}(M, s)$

Relation between HF and Khovanov homology:
There's a spectral sequence with $E_{2} \cong \widetilde{K h}\left(L^{*}\right)$ converging to $E_{\infty} \cong \widehat{H F}\left(\Sigma\left(S^{3}, L\right)\right)$

Here $\Sigma\left(S^{3}, L\right)$ is the 2-fold branched cover of S^{3} branched along the link L.

Knot Floer homology can be considered with various gradings:

$$
\widehat{H F K}_{*}(K, i)
$$

$i=$ Alexander grading

* = Maslov (homological) grading

Knot Floer homology categorifies the Alexander polynomial:

$$
\chi(H F K)=\Delta_{K}
$$

More precisely

$$
\sum_{i \in \mathbb{Z}}\left[\sum_{* \in \mathbb{Z}}(-1)^{*} r k \widehat{H F K}_{*}(K, i)\right] \cdot T^{i}=\Delta_{K}(T)
$$

and $\Delta_{K}(T)$ is the symmetrized Alexander polynomial.

Applications:
Theorem. (O-S) $\max \{i \in \mathbb{Z} \mid \widehat{H F K}(K, i) \neq 0\}=g(K)$, where $g(K)$ is the (minimal) Seifert genus of K.

In particular $\widehat{H F K}$ detects the unknot.
Theorem. (Kronheimer-Mrowka) $\widetilde{K h}$ detects the unknot.
$\widehat{H F K}$ also detects fibred knots...

A knot $K \subset S^{3}$ is fibred if there is a locally trivial fibre bundle

$$
S^{3} \backslash K \rightarrow S^{1}
$$

in which the fibres are surfaces whose closures have boundary K.
Theorem. (O-S) If $K \subset S^{3}$ is a fibred knot, then $\widehat{H F K}(K, g(K))$ has rank equal to 1.
Theorem. (Ghiggini, Ni) The converse also holds.

Other applications:

- 4-dimensional manifolds
- 4-dimensional genus of a knot - solution of Milnor's conjecture for torus knots.
- concordance group
- existence of taut foliations
- contact structures

Surgery and L - spaces

If L is a link in S^{3}, one can construct a manifold by Dehn surgery along L, by specifying a surgery coefficient $p / q \in \mathbb{Q} \cup \infty$ for each curve of the link.

If K is a hyperbolic knot and a particular p / q surgery yields a non-hyperbolic 3-manifold, then this is said to be an exceptional surgery.

Thurston: there are only finitely many.

Example: the Fintushel-Stern knot, also known as the pretzel knot of type ($-2,3,7$).

It admits SEVEN exceptional surgeries.

The Alexander polynomial of $P(-2,3,7)$ is $\Delta_{K}(t)=L(-t)$, where L is the Lehmer polynomial

$$
L(x)=1+x-x^{3}-x^{4}-x^{5}-x^{6}-x^{7}+x^{9}+x^{10}
$$

which is the polynomial (over \mathbb{Z}) of smallest known Mahler measure.

Upon symmetrizing we have

$$
\Delta_{K}(x)=x^{-5}-x^{-4}+x^{-2}-x^{-1}+1-x+x^{2}-x^{4}+x^{5}
$$

Exceptional surgeries can result in

- lens spaces
- the Poincaré homology sphere
- other manifolds with finite π_{1}
- Seifert-fibred manifolds
- connected sums

Def: A 3-manifold M is an L-space if

- M is a rational homology sphere, that is $b_{1}(M)=0$
- $\widehat{H F}(M)$ has smallest possible rank, namely

$$
r k \widehat{H F}(M)=\left|H_{1}(M ; \mathbb{Z})\right|
$$

Examples: Iens spaces, other spaces with finite π_{1}, certain Seifertfibred manifolds.

Theorem. (Boyer-Watson) If M is a Seifert-fibred manifold, then M IS an L-space if and only if $\pi_{1}(M)$ is NOT left-orderable.

Question: Is a rational homology sphere M an L-space $\Leftrightarrow \pi_{1}(M)$ is not left-orderable?

More generally, what connection is there between $\widehat{H F}(M)$ and $\pi_{1}(M)$?

Theorem. (O-S, 2005) Surgery on a hyperbolic alternating knot in S^{3} never yields an L-space.
Theorem. (O-S) If $M=\Sigma\left(S^{3}, K\right)$ is the 2-fold branched cover of S^{3} along the alternating knot K, then M is an L-space.
Theorem. (Boyer-Gordon-Watson) If $M=\Sigma\left(S^{3}, K\right)$ is the 2fold branched cover of S^{3} along the alternating knot K, then $\pi_{1}(M)$ is NOT left-orderable.

Theorem. (O-S) L-spaces do not admit taut foliations.

Theorem. (O-S) Let K be a knot in S^{3} for which surgery on K yields an L-space. Then K is fibred and the Alexander polynomial of K has the form

$$
\Delta_{K}(t)=(-1)^{k}+\sum_{j=1}^{k}(-1)^{k-j}\left(t^{n_{j}}+t^{-n_{j}}\right)
$$

for some increasing sequence of positive integers

$$
0<n_{1}<n_{2}<\cdots<n_{k} .
$$

For example the Fintushel-Stern knot polynomial has the form

$$
\Delta_{K}(x)=1-\left(x+x^{-1}\right)+\left(x^{2}+x^{-2}\right)-\left(x^{4}+x^{-4}\right)+\left(x^{5}+x^{-5}\right)
$$

Theorem. (Clay-R) If surgery on a nontrivial knot K in S^{3} results in an L-space, then the knot group $\pi_{1}\left(S^{3} \backslash K\right)$ is not bi-orderable.

We remark that all knot groups are left-orderable, and many are also bi-orderable

To prove this theorem, we assume for contradiction that K has bi-orderable knot group, and that surgery on K yields an L-space. It follows (Yi Ni) that K must be fibred. We now recall a recent result:

Theorem. (C-R) If the group $\pi_{1}\left(S^{3} \backslash K\right)$ of a nontrivial fibred knot K in S^{3} is bi-orderable, then the Alexander polynomial of the knot must have a positive real root.

Our goal is to show, then that a polynomial

$$
\Delta_{K}(t)=(-1)^{k}+\sum_{j=1}^{k}(-1)^{k-j}\left(t^{n_{j}}+t^{-n_{j}}\right)
$$

cannot have a positive real root - the proof will be complete.

Lemma. (Calculus 100) Suppose that $\alpha>1$ and $s>t>0$. Then

$$
\alpha^{s}+\alpha^{-s}>\alpha^{t}+\alpha^{-t}
$$

Proof: For $\alpha>1$, consider the function $f(x)=\alpha^{x}+\alpha^{-x}$. It is continuous and differentiable for all x, with derivative $f^{\prime}(x)=$ $\ln (\alpha)\left(\alpha^{x}-\alpha^{-x}\right)$. Since $\alpha>1$, both $\ln (\alpha)$ and $\alpha^{x}-\alpha^{-x}$ are positive whenever $x>0$, hence $f^{\prime}(x)>0$ for all $x>0$, and so f is an increasing function on ($0, \infty$). Therefore, $s>t>0$ implies $f(s)>f(t)$, in other words $\alpha^{s}+\alpha^{-s}>\alpha^{t}+\alpha^{-t}$.

If an Alexander polynomial has a positive real root α, because it is palindromic, it also has the root $1 / \alpha$. Also, the equation $\Delta_{K}(1)= \pm 1$ rules out unity as a root.

So we may assume the equation

$$
\Delta_{K}(t)=(-1)^{k}+\sum_{j=1}^{k}(-1)^{k-j}\left(t^{n_{j}}+t^{-n_{j}}\right)
$$

has a root $\alpha>1$. We then use the lemma to derive a contradition.

We illustrate by example, the Fintushel-Stern polynomial:

$$
\Delta_{K}(x)=1-\left(x+x^{-1}\right)+\left(x^{2}+x^{-2}\right)-\left(x^{4}+x^{-4}\right)+\left(x^{5}+x^{-5}\right)
$$

We see that each color contributes a positive quantity, by the calculus lemma, if $x=\alpha>1$. Therefore we have $\Delta_{K}(\alpha)>1$, so α cannot be a root.

The general case is proved similarly.

Summary: we have proved, in other words
Theorem. (C-R) If a nontrivial knot K in S^{3} has bi-orderable knot group, then surgery on K cannot produce an L-space.

Some knots with biorderable group, and their polynomials.

