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Khovanov homology . . .

‘categorification’ of the Jones polynomial.

A bigraded homology theory K̃h(K) associated to a knot K

whose ‘Euler characteristic’ is the Jones polynomial:

χ
K̃h

(K) = VK(t)
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Today we’ll discuss a similar theory – Knot Floer Homology

ĤFK∗(K, i)

and its cousin Heegaard Floer Homology

ĤF ∗(M)

Their definition depends on a classical description of a 3-manifold

M via . . .
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Heegaard diagrams
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Every closed orientable 3-manifold M is the union of two han-

dlebodies:

M3 ∼= H1 ∪Σg H2.
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The “handles” of a handlebody H of genus g may be regarded

as g disjoint disks in H, with their boundaries in ∂H ∼= Σg, and so

that the complement in H of the union of regular neighbourhoods

of the disks is a 3-ball:

H \ ∪gi=1N(Di)
∼= B3



The associated Heegaard diagram is

(Σg,~a,~b)

where the curves ~α = α1t· · ·tαg bound disks in H1 and likewise

the curves ~β = β1 t · · · t βg bound disjoint disks in H2.
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The data of a Heegaard diagram, together with the notion of

‘pseudo-holomorphic’ discs, produces a chain complex whose ho-

mology is ĤF (M), in the case that M is a rational homology

sphere: b1(M) = 0.

More generally, one needs a spinc structure, which may be re-

garded as a cohomology class s ∈ H2(M ;Z), to define ĤF (M, s)
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Relation between HF and Khovanov homology:

There’s a spectral sequence with E2
∼= K̃h(L∗) converging to

E∞ ∼= ĤF (Σ(S3, L))

Here Σ(S3, L) is the 2-fold branched cover of S3 branched along

the link L.
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Knot Floer homology can be considered with various gradings:

ĤFK∗(K, i)

i =Alexander grading

∗ = Maslov (homological) grading
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Knot Floer homology categorifies the Alexander polynomial:

χ(HFK) = ∆K

More precisely

∑
i∈Z

[
∑
∗∈Z

(−1)∗rkĤFK∗(K, i)] · T i = ∆K(T )

and ∆K(T ) is the symmetrized Alexander polynomial.
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Applications:

Theorem. (O-S) max{i ∈ Z|ĤFK(K, i) 6= 0} = g(K), where

g(K) is the (minimal) Seifert genus of K.

In particular ĤFK detects the unknot.

Theorem. (Kronheimer-Mrowka) K̃h detects the unknot.
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ĤFK also detects fibred knots . . .

A knot K ⊂ S3 is fibred if there is a locally trivial fibre bundle

S3 \K → S1

in which the fibres are surfaces whose closures have boundary K.

Theorem. (O-S ) If K ⊂ S3 is a fibred knot, then ĤFK(K, g(K))

has rank equal to 1.

Theorem. (Ghiggini, Ni) The converse also holds.
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Other applications:

• 4-dimensional manifolds

• 4-dimensional genus of a knot – solution of Milnor’s conjecture

for torus knots.

• concordance group

• existence of taut foliations

• contact structures
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Surgery and L - spaces

If L is a link in S3, one can construct a manifold by Dehn surgery

along L, by specifying a surgery coefficient p/q ∈ Q ∪∞ for each

curve of the link.

If K is a hyperbolic knot and a particular p/q surgery yields a

non-hyperbolic 3-manifold, then this is said to be an exceptional

surgery.

Thurston: there are only finitely many.
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Example: the Fintushel-Stern knot, also known as the pretzel

knot of type (−2,3,7).

29/04/10 12:56 PMPretzel_knot

Page 1 of 1file:///Users/dalerolfsen/Desktop/Pretzel_knot.webarchive

It admits SEVEN exceptional surgeries.
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The Alexander polynomial of P (−2,3,7) is ∆K(t) = L(−t), where

L is the Lehmer polynomial

L(x) = 1 + x− x3 − x4 − x5 − x6 − x7 + x9 + x10

which is the polynomial (over Z) of smallest known Mahler mea-

sure.

Upon symmetrizing we have

∆K(x) = x−5 − x−4 + x−2 − x−1 + 1− x+ x2 − x4 + x5
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Exceptional surgeries can result in

• lens spaces

• the Poincaré homology sphere

• other manifolds with finite π1

• Seifert-fibred manifolds

• connected sums
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Def: A 3-manifold M is an L-space if

• M is a rational homology sphere, that is b1(M) = 0

• ĤF (M) has smallest possible rank, namely

rkĤF (M) = |H1(M ;Z)|

Examples: lens spaces, other spaces with finite π1, certain Seifert-

fibred manifolds.
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Theorem. (Boyer-Watson) If M is a Seifert-fibred manifold, then

M IS an L-space if and only if π1(M) is NOT left-orderable.

Question: Is a rational homology sphere M an L-space ⇔ π1(M)

is not left-orderable?

More generally, what connection is there between ĤF (M) and

π1(M) ?
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Theorem. (O-S, 2005) Surgery on a hyperbolic alternating knot

in S3 never yields an L-space.

Theorem. (O-S) If M = Σ(S3,K) is the 2-fold branched cover

of S3 along the alternating knot K, then M is an L-space.

Theorem. (Boyer-Gordon-Watson) If M = Σ(S3,K) is the 2-

fold branched cover of S3 along the alternating knot K, then

π1(M) is NOT left-orderable.
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Theorem. (O-S) L-spaces do not admit taut foliations.
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Theorem. (O-S) Let K be a knot in S3 for which surgery on K

yields an L-space. Then K is fibred and the Alexander polynomial

of K has the form

∆K(t) = (−1)k +
k∑

j=1

(−1)k−j(tnj + t−nj)

for some increasing sequence of positive integers

0 < n1 < n2 < · · · < nk.

For example the Fintushel-Stern knot polynomial has the form

∆K(x) = 1− (x+ x−1) + (x2 + x−2)− (x4 + x−4) + (x5 + x−5)
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Theorem. (Clay-R) If surgery on a nontrivial knot K in S3 results

in an L-space, then the knot group π1(S3\K) is not bi-orderable.

We remark that all knot groups are left-orderable, and many are

also bi-orderable
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To prove this theorem, we assume for contradiction that K has

bi-orderable knot group, and that surgery on K yields an L-space.

It follows (Yi Ni) that K must be fibred. We now recall a recent

result:

Theorem. (C-R) If the group π1(S3 \ K) of a nontrivial fibred

knot K in S3 is bi-orderable, then the Alexander polynomial of

the knot must have a positive real root.

Our goal is to show, then that a polynomial

∆K(t) = (−1)k +
k∑

j=1

(−1)k−j(tnj + t−nj)

cannot have a positive real root – the proof will be complete.
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Lemma. (Calculus 100) Suppose that α > 1 and s > t > 0. Then

αs + α−s > αt + α−t.

Proof: For α > 1, consider the function f(x) = αx + α−x. It

is continuous and differentiable for all x, with derivative f ′(x) =

ln(α)(αx − α−x). Since α > 1, both ln(α) and αx − α−x are

positive whenever x > 0, hence f ′(x) > 0 for all x > 0, and so f

is an increasing function on (0,∞). Therefore, s > t > 0 implies

f(s) > f(t), in other words αs + α−s > αt + α−t.
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If an Alexander polynomial has a positive real root α, because

it is palindromic, it also has the root 1/α. Also, the equation

∆K(1) = ±1 rules out unity as a root.

So we may assume the equation

∆K(t) = (−1)k +
k∑

j=1

(−1)k−j(tnj + t−nj)

has a root α > 1. We then use the lemma to derive a contradi-

tion.
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We illustrate by example, the Fintushel-Stern polynomial:

∆K(x) = 1−(x+ x−1) + (x2 + x−2)−(x4 + x−4) + (x5 + x−5)

We see that each color contributes a positive quantity, by the

calculus lemma, if x = α > 1. Therefore we have ∆K(α) > 1, so

α cannot be a root.

The general case is proved similarly.
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Summary: we have proved, in other words

Theorem. (C-R) If a nontrivial knot K in S3 has bi-orderable

knot group, then surgery on K cannot produce an L-space.
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Some knots with biorderable group, and their polynomials.

1− 3t+ t2

1− 7t+ 13t2 − 7t3 + t4

1− 6t+ 11t2 − 6t3 + t4

1− 9t+ 30t2 − 45t3 + 30t4 − 9t5 + t6

1− 8t+ 15t2 − 8t3 + t4

1− 12t+ 44t2 − 67t3 + 44t4 − 12t5 + t6



1− 11t+ 40t2 − 61t3 + 40t4 − 11t5 + t6

1− 13t+ 50t2 − 77t3 + 50t4 − 13t5 + t6

1− 7t+ 13t2 − 7t3 + t4

1− 6t+ 11t2 − 6t3 + t4

1− 6t+ 11t2 − 6t3 + t4

1− 6t+ 11t2 − 6t3 + t4


