Heegaard-Floer homology, ordered groups and exceptional surgeries

Dale Rolfsen

A survey and recent work with Adam Clay

Marseille, September 2010

Khovanov homology ...

'categorification' of the Jones polynomial.

A bigraded homology theory $\widetilde{Kh}(K)$ associated to a knot K whose 'Euler characteristic' is the Jones polynomial:

$$\chi_{\widetilde{Kh}}(K) = V_K(t)$$

Today we'll discuss a similar theory – Knot Floer Homology

and its cousin Heegaard Floer Homology

 $\widehat{HF}_*(M)$

Their definition depends on a classical description of a 3-manifold M via \ldots

Heegaard diagrams

Every closed orientable 3-manifold M is the union of two handlebodies:

$$M^3 \cong H_1 \cup_{\Sigma_g} H_2.$$

The "handles" of a handlebody H of genus g may be regarded as g disjoint disks in H, with their boundaries in $\partial H \cong \Sigma_g$, and so that the complement in H of the union of regular neighbourhoods of the disks is a 3-ball:

 $H \setminus \cup_{i=1}^{g} N(D_i) \cong B^3$

The associated Heegaard diagram is

 $(\Sigma_g, \vec{a}, \vec{b})$

where the curves $\vec{\alpha} = \alpha_1 \sqcup \cdots \sqcup \alpha_g$ bound disks in H_1 and likewise the curves $\vec{\beta} = \beta_1 \sqcup \cdots \sqcup \beta_g$ bound disjoint disks in H_2 .

The data of a Heegaard diagram, together with the notion of 'pseudo-holomorphic' discs, produces a chain complex whose homology is $\widehat{HF}(M)$, in the case that M is a rational homology sphere: $b_1(M) = 0$.

More generally, one needs a $spin^c$ structure, which may be regarded as a cohomology class $s \in H^2(M; \mathbb{Z})$, to define $\widehat{HF}(M, s)$ Relation between HF and Khovanov homology:

There's a spectral sequence with $E_2 \cong \widetilde{Kh}(L^*)$ converging to $E_{\infty} \cong \widehat{HF}(\Sigma(S^3, L))$

Here $\Sigma(S^3, L)$ is the 2-fold branched cover of S^3 branched along the link L.

Knot Floer homology can be considered with various gradings: $\widehat{HFK}_*(K,i)$

i = Alexander grading

* = Maslov (homological) grading

Knot Floer homology categorifies the Alexander polynomial:

$$\chi(HFK) = \Delta_K$$

More precisely

$$\sum_{i \in \mathbb{Z}} \left[\sum_{* \in \mathbb{Z}} (-1)^* rk \widehat{HFK}_*(K,i) \right] \cdot T^i = \Delta_K(T)$$

and $\Delta_K(T)$ is the symmetrized Alexander polynomial.

Applications: **Theorem.** (O-S) $\max\{i \in \mathbb{Z} | \widehat{HFK}(K, i) \neq 0\} = g(K)$, where g(K) is the (minimal) Seifert genus of K.

In particular \widehat{HFK} detects the unknot.

Theorem. (Kronheimer-Mrowka) \widetilde{Kh} detects the unknot.

 \widehat{HFK} also detects fibred knots . . .

A knot $K \subset S^3$ is fibred if there is a locally trivial fibre bundle

 $S^{\mathbf{3}} \setminus K \to S^{\mathbf{1}}$

in which the fibres are surfaces whose closures have boundary K. **Theorem.** (O-S) If $K \subset S^3$ is a fibred knot, then $\widehat{HFK}(K,g(K))$ has rank equal to 1. **Theorem.** (Ghiggini, Ni) The converse also holds. Other applications:

• 4-dimensional manifolds

 4-dimensional genus of a knot – solution of Milnor's conjecture for torus knots.

- concordance group
- existence of taut foliations
- contact structures

Surgery and L - spaces

If L is a link in S^3 , one can construct a manifold by Dehn surgery along L, by specifying a surgery coefficient $p/q \in \mathbb{Q} \cup \infty$ for each curve of the link.

If K is a hyperbolic knot and a particular p/q surgery yields a non-hyperbolic 3-manifold, then this is said to be an exceptional surgery.

Thurston: there are only finitely many.

Example: the Fintushel-Stern knot, also known as the pretzel knot of type (-2, 3, 7).

It admits SEVEN exceptional surgeries.

The Alexander polynomial of P(-2, 3, 7) is $\Delta_K(t) = L(-t)$, where L is the Lehmer polynomial

$$L(x) = 1 + x - x^{3} - x^{4} - x^{5} - x^{6} - x^{7} + x^{9} + x^{10}$$

which is the polynomial (over \mathbb{Z}) of smallest known Mahler measure.

Upon symmetrizing we have

$$\Delta_K(x) = x^{-5} - x^{-4} + x^{-2} - x^{-1} + 1 - x + x^2 - x^4 + x^5$$

Exceptional surgeries can result in

- lens spaces
- the Poincaré homology sphere
- \bullet other manifolds with finite π_1
- Seifert-fibred manifolds
- connected sums

Def: A 3-manifold M is an L-space if

- M is a rational homology sphere, that is $b_1(M) = 0$
- $\widehat{HF}(M)$ has smallest possible rank, namely

$$rk\widehat{HF}(M) = |H_1(M;\mathbb{Z})|$$

Examples: lens spaces, other spaces with finite π_1 , certain Seifertfibred manifolds. **Theorem.** (Boyer-Watson) If M is a Seifert-fibred manifold, then M IS an L-space if and only if $\pi_1(M)$ is NOT left-orderable.

Question: Is a rational homology sphere M an L-space $\Leftrightarrow \pi_1(M)$ is not left-orderable?

More generally, what connection is there between $\widehat{HF}(M)$ and $\pi_1(M)$?

Theorem. (O-S, 2005) Surgery on a hyperbolic alternating knot in S^3 never yields an L-space. **Theorem.** (O-S) If $M = \Sigma(S^3, K)$ is the 2-fold branched cover of S^3 along the alternating knot K, then M is an L-space.

Theorem. (Boyer-Gordon-Watson) If $M = \Sigma(S^3, K)$ is the 2fold branched cover of S^3 along the alternating knot K, then $\pi_1(M)$ is NOT left-orderable. **Theorem.** (O-S) L-spaces do not admit taut foliations.

Theorem. (O-S) Let K be a knot in S^3 for which surgery on K yields an L-space. Then K is fibred and the Alexander polynomial of K has the form

$$\Delta_K(t) = (-1)^k + \sum_{j=1}^k (-1)^{k-j} (t^{n_j} + t^{-n_j})$$

for some increasing sequence of positive integers

 $0 < n_1 < n_2 < \cdots < n_k.$

For example the Fintushel-Stern knot polynomial has the form $\Delta_K(x) = 1 - (x + x^{-1}) + (x^2 + x^{-2}) - (x^4 + x^{-4}) + (x^5 + x^{-5})$ **Theorem.** (Clay-R) If surgery on a nontrivial knot K in S^3 results in an L-space, then the knot group $\pi_1(S^3 \setminus K)$ is not bi-orderable.

We remark that all knot groups are left-orderable, and many are also bi-orderable

To prove this theorem, we assume for contradiction that K has bi-orderable knot group, and that surgery on K yields an L-space. It follows (Yi Ni) that K must be fibred. We now recall a recent result:

Theorem. (C-R) If the group $\pi_1(S^3 \setminus K)$ of a nontrivial fibred knot K in S^3 is bi-orderable, then the Alexander polynomial of the knot must have a positive real root.

Our goal is to show, then that a polynomial

$$\Delta_K(t) = (-1)^k + \sum_{j=1}^k (-1)^{k-j} (t^{n_j} + t^{-n_j})$$

cannot have a positive real root – the proof will be complete.

Lemma. (Calculus 100) Suppose that $\alpha > 1$ and s > t > 0. Then

$$\alpha^s + \alpha^{-s} > \alpha^t + \alpha^{-t}.$$

Proof: For $\alpha > 1$, consider the function $f(x) = \alpha^x + \alpha^{-x}$. It is continuous and differentiable for all x, with derivative $f'(x) = \ln(\alpha)(\alpha^x - \alpha^{-x})$. Since $\alpha > 1$, both $\ln(\alpha)$ and $\alpha^x - \alpha^{-x}$ are positive whenever x > 0, hence f'(x) > 0 for all x > 0, and so f is an increasing function on $(0, \infty)$. Therefore, s > t > 0 implies f(s) > f(t), in other words $\alpha^s + \alpha^{-s} > \alpha^t + \alpha^{-t}$.

If an Alexander polynomial has a positive real root α , because it is palindromic, it also has the root $1/\alpha$. Also, the equation $\Delta_K(1) = \pm 1$ rules out unity as a root.

So we may assume the equation

$$\Delta_K(t) = (-1)^k + \sum_{j=1}^k (-1)^{k-j} (t^{n_j} + t^{-n_j})$$

has a root $\alpha > 1$. We then use the lemma to derive a contradition.

We illustrate by example, the Fintushel-Stern polynomial:

$$\Delta_K(x) = 1 - (x + x^{-1}) + (x^2 + x^{-2}) - (x^4 + x^{-4}) + (x^5 + x^{-5})$$

We see that each color contributes a positive quantity, by the calculus lemma, if $x = \alpha > 1$. Therefore we have $\Delta_K(\alpha) > 1$, so α cannot be a root.

The general case is proved similarly.

Summary: we have proved, in other words

Theorem. (C-R) If a nontrivial knot K in S^3 has bi-orderable knot group, then surgery on K cannot produce an L-space.

Some knots with biorderable group, and their polynomials.

$$\begin{array}{c} & 1 - 3t + t^{2} \\ & 1 - 7t + 13t^{2} - 7t^{3} + t^{4} \\ & 1 - 6t + 11t^{2} - 6t^{3} + t^{4} \\ & 1 - 9t + 30t^{2} - 45t^{3} + 30t^{4} - 9t^{5} + t^{6} \\ & 1 - 8t + 15t^{2} - 8t^{3} + t^{4} \\ & 1 - 12t + 44t^{2} - 67t^{3} + 44t^{4} - 12t^{5} + t^{6} \end{array}$$

$$\begin{array}{c} \textcircled{6}\\ \textcircled{6}\\ \textcircled{6}\\ \swarrow\\ 1 - 11t + 40t^2 - 61t^3 + 40t^4 - 11t^5 + t^6 \\ \textcircled{6}\\ 1 - 13t + 50t^2 - 77t^3 + 50t^4 - 13t^5 + t^6 \\ \textcircled{6}\\ 1 - 7t + 13t^2 - 7t^3 + t^4 \\ \textcircled{6}\\ 1 - 6t + 11t^2 - 6t^3 + t^4 \\ \textcircled{6}\\ 1 - 6t + 11t^2 - 6t^3 + t^4 \\ \textcircled{6}\\ 1 - 6t + 11t^2 - 6t^3 + t^4 \end{array}$$