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Khovanov homology . ..
‘categorification’ of the Jones polynomial.

A bigraded homology theory Kh(K) associated to a knot K
whose ‘Euler characteristic’ is the Jones polynomial:

Yo () = Vi (1)



Today we'll discuss a similar theory — Knot Floer Homology
HFK (K, 1)
and its cousin Heegaard Floer Homology

HF.(M)

T heir definition depends on a classical description of a 3-manifold
M via . ..






Every closed orientable 3-manifold M is the union of two han-
dlebodies:




The "handles” of a handlebody H of genus g may be regarded
as g disjoint disks in H, with their boundaries in 0H = X, and so
that the complement in H of the union of regular neighbourhoods
of the disks is a 3-ball:

H\UP_,N(D;) & B3



T he associated Heegaard diagram is
(ngaa g)

where the curves a = a1 U---Uag bound disks in H; and likewise
the curves 3 = 81 U--- L B, bound disjoint disks in Ho.



The data of a Heegaard diagram, together with the notion of
‘pseudo-holomorphic’ discs, produces a chain complex whose ho-
mology is Iﬁ‘(M), in the case that M is a rational homology
sphere: by (M) = 0.

More generally, one needs a spin® structure, which may be re-
garded as a cohomology class s € H2(M;Z), to define HEF (M, s)



Relation between HF and Khovanov homology:

There's a spectral sequence with E» = Kh(L*) converging to
Eso & HEF(Z(S3,L))

Here 3X(S3, L) is the 2-fold branched cover of S3 branched along
the link L.



Knot Floer homology can be considered with various gradings:

HFK(K,i)

1 =Alexander grading

x = Maslov (homological) grading



Knot Floer homology categorifies the Alexander polynomial:
X(HFK) = Ak

More precisely

SIS (—1)* rkHFE (K, i)] - T' = A p(T)
1E€EYL, *EY

and A (T) is the symmetrized Alexander polynomial.
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Applications:
Theorem. (O-S) max{i € Z|HFK(K,i) #*# 0} = g(K), where
g(K) is the (minimal) Seifert genus of K.

In particular HFK detects the unknot.

Theorem. (Kronheimer-Mrowka) Kh detects the unknot.
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HFK also detects fibred knots . . .

A knot K C S3 is fibred if there is a locally trivial fibre bundle
S3\ K — St
in which the fibres are surfaces whose closures have boundary K.

Theorem. (O-S ) IF K C S3 is a fibred knot, then HFK (K, g(K))
has rank equal to 1.
Theorem. (Ghiggini, Ni) The converse also holds.
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Other applications:

e 4-dimensional manifolds

e 4-dimensional genus of a knot — solution of Milnor's conjecture
for torus knots.

e concordance group

e cxistence of taut foliations

e contact structures
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Surgery and L - spaces
If L is a link in S3, one can construct a manifold by Dehn surgery
along L, by specifying a surgery coefficient p/q € QU oo for each

curve of the link.

If K is a hyperbolic knot and a particular p/q surgery yields a
non-hyperbolic 3-manifold, then this is said to be an exceptional
surgery.

Thurston: there are only finitely many.
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Example: the Fintushel-Stern knot, also known as the pretzel
knot of type (—2,3,7).

c

It admits SEVEN exceptional surgeries.
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The Alexander polynomial of P(—2,3,7) is Ag(t) = L(—t), where
L is the Lehmer polynomial

Lx)=14+z—a>—2*—2°—2%—2" 4+ 27 + 21©
which is the polynomial (over Z) of smallest known Mahler mea-
sure.
Upon symmetrizing we have

AK(:U)=:c_5—a:_4—|—33_2—a:_1—|—1—:13—|—:1:2—a:4—|—:135
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Exceptional surgeries can result in

e lens spaces

e the Poincaré homology sphere

e other manifolds with finite my

e Scifert-fibred manifolds

e connected sums
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Def: A 3-manifold M is an L-space if
e M is a rational homology sphere, that is b3(M) =0

e HF(M) has smallest possible rank, namely

rkHF (M) = |H1(M; Z)|

Examples: lens spaces, other spaces with finite w1, certain Seifert-
fibred manifolds.
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Theorem. (Boyer-Watson) If M is a Seifert-fibred manifold, then
M IS an L-space if and only if m1(M) is NOT left-orderable.

Question: Is a rational homology sphere M an L-space < w1 (M)
is not left-orderable?

More generally, what connection is there between fﬁ?(M) and
(M) ?
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Theorem. (O-S, 2005) Surgery on a hyperbolic alternating knot
in S3 never yields an L-space.

Theorem. (O-S) If M = X (53, K) is the 2-fold branched cover
of S3 along the alternating knot K, then M is an L-space.

Theorem. (Boyer-Gordon-Watson) If M = ¥(S3,K) is the 2-
fold branched cover of S3 along the alternating knot K, then
w1 (M) is NOT left-orderable.
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Theorem. (O-S) L-spaces do not admit taut foliations.
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Theorem. (O-S) Let K be a knot in S3 for which surgery on K
vields an L-space. Then K is fibred and the Alexander polynomial
of K has the form

k
Ar(t) = (—1DF+ S (—F I + )
J=1
for some increasing sequence of positive integers
O<ny<no <+ < ng.
For example the Fintushel-Stern knot polynomial has the form

Ag@)=1—(+z D+ @ +22)-@* 4+ + @ +27°)
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Theorem. (Clay-R) If surgery on a nontrivial knot K in S3 results
in an L-space, then the knot group ©1(S3\ K) is not bi-orderable.

We remark that all knot groups are left-orderable, and many are
also bi-orderable
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To prove this theorem, we assume for contradiction that K has
bi-orderable knot group, and that surgery on K yields an L-space.
It follows (Yi Ni) that K must be fibred. We now recall a recent
result:

Theorem. (C-R) If the group ©1(S3\ K) of a nontrivial fibred
knot K in S3 is bi-orderable, then the Alexander polynomial of
the knot must have a positive real root.

Our goal is to show, then that a polynomial

k
Art) = (=1 + Y (1)@ 4+ )

J=1
cannot have a positive real root — the proof will be complete.
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Lemma. (Calculus 100) Suppose thata > 1 and s >t > 0. Then

o +a¥>at+at.

Proof: For o > 1, consider the function f(x) = o* + o™ %. It
is continuous and differentiable for all z, with derivative f'(z) =
In(a))(a® — a=%). Since a > 1, both In(a) and aof — o™ % are
positive whenever x > 0, hence f/(z) > 0 for all z > 0, and so f
is an increasing function on (0,00). Therefore, s >t > 0 implies
f(s) > f(t), in other words o +a~% > at + a L.
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If an Alexander polynomial has a positive real root «, because
it is palindromic, it also has the root 1/a. Also, the equation
A (1) = 41 rules out unity as a root.

So we may assume the equation

k
Art) = (=1 + Y ()P 4+ )
J=1

has a root aa > 1. We then use the lemmma to derive a contradi-
tion.
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We illustrate by example, the Fintushel-Stern polynomial:

Ap@)=1-(z4+z2 )+ @ +2 )@ +27H + (@2 +27°)

We see that each color contributes a positive quantity, by the
calculus lemma, if x = a > 1. Therefore we have Ax(a) > 1, SO
o cannot be a root.

The general case is proved similarly.
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Summary: we have proved, in other words

Theorem. (C-R) If a nontrivial knot K in S3 has bi-orderable
knot group, then surgery on K cannot produce an L-space.
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Some knots with biorderable group, and their polynomials.
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1 —7t+ 13t2 — 73 + 4
1 —6t+ 11t2 — 63 + 4
1 — 9t + 30t2 — 45¢3 4 30t% — 92 + ¢

1 —8t+ 15t2 — 8t3 + 4



1 — 11t 4+ 40t2 — 61t3 + 40t* — 112 + ¢°
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1 —7t+ 13t2 — 73 + 4

1 —6t+ 11t2 — 6t3 + 4
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