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1. Definition and Properties of stable commutator
length.
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Stable commutator length (scl)

G: group,

[a, b] = aba−1b−1: commutator (a, b ∈ G),

[G,G]: the commutator subgroup of G,
.
Definition
..

......

The commutator length of x ∈ [G,G] is defined by

clG(x) = cl(x) = min{l ∈ Z |x = [a1, b1][a2, b2] · · · [al, bl], ai, bi ∈ G}.

The stable commutator length of x ∈ [G,G] is defined by

sclG(x) = scl(x) = lim
n→∞

cl(xn)

n
.
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Let x ∈ G such that xk ∈ [G,G] for some k ∈ Z.
For such x ∈ G, we can also define the stable commutator length by

scl(x) =
scl(xk)

k
.

If xk /∈ [G,G] for all k ∈ Z, we define scl(x) = ∞.

Masatoshi Sato (Gifu University) scl in the MCGs of punctured surfaces November 8, 2012 4 / 44



.
Example (Culler)
..

......

F2 = ⟨a, b⟩: free group of rank 2,

clF2([a, b]) = 1, clF2([a, b]
2) = 2,

clF2([a, b]
3) = 2,

([a, b]3 = [aba−1, b−1aba−2][b−2ab, b−2]).

Generally, clF2([a, b]
n) =

[n
2

]
+ 1. Hence,

sclF2([a, b]) = lim
n→∞

clF2([a, b]
n)

n
=

1

2
.
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Some Properties of scl

.
Lemma
..

......

...1 Let G,H be groups, and f : G→ H a homomorphism. Then,

sclG(a) ≥ sclH(f(a)).

...2 Let 1 → K → G→ H → 1 be an exact sequence between groups.

If K is a finite group,

sclG(a) = sclH(f(a)).
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2. Known Results on scl in Mapping Class Groups

of Surfaces and Our Results.
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Mapping Class Groups of Closed Surfaces

Σg: a closed oriented surface of genus g,

Diff+Σg: the diffeomorphism group of Σg,

Mg = Diff+Σg/isotopy (= π0Diff+Σg).

It is generated by Dehn twists tc along nonseparating SCCs.
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Dehn twists

c

Figure: a nonseparating curve C

c c

Figure: Dehn twist tC
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Known results

.
Theorem (Endo-Kotschick 2000, Korkmaz 2004)
..

......

When g ≥ 2,
1

18g − 6
≤ sclMg(tc).

.
Theorem (Korkmaz 2004)
..

......

When g ≥ 2,

sclMg(tc) ≤
3

20
.

.
Theorem (Kotschick 2008)
..

...... sclMg(tc) = O(1/g).

Masatoshi Sato (Gifu University) scl in the MCGs of punctured surfaces November 8, 2012 10 / 44



mapping class groups of pointed spheres

q1, q2, · · · , qm ∈ S2: m-points on a 2-sphere.

Diff+(S
2, {qi}mi=1): the diffemorphism group which preserves {qi}mi=1

setwise.

Mm
0 = Diff+(S

2, {qi}mi=1)/isotopy fixing {qi}mi=1 = π0Diff+(S
2, {qi}mi=1).

It is generated by half twists {σi}m−1
i=1 .
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Half twists

We denote by σi ∈ Mm
0 the mapping class which twist the disk Di

counter-qlockwise, and permute qi and qi+1 as in the figure.

 m
i i+

Di

Figure: half twist in Di
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.
Theorem (Monden 2012)
..

......

When m ≥ 6 and even,

1

4(m− 1)
≤ sclMm

0
(σ1).
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.
Main Theorem 1 (Calegari-Monden-S)
..

......

Let m ≥ 4. Then,

sclMm
0
(σ1) ≤

1

2m+ 2 + 4
m−2

.

When m = 4,

this upper bound coincides with the exact value scl(σ1) =
1
12 .

.
Corollary
..

......

Let g ≥ 1. Then,

sclMg(tc) ≤
1

4g + 6 + 2
g

.

When g = 1,

this upper bound coincides with the exact value scl(tc) =
1
12 .
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homogeneous quasimorphisms

.
Definition
..

......

A map ϕ : G→ R is called a quasimorphism if

D(ϕ) := sup
x,y∈G

|ϕ(x) + ϕ(y)− ϕ(xy)| <∞.

We call D(ϕ) the defect of the quasimorphism ϕ.

.
Definition
..

......

A quasimorphism ϕ : G→ R is called homogeneous if it satisfies

ϕ(xn) = nϕ(x)

for any x ∈ G and n ∈ Z.
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.
Remark
..

......

If ϕ : G→ R is a quasimorphism, ϕ̄ : G→ R defined by

ϕ̄(x) = lim
n→∞

ϕ(xn)

n

is a homogeneous quasimorphism.

We denote by Q(G) the set of homogeneous quasimorphisms.

It is a vector space.
.
Theorem (Bavard’s duality theorem)
..

......

Let x ∈ G. Then,

scl(x) = sup
ϕ∈Q(G),D(ϕ)̸=0

|ϕ(x)|
2D(ϕ)

.
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.
Theorem (Bestvina-Fujiwara 2007)
..

......

When g and m are nonnegative integers satisfying 3g +m− 4 > 0,

Q(Mm
g ) is infinite dimensional.

Moreover, for any subgroup G ⊂ Mm
g which is not virtually abelian,

Q(G) is infinite dimensional.

.
Main Theorem 2 (Calegari-Monden-S)
..

......

Let m ≥ 4. There exist homogeneous quasimorphisms

ϕ̄m,j : Mm
0 → R

parametrized by j, where 1 ≤ j ≤
[
m
2

]
.

For 2 ≤ r ≤ m− 1, their values are as follows.

ϕ̄m,j(σ1 · · ·σr−1)

=− 2

r

{
jr(m− j)(m− r)

m2(m− 1)
+

(
rj

m
−

[
rj

m

]
− 1

2

)2

− 1

4

}
.
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.
Corollary
..

......

If m is not too large (m < 30),

the set {ϕ̄m,j}
[m2 ]
j=2 is linearly independent.

.
Proposition 1
..

......

D(ϕ̄m,j) ≤ m− 2.

When m is even and j = m/2, D(ϕ̄m,m/2) = m− 2.

.
Corollary
..

......

Let c be a non-separating SCC in Σ2,

and d an essential separating SCC in Σ2, s.t. c ∩ d = ∅. Then.

sclM2(t
12
c t

−1
d ) =

1

2
.
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The value of −ϕ̄m,j(σ1) (σ1 ∈ Mm
0 , 1 ≤ j ≤

[
m
2

]
)

−ϕ̄m,j(σ1) =
2j(j − 1)

m(m− 1)
.

m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

j = 1 0 0 0 0 0 0 0

j = 2 4
12

4
20

4
30

4
42

4
56

4
72

4
90

j = 3 12
30

12
42

12
56

12
72

12
90

j = 4 24
56

24
72

24
90

j = 5 40
90

Obtained lower bounds of sclMm
0
(σ1).

m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

1
12

1
30

1
20

1
35

1
28

1
42

1
36

Masatoshi Sato (Gifu University) scl in the MCGs of punctured surfaces November 8, 2012 19 / 44



Lower bounds and Upper bounds.

m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

Lower 1
12

1
30

1
20

1
35

1
28

1
42

1
36

Upper 1
12

3
40

1
15

5
84

3
56

7
144

2
45
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3. Relation between sclMg and sclMm
0
.
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Symmetric mapping class groups

There are groups which relate the mapping class groups Mg and Mm
0 .

Let d be a positive integer such that d|m.

If we choose a surjective homomorphism H1(S
2 − {qi}mi=1;Z) → Z/dZ,

we obtain a d-cyclic branched covering space p : Σg → S2.

Let us denote

t ∈ Diff+Σg: a generator of the deck transformation group,

C(t) := {f ∈ Diff+Σg | ft = tf},

Mg(p) := π0C(t).

The inclusion homomorphism C(t) → Diff+Σg induces ι : Mg(p) → Mg.

Thus, for φ ∈ Mg(p), we have

sclMg(p)(φ) ≥ sclMg(ι(φ)).
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For some technical reason, let d = m, and choose a homomorphism

H1(S
2 − {qi}mi=1) → Z/mZ

which maps each loop which rounds qi once clockwise to 1 ∈ Z/mZ.
Then, the symmetric mapping class group Mg(p) satisfies an exact

sequence

0 −−−−→ Z/mZ −−−−→ Mg(p)
P−−−−→ Mm

0 −−−−→ 1.

The homomorphism P is defined by [f ] 7→ [f̄ ],

where f ∈ C(t) and f̄ ∈ Diff+(S
2, {qi}mi=1) satisfy the commutative

diagram

Σg
f−−−−→ Σgy y

S2 f̄−−−−→ S2.
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.
Lemma (well-known)
..

......

Let K,G,H be groups. If

1 −−−−→ K −−−−→ G
f−−−−→ H −−−−→ 1

is a (central) extension with K finite, then Q(G) = Q(H).

.
Proof.
..

......

It suffices to construct a homomorphism from Q(G) to Q(H).
Let ϕ ∈ Q(G) and h ∈ H.
We will show that, for a, a′ ∈ f−1(h), ϕ(a) = ϕ(a′).
If a, a′ ∈ P−1(h), we have a = a′k (k ∈ K).
Since K is in the center of G, we have an = (a′)n for some n ∈ Z. Thus,

ϕ(a) =
1

n
ϕ(an) =

1

n
ϕ((a′)n) = ϕ(a′).

Hence, we can define ϕ′ : H → R by ϕ′(ā) = ϕ(a).

Therefore, for any x ∈ Mg(p), we have

sclMg(p)(x) = sclMm
0
(P(x)) ≥ sclMg(ι(x)).
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4. Definition of ϕ̄m,j : Mm
0 → R
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Meyer’s signature cocycle

Let P = S2 −⨿3
i=1 IntD

2 as in Figure.

For φ,ψ ∈ Mg, there exists a unique Σg-bundle Eφ,ψ over P

whose monodromies along α and β are φ and ψ.

Figure: loops in a pair of pants
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Then, we obtain a local system π1P → Aut(H1(Σg;Q)).

We also have an intersection form defined by

H1(P ;H1(Σg;Q))⊗2 ∼= H1(P, ∂P ;H1(Σg;Q))⊗2

∪−→ H2(P, ∂P ;H1(Σg;Q)⊗2)
·−→ H2(P, ∂P ;Q)

[P ]−−→ Q.
.
Theorem (Meyer)
..

......

The signature of Eφ,ψ coincides with that of this intersection form. The

map

τg : Mg ×Mg → Z

defined by τg(φ,ψ) = Sign(H1(P ;H1(Σg;Q)) is a bounded 2-cocycle on

Mg.
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When g = 1, 2, H2(Mg;Q) = 0. Hence, we obtain a quasimorphism

ϕg : Mg → Q

which satisfies

δϕg(φ,ψ) := ϕg(φ) + ϕg(ψ)− ϕg(φψ) = τg(φ,ψ).
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Gambaudo-Ghys’ ω-signature

Let us consider another intersection form when φ,ψ ∈ Mg(p).

Let p : Σg → S2 be the cyclic branched covering as before.

Let ω = exp(2π
√
−1/m).

Since, φ,ψ commutes with the deck transfomation t,

Z/mZ acts on the Σg-bundle Eφ,ψ preserving each fiber. Hence, we

obtain a local system π1P → Aut(V ωj
),

where V ωj ⊂ H1(Σg;C) is the eigenspace with eigenvalue ωj .

We also have an intersection form defined by

H1(P ;V
ωj
)⊗2 ∼= H1(P, ∂P ;V ωj

)⊗2

∪−→ H2(P, ∂P ; (V ωj
)⊗2)

·−→ H2(P, ∂P ;C)
[P ]−−→ C.
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The map τm,j(φ,ψ) = Sign(H1(P ;V
ωj
)) is a bounded 2-cocycle on

Mg(p).

Since H2(Mg(p);Q) = 0, we also obtain a quasimorphism

ϕm,j : Mg(p) → Q which satisfies

ϕm,j(φ) + ϕm,j(ψ)− ϕm,j(φψ) = τm,j(φ,ψ),

for all m ≥ 4.

By Meyer’s results, this cocycle can be calculated explicitly as follows.

H1(P ;V
ωj
) = {(x, y) ∈ V ωj ⊕ V ωj | (φ−1

∗ − 1)x+ (ψ∗ − 1)y = 0},

and the hermitian form is written as

⟨(x1, y1), (x2, y2)⟩ = (x1 + x2) · (1− ψ∗)y2.

We can see that dim(H1(P ;V
ωj
)/Annihilator) ≤ m− 2, and we have

D(ϕm,j) = sup
φ,ψ∈Mg(p)

τm,j(φ,ψ) ≤ m− 2.
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Cochran-Harvey-Horn generalized this construction to infinite coverings

using von Neumann signature.

They considered it when p is the universal abelian covering of Σg,

and constructed infinite number of quasiphisms on the Johnson kernel

which are linearly independent.
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3. Proof of Proposition 1.
.
Proposition 1 (Calegari-Monden-S.)
..

...... D(ϕ̄m,j) ≤ m− 2.

We have already seen that

D(ϕm,j) ≤ m− 2.

It suffices to show that

D(ϕ̄m,j) ≤ D(ϕm,j).
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.
Proposition (cf. scl)
..

......

Let G be a group, and ϕ : G→ R a quasimorphism. Then,

D(ϕ̄) ≤ 2D(ϕ).

Actually, ϕm,j satisfies

ϕm,j(xyx
−1) = ϕm,j(y), ϕm,j(x

−1) = −ϕ(x).

In this setting, we can show:
.
Proposition 2 (Calegari-Monden-S.)
..

......

Let G be a group, and ϕ : G→ R a quasimorphism satisfying

ϕ(xyx−1) = ϕ(y), ϕ(x−1) = −ϕ(x).

Then,

D(ϕ̄) ≤ D(ϕ).
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.
Lemma 1
..

...... |ϕ((ab)3x)− ϕ(xba3b2)| ≤ 2D(ϕ).

.
Proof.
..

......

δϕ([b, a], (ab)3x) + δϕ([a, b], babxba2)

= ϕ((ab)3x) + ϕ([b, a])− ϕ(ba(ab)2x)

+ ϕ(babxba2) + ϕ([a, b])− ϕ(ab2xba2).

By the assumption on ϕ, we have

ϕ(ba(ab)2x) = ϕ(babxba2), ϕ([b, a]) = −ϕ([a, b]), ϕ(ab2xba2) = ϕ(xba3b2).

Thus, we have

δϕ([b, a], (ab)3x) + δϕ([a, b], babxba2) = ϕ((ab)3x)− ϕ(xba3b2).
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.
Lemma 2
..

...... |ϕ((ab)3n)− ϕ(a3
n
b3

n
)| ≤ (3n − 1)D(ϕ).

.
Proof.
..

......

By Lemma 1, |ϕ((ab)3x)− ϕ(xba3b2)| ≤ 2D(ϕ).

If we substitute

x = (ab)3
n−3, (ab)3

n−6(ba3b2), (ab)3
n−9(ba3b2)3, · · · , (ba3b2)3n−1

,

we have

|ϕ((ab)3n)− ϕ((a3b3)3
n−1

)| ≤ 3n−1(2D(ϕ)).

In the same way, we have

|ϕ((a3n−k
b3

n−k
)3

k
)− ϕ((a3

n−k+1
b3

n−k+1
)3

k−1
)| ≤ 3k−1(2D(ϕ)).

for k = 1, 2, · · · , n.
If we sum up all these terms we obtain what we want.
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Proof of Proposition 2

For any a, b ∈ G,

|ϕ̄(a) + ϕ̄(b)− ϕ̄(ab)| = lim
n→∞

1

3n
|ϕ(a3n) + ϕ(b3

n
)− ϕ((ab)3

n
)|.

Since |ϕ(a3n) + ϕ(b3
n
)− ϕ(a3

n
b3

n
)| ≤ D(ϕ), we have

|ϕ̄(a) + ϕ̄(b)− ϕ̄(ab)| = lim
n→∞

1

3n
|ϕ(a3nb3n)− ϕ((ab)3

n
)|.

By Lemma 2, we obtain

lim
n→∞

1

3n
|ϕ(a3nb3n)− ϕ((ab)3

n
)| ≤ D(ϕ).

Masatoshi Sato (Gifu University) scl in the MCGs of punctured surfaces November 8, 2012 36 / 44



3. Proof of Main Theorem 1.
.
Main Theorem 1
..

......

Let m ≥ 4. Then,

sclMm
0
(σ1) ≤

1

2m+ 2 + 4
m−2

.
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.
Lemma 3 (cf. scl)
..

......

Let ϕ : G→ R be a homogeneous quasimorphism. Then, we have

...1 ϕ(yxy−1) = ϕ(x),

...2 If xy = yx, ϕ(xy) = ϕ(x) + ϕ(y).

.
Proof of Lemma 3 (2).
..

......

for any n ∈ Z, we have

D(ϕ) ≥ |ϕ((xnyn)− ϕ(xn)− ϕ(yn)|

= |ϕ((xy)n)− ϕ(xn)− ϕ(yn)|

= n|ϕ(xy)− ϕ(x)− ϕ(y)|.

Thus,

|ϕ(xy)− ϕ(x)− ϕ(y)| ≤ D(ϕ)

n
.

Let n→ ∞, then we have ϕ(xy) = ϕ(x) + ϕ(y).

Masatoshi Sato (Gifu University) scl in the MCGs of punctured surfaces November 8, 2012 38 / 44



Let G be a group, and a ∈ G.

If there exist x, y ∈ G and n1, n2, n3 ∈ R (which do not depend on ϕ)

such that

ϕ(x) = n1ϕ(a), ϕ(y) = n2ϕ(a), ϕ(xy) = n3ϕ(a),

for any ϕ ∈ Q(G), then

D(ϕ) ≥ |ϕ(x) + ϕ(y)− ϕ(xy)| = |n1 + n2 − n3||ϕ(a)|.

scl(a) = sup
ϕ∈Q(G),D(ϕ)̸=0

ϕ(a)

2D(ϕ)
≤ 1

2|n1 + n2 − n3|
.

We will construct such x, y ∈ Mm
0 in the next page.
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For simplicity, we consider the case when m is even.

Let x = σ21σ3σ5 · · ·σm−3σ
2
m−1 and y = σ2σ4σ6 · · ·σm−2.

When |i− j| ≥ 2 the supports of σi and σj are disjoint. Hence,

σiσj = σjσi when |i− j| ≥ 2.

By Lemma 3 (2), we have

ϕ(x) = ϕ(σ21) + ϕ(σ3) + ϕ(σ5) + · · ·+ ϕ(σm−3) + ϕ(σ2m−1)

=
m+ 4

2
ϕ(σ1),

ϕ(y) = ϕ(σ2) + ϕ(σ4) + ϕ(σ6) + · · ·+ ϕ(σm−2)

=
m− 2

2
ϕ(σ1),

for any ϕ ∈ Q(Mm
0 ).Therefore, it suffices to show

ϕ(xy) = − 2

m− 2
ϕ(σ1).

Masatoshi Sato (Gifu University) scl in the MCGs of punctured surfaces November 8, 2012 40 / 44



We need some relations of Mm
0 to show

ϕ(xy) = − 2

m− 2
ϕ(σ1).

When a, b ∈ Mm
0 are conjugate, denote a ∼ b.

.
Lemma 4 (well-known)
..

......

...1 σ1σ2 · · ·σm−2σ
2
m−1σm−2 · · ·σ2σ1 = 1,

...2 (σm−2σm−3 · · ·σ2)m−2 ∼ σ21.
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First, we will show

xy = (σ21σ3 · · ·σm−3σ
2
m−1)(σ2σ4 · · ·σm−2) ∼ σ21σ2σ3 · · ·σm−2σ

2
m−1.

xy = (σ21σ3 · · ·σm−3σ
2
m−1)(σ2σ4 · · ·σm−2)

= σ2m−1(σ
2
1σ3 · · ·σm−5σm−3)(σ2σ4 · · ·σm−4σm−2)

∼ (σ21σ3 · · ·σm−3)(σ2σ4 · · ·σm−2)σ
2
m−1

= (σ21σ3 · · ·σm−5σm−3)(σ2σ4 · · ·σm−4)(σm−2σ
2
m−1)

= σm−3(σ
2
1σ3 · · ·σm−5)(σ2σ4 · · ·σm−4)(σm−2σ

2
m−1)

∼ (σ21σ3 · · ·σm−5)(σ2σ4 · · ·σm−4)(σm−2σ
2
m−1)σm−3

= (σm−2σ
2
m−1)(σ

2
1σ3 · · ·σm−5)(σ2σ4 · · ·σm−4)σm−3

∼ (σ21σ3 · · ·σm−5)(σ2σ4 · · ·σm−6σm−4)σm−3σm−2σ
2
m−1

= (σ21σ3 · · ·σm−5)(σ2σ4 · · ·σm−6)(σm−4σm−3σm−2σ
2
m−1)

∼ σ21σ2σ3 · · ·σm−2σ
2
m−1.
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By Lemma 4, we have

ϕ(xy) = ϕ(σ21σ2σ3 · · ·σm−2σ
2
m−1)

= ϕ((σm−2σm−3 · · ·σ2)−1)

= − 1

m− 2
ϕ((σm−2σm−3 · · ·σ2)m−2)

= − 1

m− 2
ϕ(σ21)

= − 2

m− 2
ϕ(σ1).
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.
Main Theorem 1
..

......

Let m ≥ 4. Then,

sclMm
0
(σ1) ≤

1

2m+ 2 + 4
m−2

.
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