On stable commutator length in the mapping class groups of punctured spheres (joint work with Danny Calegari and Naoyuki Monden)

Masatoshi Sato

Gifu University

November 8, 2012

1. Definition and Properties of stable commutator length.

Stable commutator length (scl)

G: group,

$$[a,b] = aba^{-1}b^{-1}$$
: commutator $(a,b\in G)$,

 $\left[G,G\right]\!:$ the commutator subgroup of G ,

Definition

The commutator length of $x \in [G,G]$ is defined by

$$cl_G(x) = cl(x) = \min\{l \in \mathbb{Z} \mid x = [a_1, b_1][a_2, b_2] \cdots [a_l, b_l], a_i, b_i \in G\}.$$

The stable commutator length of $x \in [G,G]$ is defined by

$$\operatorname{scl}_G(x) = \operatorname{scl}(x) = \lim_{n \to \infty} \frac{\operatorname{cl}(x^n)}{n}$$

Let $x \in G$ such that $x^k \in [G, G]$ for some $k \in \mathbb{Z}$. For such $x \in G$, we can also define the stable commutator length by

$$\operatorname{scl}(x) = \frac{\operatorname{scl}(x^k)}{k}.$$

If $x^k \notin [G,G]$ for all $k \in \mathbb{Z}$, we define $\operatorname{scl}(x) = \infty$.

Example (Culler)

 $F_2 = \langle a, b \rangle$: free group of rank 2, $cl_{F_2}([a,b]) = 1, \quad cl_{F_2}([a,b]^2) = 2,$ $cl_{F_2}([a, b]^3) = 2.$ $([a,b]^3 = [aba^{-1}, b^{-1}aba^{-2}][b^{-2}ab, b^{-2}]).$ Generally, $\operatorname{cl}_{F_2}([a,b]^n) = \left\lceil \frac{n}{2} \right\rceil + 1$. Hence, $\operatorname{scl}_{F_2}([a,b]) = \lim_{n \to \infty} \frac{\operatorname{cl}_{F_2}([a,b]^n)}{n} = \frac{1}{2}.$

Some Properties of scl

Lemma

1 Let G, H be groups, and $f: G \to H$ a homomorphism. Then,

 $\operatorname{scl}_G(a) \ge \operatorname{scl}_H(f(a)).$

 $\label{eq:K} \begin{tabular}{ll} \begin{tabular}{ll} \bullet & K \to G \to H \to 1 \end{tabular} be an exact sequence between groups. \\ \end{tabular} If K is a finite group, \end{tabular}$

$$\operatorname{scl}_G(a) = \operatorname{scl}_H(f(a)).$$

2. Known Results on scl in Mapping Class Groups of Surfaces and Our Results.

Mapping Class Groups of Closed Surfaces

 Σ_g : a closed oriented surface of genus g, Diff₊ Σ_g : the diffeomorphism group of Σ_g ,

$$\mathcal{M}_g = \operatorname{Diff}_+ \Sigma_g / \operatorname{isotopy} (= \pi_0 \operatorname{Diff}_+ \Sigma_g).$$

It is generated by Dehn twists t_c along nonseparating SCCs.

Dehn twists

Figure: a nonseparating curve C

Figure: Dehn twist t_C

Known results

Theorem (Endo-Kotschick 2000, Korkmaz 2004)

When $g \geq 2$,

$$\frac{1}{18g-6} \le \operatorname{scl}_{\mathcal{M}_g}(t_c).$$

Theorem (Korkmaz 2004)

When $g \geq 2$,

$$\operatorname{scl}_{\mathcal{M}_g}(t_c) \leq \frac{3}{20}.$$

Theorem (Kotschick 2008)

$$\operatorname{scl}_{\mathcal{M}_g}(t_c) = O(1/g).$$

Masatoshi Sato (Gifu University)

mapping class groups of pointed spheres

 $q_1, q_2, \cdots, q_m \in S^2$: *m*-points on a 2-sphere. Diff₊ $(S^2, \{q_i\}_{i=1}^m)$: the diffemorphism group which preserves $\{q_i\}_{i=1}^m$ setwise.

 $\mathcal{M}_0^m = \text{Diff}_+(S^2, \{q_i\}_{i=1}^m) / \text{isotopy fixing } \{q_i\}_{i=1}^m = \pi_0 \text{Diff}_+(S^2, \{q_i\}_{i=1}^m).$

It is generated by half twists $\{\sigma_i\}_{i=1}^{m-1}$.

Half twists

We denote by $\sigma_i \in \mathcal{M}_0^m$ the mapping class which twist the disk D_i counter-qlockwise, and permute q_i and q_{i+1} as in the figure.

Figure: half twist in D_i

Theorem (Monden 2012)

When $m \ge 6$ and even,

$$\frac{1}{4(m-1)} \le \operatorname{scl}_{\mathcal{M}_0^m}(\sigma_1).$$

Main Theorem 1 (Calegari-Monden-S)

Let $m \geq 4$. Then,

$$\operatorname{scl}_{\mathcal{M}_0^m}(\sigma_1) \le \frac{1}{2m+2+\frac{4}{m-2}}$$

When m = 4,

this upper bound coincides with the exact value $scl(\sigma_1) = \frac{1}{12}$.

Corollary

Let $g \ge 1$. Then,

$$\operatorname{scl}_{\mathcal{M}_g}(t_c) \le \frac{1}{4g+6+\frac{2}{g}}.$$

When g = 1,

this upper bound coincides with the exact value $scl(t_c) = \frac{1}{12}$.

homogeneous quasimorphisms

Definition

A map $\phi: G \to \mathbb{R}$ is called a quasimorphism if

$$D(\phi) := \sup_{x,y \in G} |\phi(x) + \phi(y) - \phi(xy)| < \infty.$$

We call $D(\phi)$ the defect of the quasimorphism ϕ .

Definition

A quasimorphism $\phi:G\to\mathbb{R}$ is called homogeneous if it satisfies

$$\phi(x^n) = n\phi(x)$$

for any $x \in G$ and $n \in \mathbb{Z}$.

Remark

If $\phi:G\to\mathbb{R}$ is a quasimorphism, $\bar\phi:G\to\mathbb{R}$ defined by

$$\bar{\phi}(x) = \lim_{n \to \infty} \frac{\phi(x^n)}{n}$$

is a homogeneous quasimorphism.

We denote by Q(G) the set of homogeneous quasimorphisms. It is a vector space.

Theorem (Bestvina-Fujiwara 2007)

When g and m are nonnegative integers satisfying $3g+m-4>0\mbox{,}$

 $Q(\mathcal{M}_q^m)$ is infinite dimensional.

Moreover, for any subgroup $G \subset \mathcal{M}_g^m$ which is not virtually abelian,

Q(G) is infinite dimensional.

Main Theorem 2 (Calegari-Monden-S)

Let $m \ge 4$. There exist homogeneous quasimorphisms

$$\bar{\phi}_{m,j}:\mathcal{M}_0^m\to\mathbb{R}$$

parametrized by j, where $1 \le j \le \left\lfloor \frac{m}{2} \right\rfloor$. For $2 \le r \le m - 1$, their values are as follows.

$$\bar{\phi}_{m,j}(\sigma_1 \cdots \sigma_{r-1}) = -\frac{2}{r} \left\{ \frac{jr(m-j)(m-r)}{m^2(m-1)} + \left(\frac{rj}{m} - \left[\frac{rj}{m}\right] - \frac{1}{2}\right)^2 - \frac{1}{4} \right\}$$

Masatoshi Sato (Gifu University)

44

Corollary

If m is not too large (m < 30), the set $\{\bar{\phi}_{m,j}\}_{j=2}^{\left[\frac{m}{2}\right]}$ is linearly independent.

Proposition 1

$$D(\bar{\phi}_{m,j}) \le m - 2.$$

When
$$m$$
 is even and $j = m/2$, $D(\bar{\phi}_{m,m/2}) = m - 2$.

Corollary

Let c be a non-separating SCC in Σ_2 ,

and d an essential separating SCC in Σ_2 , s.t. $c \cap d = \emptyset$. Then.

$$\operatorname{scl}_{\mathcal{M}_2}(t_c^{12}t_d^{-1}) = \frac{1}{2}.$$

The value of $-\bar{\phi}_{m,j}(\sigma_1)$ $(\sigma_1 \in \mathcal{M}_0^m, 1 \leq j \leq \left\lfloor \frac{m}{2} \right\rfloor)$

$$-\bar{\phi}_{m,j}(\sigma_1) = \frac{2j(j-1)}{m(m-1)}$$

	m = 4	m = 5	m = 6	m = 7	m = 8	m = 9	m = 10
j = 1	0	0	0	0	0	0	0
j = 2	$\frac{4}{12}$	$\frac{4}{20}$	$\frac{4}{30}$	$\frac{4}{42}$	$\frac{4}{56}$	$\frac{4}{72}$	$\frac{4}{90}$
j = 3			$\frac{12}{30}$	$\frac{12}{42}$	$\frac{12}{56}$	$\frac{12}{72}$	$\frac{12}{90}$
j = 4					$\frac{24}{56}$	$\frac{24}{72}$	$\frac{24}{90}$
j = 5							$\frac{40}{90}$

Obtained lower bounds of $\operatorname{scl}_{\mathcal{M}_0^m}(\sigma_1)$.

m = 4	m = 5	m = 6	m = 7	m = 8	m = 9	m = 10
$\frac{1}{12}$	$\frac{1}{30}$	$\frac{1}{20}$	$\frac{1}{35}$	$\frac{1}{28}$	$\frac{1}{42}$	$\frac{1}{36}$

	m = 4	m = 5	m = 6	m = 7	m = 8	m = 9	m = 10
Lower	$\frac{1}{12}$	$\frac{1}{30}$	$\frac{1}{20}$	$\frac{1}{35}$	$\frac{1}{28}$	$\frac{1}{42}$	$\frac{1}{36}$
Upper	$\frac{1}{12}$	$\frac{3}{40}$	$\frac{1}{15}$	$\frac{5}{84}$	$\frac{3}{56}$	$\frac{7}{144}$	$\frac{2}{45}$

Lower bounds and Upper bounds.

3. Relation between $\operatorname{scl}_{\mathcal{M}_g}$ and $\operatorname{scl}_{\mathcal{M}_0^m}$.

Symmetric mapping class groups

There are groups which relate the mapping class groups \mathcal{M}_g and \mathcal{M}_0^m . Let d be a positive integer such that d|m. If we choose a surjective homomorphism $H_1(S^2 - \{q_i\}_{i=1}^m; \mathbb{Z}) \to \mathbb{Z}/d\mathbb{Z}$, we obtain a d-cyclic branched covering space $p: \Sigma_g \to S^2$. Let us denote

 $t \in \text{Diff}_+ \Sigma_g$: a generator of the deck transformation group, $C(t) := \{f \in \text{Diff}_+ \Sigma_g \mid ft = tf\},$ $\mathcal{M}_g(p) := \pi_0 C(t).$

The inclusion homomorphism $C(t) \to \text{Diff}_+ \Sigma_g$ induces $\iota : \mathcal{M}_g(p) \to \mathcal{M}_g$. Thus, for $\varphi \in \mathcal{M}_g(p)$, we have

$$\operatorname{scl}_{\mathcal{M}_g(p)}(\varphi) \ge \operatorname{scl}_{\mathcal{M}_g}(\iota(\varphi)).$$

For some technical reason, let d = m, and choose a homomorphism

$$H_1(S^2 - \{q_i\}_{i=1}^m) \to \mathbb{Z}/m\mathbb{Z}$$

which maps each loop which rounds q_i once clockwise to $1 \in \mathbb{Z}/m\mathbb{Z}$. Then, the symmetric mapping class group $\mathcal{M}_g(p)$ satisfies an exact sequence

$$0 \longrightarrow \mathbb{Z}/m\mathbb{Z} \longrightarrow \mathcal{M}_g(p) \xrightarrow{\mathcal{P}} \mathcal{M}_0^m \longrightarrow 1.$$

The homomorphism \mathcal{P} is defined by $[f] \mapsto [\bar{f}]$, where $f \in C(t)$ and $\bar{f} \in \text{Diff}_+(S^2, \{q_i\}_{i=1}^m)$ satisfy the commutative diagram

Lemma (well-known)

Let K, G, H be groups. If

$$1 \longrightarrow K \longrightarrow G \xrightarrow{f} H \longrightarrow 1$$

is a (central) extension with K finite, then Q(G) = Q(H).

Proof.

It suffices to construct a homomorphism from
$$Q(G)$$
 to $Q(H)$.
Let $\phi \in Q(G)$ and $h \in H$.
We will show that, for $a, a' \in f^{-1}(h)$, $\phi(a) = \phi(a')$.
If $a, a' \in \mathcal{P}^{-1}(h)$, we have $a = a'k$ ($k \in K$).
Since K is in the center of G , we have $a^n = (a')^n$ for some $n \in \mathbb{Z}$. Thus,
 $\phi(a) = \frac{1}{n}\phi(a^n) = \frac{1}{n}\phi((a')^n) = \phi(a')$.
Hence, we can define $\phi' : H \to \mathbb{R}$ by $\phi'(\bar{a}) = \phi(a)$.

Therefore, for any $x \in \mathcal{M}_g(p)$, we have

$$\operatorname{scl}_{\mathcal{M}_g(p)}(x) = \operatorname{scl}_{\mathcal{M}_0^m}(\mathcal{P}(x)) \ge \operatorname{scl}_{\mathcal{M}_g}(\iota(x)).$$

Masatoshi Sato (Gifu University)

4. Definition of $\bar{\phi}_{m,j}: \mathcal{M}_0^m \to \mathbb{R}$

Meyer's signature cocycle

Let $P = S^2 - \coprod_{i=1}^3 \operatorname{Int} D^2$ as in Figure. For $\varphi, \psi \in \mathcal{M}_g$, there exists a unique Σ_g -bundle $E_{\varphi,\psi}$ over P whose monodromies along α and β are φ and ψ .

Then, we obtain a local system $\pi_1 P \to \operatorname{Aut}(H_1(\Sigma_g; \mathbb{Q}))$. We also have an intersection form defined by

$$H_1(P; H_1(\Sigma_g; \mathbb{Q}))^{\otimes 2} \cong H^1(P, \partial P; H_1(\Sigma_g; \mathbb{Q}))^{\otimes 2}$$
$$\xrightarrow{\cup} H^2(P, \partial P; H_1(\Sigma_g; \mathbb{Q})^{\otimes 2})$$
$$\xrightarrow{\cdot} H^2(P, \partial P; \mathbb{Q})$$
$$\xrightarrow{[P]} \mathbb{Q}.$$

Theorem (Meyer)

The signature of $E_{\varphi,\psi}$ coincides with that of this intersection form. The map

$$\tau_g:\mathcal{M}_g\times\mathcal{M}_g\to\mathbb{Z}$$

defined by $\tau_g(\varphi, \psi) = \text{Sign}(H_1(P; H_1(\Sigma_g; \mathbb{Q})))$ is a bounded 2-cocycle on \mathcal{M}_g .

When g = 1, 2, $H^2(\mathcal{M}_g; \mathbb{Q}) = 0$. Hence, we obtain a quasimorphism

$$\phi_g: \mathcal{M}_g \to \mathbb{Q}$$

which satisfies

$$\delta\phi_g(\varphi,\psi) := \phi_g(\varphi) + \phi_g(\psi) - \phi_g(\varphi\psi) = \tau_g(\varphi,\psi).$$

Gambaudo-Ghys' ω -signature

Let us consider another intersection form when $\varphi, \psi \in \mathcal{M}_g(p)$. Let $p: \Sigma_g \to S^2$ be the cyclic branched covering as before. Let $\omega = \exp(2\pi\sqrt{-1}/m)$.

Since, φ, ψ commutes with the deck transfomation t,

 $\mathbb{Z}/m\mathbb{Z}$ acts on the Σ_g -bundle $E_{\varphi,\psi}$ preserving each fiber. Hence, we obtain a local system $\pi_1 P \to \operatorname{Aut}(V^{\omega^j})$,

where $V^{\omega^j} \subset H_1(\Sigma_g; \mathbb{C})$ is the eigenspace with eigenvalue ω^j . We also have an intersection form defined by

$$H_1(P; V^{\omega^j})^{\otimes 2} \cong H^1(P, \partial P; V^{\omega^j})^{\otimes 2}$$
$$\xrightarrow{\cup} H^2(P, \partial P; (V^{\omega^j})^{\otimes 2})$$
$$\xrightarrow{\cdot} H^2(P, \partial P; \mathbb{C})$$
$$\xrightarrow{[P]} \mathbb{C}$$

The map $\tau_{m,j}(\varphi, \psi) = \text{Sign}(H_1(P; V^{\omega^j}))$ is a bounded 2-cocycle on $\mathcal{M}_g(p)$.

Since $H^2(\mathcal{M}_g(p); \mathbb{Q}) = 0$, we also obtain a quasimorphism $\phi_{m,j} : \mathcal{M}_g(p) \to \mathbb{Q}$ which satisfies

$$\phi_{m,j}(\varphi) + \phi_{m,j}(\psi) - \phi_{m,j}(\varphi\psi) = \tau_{m,j}(\varphi,\psi),$$

for all $m \geq 4$.

By Meyer's results, this cocycle can be calculated explicitly as follows.

$$H_1(P; V^{\omega^j}) = \{ (x, y) \in V^{\omega^j} \oplus V^{\omega^j} \mid (\varphi_*^{-1} - 1)x + (\psi_* - 1)y = 0 \},\$$

and the hermitian form is written as

$$\langle (x_1, y_1), (x_2, y_2) \rangle = (x_1 + x_2) \cdot (1 - \psi_*) y_2.$$

We can see that $\dim(H_1(P;V^{\omega^j})/\mathsf{Annihilator}) \leq m-2$, and we have

$$D(\phi_{m,j}) = \sup_{\varphi, \psi \in \mathcal{M}_g(p)} \tau_{m,j}(\varphi, \psi) \le m - 2.$$

Cochran-Harvey-Horn generalized this construction to infinite coverings using von Neumann signature.

They considered it when p is the universal abelian covering of Σ_g , and constructed infinite number of quasiphisms on the Johnson kernel which are linearly independent.

3. Proof of Proposition 1.

Proposition 1 (Calegari-Monden-S.)

$$D(\bar{\phi}_{m,j}) \le m - 2.$$

We have already seen that

$$D(\phi_{m,j}) \le m - 2.$$

It suffices to show that

 $D(\bar{\phi}_{m,j}) \le D(\phi_{m,j}).$

Proposition (cf. scl)

Let G be a group, and $\phi:G\to\mathbb{R}$ a quasimorphism. Then, $D(\bar{\phi})\leq 2D(\phi).$

Actually, $\phi_{m,j}$ satisfies

$$\phi_{m,j}(xyx^{-1}) = \phi_{m,j}(y), \quad \phi_{m,j}(x^{-1}) = -\phi(x).$$

In this setting, we can show:

Proposition 2 (Calegari-Monden-S.)

Let G be a group, and $\phi:G\to\mathbb{R}$ a quasimorphism satisfying

$$\phi(xyx^{-1}) = \phi(y), \quad \phi(x^{-1}) = -\phi(x).$$

Then,

$$D(\bar{\phi}) \le D(\phi).$$

$$|\phi((ab)^3x) - \phi(xba^3b^2)| \le 2D(\phi).$$

Proof.

$$\begin{split} &\delta\phi([b,a],(ab)^3x) + \delta\phi([a,b],babxba^2) \\ &= \phi((ab)^3x) + \phi([b,a]) - \phi(ba(ab)^2x) \\ &+ \phi(babxba^2) + \phi([a,b]) - \phi(ab^2xba^2). \end{split}$$

By the assumption on $\phi,$ we have

 $\phi(ba(ab)^2x)=\phi(babxba^2), \phi([b,a])=-\phi([a,b]), \phi(ab^2xba^2)=\phi(xba^3b^2).$ Thus, we have

$$\delta\phi([b,a],(ab)^3x) + \delta\phi([a,b],babxba^2) = \phi((ab)^3x) - \phi(xba^3b^2) = \phi((ab)^3b^2) = \phi((ab)^3b^2$$

Lemma 2

$$|\phi((ab)^{3^n}) - \phi(a^{3^n}b^{3^n})| \le (3^n - 1)D(\phi).$$

Proof.

By Lemma 1,
$$|\phi((ab)^3x) - \phi(xba^3b^2)| \le 2D(\phi)$$
.
If we substitute
 $x = (ab)^{3^n-3}, (ab)^{3^n-6}(ba^3b^2), (ab)^{3^n-9}(ba^3b^2)^3, \cdots, (ba^3b^2)^{3^{n-1}}$,
we have

$$|\phi((ab)^{3^n}) - \phi((a^3b^3)^{3^{n-1}})| \le 3^{n-1}(2D(\phi)).$$

In the same way, we have

$$\phi((a^{3^{n-k}}b^{3^{n-k}})^{3^k}) - \phi((a^{3^{n-k+1}}b^{3^{n-k+1}})^{3^{k-1}})| \le 3^{k-1}(2D(\phi)).$$

for $k = 1, 2, \cdots, n$.

If we sum up all these terms we obtain what we want.

Proof of Proposition 2

For any $a, b \in G$,

$$|\bar{\phi}(a) + \bar{\phi}(b) - \bar{\phi}(ab)| = \lim_{n \to \infty} \frac{1}{3^n} |\phi(a^{3^n}) + \phi(b^{3^n}) - \phi((ab)^{3^n})|.$$

Since $|\phi(a^{3^n}) + \phi(b^{3^n}) - \phi(a^{3^n}b^{3^n})| \le D(\phi)$, we have

$$|\bar{\phi}(a) + \bar{\phi}(b) - \bar{\phi}(ab)| = \lim_{n \to \infty} \frac{1}{3^n} |\phi(a^{3^n} b^{3^n}) - \phi((ab)^{3^n})|.$$

By Lemma 2, we obtain

$$\lim_{n \to \infty} \frac{1}{3^n} |\phi(a^{3^n} b^{3^n}) - \phi((ab)^{3^n})| \le D(\phi).$$

3. Proof of Main Theorem 1.

Main Theorem 1

Let $m \ge 4$. Then,

$$\operatorname{scl}_{\mathcal{M}_0^m}(\sigma_1) \le \frac{1}{2m+2+\frac{4}{m-2}}$$

Lemma 3 (cf. scl)

Let $\phi: G \to \mathbb{R}$ be a homogeneous quasimorphism. Then, we have

Proof of Lemma 3(2).

for any $n \in \mathbb{Z}$, we have

$$D(\phi) \ge |\phi((x^n y^n) - \phi(x^n) - \phi(y^n)|$$
$$= |\phi((xy)^n) - \phi(x^n) - \phi(y^n)|$$
$$= n|\phi(xy) - \phi(x) - \phi(y)|.$$

Thus,

$$|\phi(xy) - \phi(x) - \phi(y)| \le \frac{D(\phi)}{n}.$$

Let $n \to \infty$, then we have $\phi(xy) = \phi(x) + \phi(y)$.

44

Let G be a group, and $a \in G$. If there exist $x, y \in G$ and $n_1, n_2, n_3 \in \mathbb{R}$ (which do not depend on ϕ) such that

$$\phi(x) = n_1 \phi(a), \quad \phi(y) = n_2 \phi(a), \quad \phi(xy) = n_3 \phi(a),$$

for any $\phi \in Q(G)$, then

$$D(\phi) \ge |\phi(x) + \phi(y) - \phi(xy)| = |n_1 + n_2 - n_3||\phi(a)|.$$
$$\operatorname{scl}(a) = \sup_{\phi \in Q(G), D(\phi) \neq 0} \frac{\phi(a)}{2D(\phi)} \le \frac{1}{2|n_1 + n_2 - n_3|}.$$

We will construct such $x, y \in \mathcal{M}_0^m$ in the next page.

For simplicity, we consider the case when m is even.

Let $x = \sigma_1^2 \sigma_3 \sigma_5 \cdots \sigma_{m-3} \sigma_{m-1}^2$ and $y = \sigma_2 \sigma_4 \sigma_6 \cdots \sigma_{m-2}$. When $|i - j| \ge 2$ the supports of σ_i and σ_j are disjoint. Hence,

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 when $|i - j| \ge 2$.

By Lemma 3 (2), we have

$$\phi(x) = \phi(\sigma_1^2) + \phi(\sigma_3) + \phi(\sigma_5) + \dots + \phi(\sigma_{m-3}) + \phi(\sigma_{m-1}^2)$$

= $\frac{m+4}{2}\phi(\sigma_1),$
 $\phi(y) = \phi(\sigma_2) + \phi(\sigma_4) + \phi(\sigma_6) + \dots + \phi(\sigma_{m-2})$
= $\frac{m-2}{2}\phi(\sigma_1),$

for any $\phi \in Q(\mathcal{M}_0^m)$. Therefore, it suffices to show

$$\phi(xy) = -\frac{2}{m-2}\phi(\sigma_1).$$

We need some relations of \mathcal{M}_0^m to show

$$\phi(xy) = -\frac{2}{m-2}\phi(\sigma_1).$$

When $a, b \in \mathcal{M}_0^m$ are conjugate, denote $a \sim b$.

Lemma 4 (well-known) • $\sigma_1 \sigma_2 \cdots \sigma_{m-2} \sigma_{m-1}^2 \sigma_{m-2} \cdots \sigma_2 \sigma_1 = 1,$ • $(\sigma_{m-2} \sigma_{m-3} \cdots \sigma_2)^{m-2} \sim \sigma_1^2.$

First, we will show

$$xy = (\sigma_1^2 \sigma_3 \cdots \sigma_{m-3} \sigma_{m-1}^2)(\sigma_2 \sigma_4 \cdots \sigma_{m-2}) \sim \sigma_1^2 \sigma_2 \sigma_3 \cdots \sigma_{m-2} \sigma_{m-1}^2.$$

$$\begin{aligned} xy &= (\sigma_1^2 \sigma_3 \cdots \sigma_{m-3} \sigma_{m-1}^2) (\sigma_2 \sigma_4 \cdots \sigma_{m-2}) \\ &= \sigma_{m-1}^2 (\sigma_1^2 \sigma_3 \cdots \sigma_{m-5} \sigma_{m-3}) (\sigma_2 \sigma_4 \cdots \sigma_{m-4} \sigma_{m-2}) \\ &\sim (\sigma_1^2 \sigma_3 \cdots \sigma_{m-3}) (\sigma_2 \sigma_4 \cdots \sigma_{m-2}) \sigma_{m-1}^2 \\ &= (\sigma_1^2 \sigma_3 \cdots \sigma_{m-5} \sigma_{m-3}) (\sigma_2 \sigma_4 \cdots \sigma_{m-4}) (\sigma_{m-2} \sigma_{m-1}^2) \\ &= \sigma_{m-3} (\sigma_1^2 \sigma_3 \cdots \sigma_{m-5}) (\sigma_2 \sigma_4 \cdots \sigma_{m-4}) (\sigma_{m-2} \sigma_{m-1}^2) \\ &\sim (\sigma_1^2 \sigma_3 \cdots \sigma_{m-5}) (\sigma_2 \sigma_4 \cdots \sigma_{m-4}) (\sigma_{m-2} \sigma_{m-1}^2) \sigma_{m-3} \\ &= (\sigma_{m-2} \sigma_{m-1}^2) (\sigma_1^2 \sigma_3 \cdots \sigma_{m-5}) (\sigma_2 \sigma_4 \cdots \sigma_{m-4}) \sigma_{m-3} \\ &\sim (\sigma_1^2 \sigma_3 \cdots \sigma_{m-5}) (\sigma_2 \sigma_4 \cdots \sigma_{m-6} \sigma_{m-4}) \sigma_{m-3} \sigma_{m-2} \sigma_{m-1}^2) \\ &= (\sigma_1^2 \sigma_3 \cdots \sigma_{m-5}) (\sigma_2 \sigma_4 \cdots \sigma_{m-6}) (\sigma_{m-4} \sigma_{m-3} \sigma_{m-2} \sigma_{m-1}^2) \\ &\sim \sigma_1^2 \sigma_2 \sigma_3 \cdots \sigma_{m-2} \sigma_{m-1}^2. \end{aligned}$$

By Lemma 4, we have

$$\phi(xy) = \phi(\sigma_1^2 \sigma_2 \sigma_3 \cdots \sigma_{m-2} \sigma_{m-1}^2) = \phi((\sigma_{m-2} \sigma_{m-3} \cdots \sigma_2)^{-1}) = -\frac{1}{m-2} \phi((\sigma_{m-2} \sigma_{m-3} \cdots \sigma_2)^{m-2}) = -\frac{1}{m-2} \phi(\sigma_1^2) = -\frac{2}{m-2} \phi(\sigma_1).$$

Main Theorem 1

Let $m \geq 4$. Then,

$$\operatorname{scl}_{\mathcal{M}_0^m}(\sigma_1) \le \frac{1}{2m+2+\frac{4}{m-2}}.$$