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I dedicate these notes to the memory of Ruty Ben-Zion

Abstract. These notes from the summer school Quantum Topology at the CIRM in Luminy attempt
to provide a rough guide to a selection of developments in Khovanov homology over the last fifteen
years.

Foreword

There are already too many introductory articles on Khovanov homology and cer-
tainly another is not needed. On the other hand by now - 15 years after the invention
of subject - it is quite easy to get lost after having taken those first few steps. What
could be useful is a rough guide to some of the developments over that time and the
summer school Quantum Topology at the CIRM in Luminy has provided the ideal
opportunity for thinking about what such a guide should look like.

It is quite a risky undertaking because it is all too easy to offend by omission,
misrepresentation or other. I have not attempted a complete literature survey and
inevitably these notes reflects my personal view, jaundiced as it may often be. My
apologies for any offence caused. 1.

I would like to express my warm thanks to Lukas Lewark, Alex Shumakovitch,
Liam Watson and Ben Webster.

PAUL TURNER: Section de mathématiques, Université de Genève, 2-4 rue du Lièvre, CH-1211,
Geneva, Switzerland. e-mail: prt.maths@gmail.com.

1 You are reading a preliminary version - there is still time to correct any errors, add references and
so on - please let me know if you have comments
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1. A beginning

There are a number of introductions to Khovanov homology. A good place to start
is Dror Bar-Natan’s paper

0201043 – On Khovanov’s categorification of the Jones polynomial

perhaps followed by Alex Shumakovitch review

1101.5614 – Khovanov homology theories and their applications

The original paper by Khovanov should be studied

9908171 – A categorification of the Jones polynomial

and while a little dated there are always the notes from my last trip to Marseilles

0606464 – Five lectures on Khovanov homology

1.1. There is a link homology theory called Khovanov homology

What are the minimal requirements of something deserving of the name link ho-
mology theory ? We should expect a functor

H : Links→A

where Links is some category of links in which isotopies are morphisms and A

another category, probably abelian, where we have in mind a category of finite
dimensional vector spaces or of modules over a fixed ring. This functor should
satisfy a number of properties.

– Invariance. If L1 → L2 is an isotopy then the induced map H(L1)→ H(L2)
should be an isomorphism.

– Disjoint unions. Given two disjoint links L1 and L2 we want the union expressed
in terms of the parts

H(L1tL2)∼= H(L1)�H(L2)

where � is some monoidal operation in A such as ⊕ or ⊗.
– Normalisation. The value of H(unknot) should be specified. (Possibly also the

value of the empty knot)
– Computational tool. We want something like a long exact sequence which re-

lates homology of a given link with associated “simpler” ones - something like
the Meyer-Vietoris sequence in ordinary homology.

If these are our expectations then Khovanov homology is bound to please. Let us
take Links to be the category whose objects are oriented links in S3 and whose mor-
phisms are link cobordisms, that is to say compact oriented surfaces-with-boundary
in S3× I defined up to isotopy. All manifolds are assumed to be smooth.

Theorem 1. (Existence of Khovanov homology) There exists a (covariant) functor

Kh : Links→ VectF2

satisfying
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1. If Σ : L1→ L2 is an isotopy then Kh(Σ) : Kh(L1)→ Kh(L2) is an isomorphism.
2. Kh(L1tL2)∼= Kh(L1)⊗Kh(L2).
3. Kh(unknot) = F2⊕F2 and Kh( /0) = F2.
4. If L is presented by a link diagram part of which is then there is an exact

triangle

Kh( ) // Kh( )

yysss
sss

sss
s

Kh( )

eeKKKKKKKKKK

In fact Kh carries a bigrading

Kh∗,∗(L) =
⊕
i, j∈Z

Khi, j(L)

and with respect to this

– a link cobordism Σ : L1→ L2 induces a map Kh(Σ) of bidegree (0,χ(Σ)),
– the generators of the unknot have bidegree (0,1) and (0,−1) (and for the empty

knot bidegree (0,0)),
– the exact triangle unravels as follows:

Case I: For each j there is a long exact sequence

δ // Khi, j+1( ) // Khi, j( ) // Khi−ω, j−1−3ω( )
δ // Khi+1, j+1( ) //

where ω is the number of negative crossings in the chosen orientation of
minus the number of negative crossings in .
Case II: For each j there is a long exact sequence

// Khi−1, j−1( )
δ // Khi−1−c, j−2−3c( ) // Khi, j( ) // Khi, j−1( )

δ //

where c is the number of negative crossings in the chosen orientation of
minus the number of negative crossings in .

To prove the theorem one must construct such a functor, but first let’s see a few
consequences of the existence theorem.

Proposition 1. If a link L has an odd (resp. even) number of components then
Kh∗,even(L) (resp. Kh∗,odd(L)) is trivial.

Proof. The proof is by induction on the number of crossing and uses the following
elementary result.

Lemma 1. In the discussion of the long exact sequences above (i) if the
strands featured at the crossing are from the same component then ω is
odd and c is even, and (ii) if they are from different components then ω is
even and c odd.
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For the inductive step we use this and, depending on the case, one of the long exact
sequence shown above, observing that in each case two of the three groups shown
are trivial. ut

Proposition 2. Letting L! denote the mirror image of the link L we have Khi, j(L!)∼=
Kh−i,− j(L).

Proof. There is a link cobordism Σ : L!tL→ /0 with χ(Σ) = 0 obtained by bending
the identity cobordism (a cylinder) L→ L. Since
Kh is a functor there is an induced map of bidegree
(0,χ(Σ)) = (0,0)

Σ∗ : Kh∗,∗(L!)⊗Kh∗,∗(L)→ Kh∗,∗( /0) = F2.

By a standard “cylinder straightening isotopy” ar-
gument the bilinear form is non-degenerate, and the result follows recalling that we
are in a bigraded setting so

(Kh∗,∗(L!)⊗Kh∗,∗(L))0,0 =
⊕
i, j

Khi, j(L!)⊗Kh−i,− j(L).

ut

Proposition 3. For any oriented link L,

1

t
1
2 + t−

1
2
∑
i, j
(−1)i+ j+1t

j
2 dim(Khi, j(L))

is the Jones polynomial of L.

Proof. Let P(L) = Σi, j(−1)iq jdim(Khi, j(L)) and suppose L is represented by a
diagram D. The alternating sum of dimensions in a long exact sequence of vector
spaces is always zero, so from the long exact sequence for a negative crossing we
have that for each j ∈ Z the sum

∑
i
(−1)idim(Khi, j+1( ))

−∑
i
(−1)idim(Khi, j( ))+∑

i
(−1)idim(Khi−ω, j−1−3ω( ))

is zero. Written in terms of the polynomial P this becomes

q−1P( )−P( )+(−1)ωq1+3ωP( ) = 0.

Similarly, using the long exact sequence for a positive crossing (noting that c =
ω +1) we get

(−1)ωq5+3ωP( )−P( )+qP( ) = 0.

Combining these gives

q−2P( )−q2P( )+(q−q−1)P( ) = 0
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which becomes the skein relation of the Jones polynomial when q = −t
1
2 . Since

P(unknot) = q+q−1 =−(t 1
2 + t−

1
2 ), the uniqueness of the Jones polynomial gives

P(D) |
q=−t

1
2
=−(t

1
2 + t−

1
2 )J(D)

whence the result. ut

Remark 1. Another expository paper to look at is Rasmussen’s

0504045– Knot polynomials and knot homologies

in which both Khovanov homology and Heegaard-Floer knot homology are dis-
cussed. A tentative definition of what a knot homology theory should encompass
(somewhat different from the expectations given above) is also presented.

1.2. Reduced Khovanov homology

There is a further piece of structure induced on Khovanov homology defined in the
following way. The Khovanov homology of the unknot is a ring with unit courtesy

of the cobordisms and which induce multiplica-
tion and unit respectively. The Khovanov homology of
a link L together with a chosen point p is a module over
this ring, using the link cobordism indicated. A priori this
module structure depends on the point p and in particu-
lar on the component of L to which p belongs. Although
it does not follow from the existence theorem directly,
for the version of Khovanov homology presented above
(namely over F2), this structure does not depend on these

choices. In fact more is true (again not immediate from the existence theorem) and
the structure of Kh∗,∗(L) over U∗∗ = Kh∗,∗(unknot) can be described as follows:
there exists a bigraded vector space K̃h

∗,∗
(L) with the property that

Kh∗,∗(L)∼= K̃h
∗,∗
(L)⊗U∗,∗

Theorem 2. (Existence of reduced Khovanov homology) There exists a (covariant)
functor

K̃h
∗,∗

: Links→ VectF2

satisfying

1. If Σ : L1→ L2 is an isotopy then K̃h(Σ) is an isomorphism.
2. K̃h

∗,∗
(L1tL2)∼= K̃h

∗,∗
(L1)⊗ K̃h

∗,∗
(L2)⊗U∗,∗.

3. K̃h
∗,∗
(unknot) = F2 in bidegree(0,0).

4. K̃h
∗,∗

satisfies the same long exact sequence (with the same bigradings) written
down previously for the unreduced case.
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There is a question about which category of links we should be using here. A
natural one would be links with a marked point and cobordisms with a marked line.

Similarly to before if L has an odd (resp. even) number of components then K̃h
∗,odd

(resp. K̃h
∗,even

) is trivial and

∑
i, j
(−1)i+ jt

j
2 dim(K̃h

i, j
(L)) = J(L)

In order to compute Khovanov homology we should use our tools for that pur-
pose which are the two long exact sequences.

Exercise 1. (for beginners) Using the long exact sequences calculate the reduced
Khovanov homology of the Hopf link, left and right trefoils, and the figure eight
knot.

Exercise 2. (for experts) Find the first knot in the tables for which the reduced
Khovanov homology can not be calculated using only the long exact sequences
and calculations of the reduced Khovanov homology of knots and links occurring
previously in the tables.

0201105 Alternating links have particularly simple Khovanov homology. The following
is a result of E.S. Lee.

Proposition 4. For a non-split alternating link L the vector space K̃h
i, j
(L) is trivial

unless j−2i is the signature of L.

0409328 This result can also be proved using an approach to Khovanov homology using
spanning trees due to Wehrli.

As a corollary we note that for an alternating link K̃h
∗,∗
(L) is completely deter-

mined by the Jones polynomial and signature.

1.3. Integral Khovanov homology

One can also define an integral version of the above which satisfies the same long
exact sequences, but some changes are necessary.

1. functoriality is much trickier
– up to sign ±1 everything works okay
– strict functoriality requires work

2. there is a reduced version but
– it is dependent on the component of the marked point
– the relationship to the unreduced theory is more complicated and is ex-

pressed via a long exact sequence

δ // K̃h
i, j+1
Z (L,Lα) // Khi, j

Z (L) // K̃h
i, j−1
Z (L,Lα)

δ //

where Lα is a chosen component of L.
– in this exact sequence the coboundary map δ is zero modulo 2
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The integral theory is related to the F2-version by a universal coefficient theo-
rem:

0 // Khi, j
Z (L)⊗F2 // Khi, j

F2
(L) // Tor(Khi+1, j

Z (L),F2) // 0

There is a similar universal coefficient theorem relating the two reduced theories.
Any theory defined over the integers has a chance of revealing interesting tor-

sion phenomena. Unreduced integral Khovanov homology has a lot of 2-torsion
and much of this arises in the passage from reduced to unreduced coming from that
fact that in the long exact sequence relating the two the coboundary map is zero
mod 2. Correspondingly the reduced theory has much less 2-torsion.

Proposition 5. The reduced integral Khovanov homology of alternating links has
no 2-torsion.

Proof. Suppose that L is non-split. Any 2-torsion in K̃h
i, j
Z (L) would contribute non-

trivial homology in K̃h
i, j
F2
(L) via the leftmost group in the universal coefficient the-

orem for reduced theory and also in K̃h
i−1, j
F2

(L) via the Tor group. This contradicts
the conclusion of Proposition 4, namely that there is only non-trivial homology
when j−2i = signature(L). ut

In general torsion is not very well understood. Calculations (by Alex Shu-
makovitch) show

– the simplest knot having 2-torsion in reduced homology has 13 crossings, for
example 13n3663

– the simplest knot having odd torsion in unreduced homology is T (5,6) which
has a copy of Z/3 and a copy of Z/5.

– the simplest knot having odd torsion in reduced homology is also T (5,6) which
has a copy of Z/3

– some knots, e.g. T (5,6), have odd torsion in unreduced homology which is not
seen in the reduced theory, but the other way around is also possible: T (7,8)
has an odd torsion group in reduced that is not seen in unreduced.

Torus knots are very interesting in the study of odd torsion and in fact this is the
only place where odd torsion has been observed so far. In general torsion remains
quite a mystery.

2. Constructing Khovanov homology

2.1. The Khovanov cube

The central combinatorial input in the construction of Khovanov homology is a
hypercube decorated by vector spaces (or abelian groups) known variously as “the
cube”, “the cube of resolutions” and “the Khovanov cube”. Such a thing is con-
structed from a diagram representing the link in question. This is by now considered
to be “well known” and to know it well you should read the articles by Bar-Natan
or Shumakovitch.



8 P. Turner: Hitchhiker’s guide

Exercise 3. (for beginners) Read sections 3.1 and 3.2 of Bar-Natan’s On Kho-
vanov’s categorification of the Jones polynomial and/or sections 2.1 and 2.2 of
Shumakovitch’s Khovanov homology theories and their applications on the Kho-
vanov cube. You need to know what a resolution (or complete smoothing) of a link
diagram is; how to assemble these into a cube; how resolutions differ if they are
found at each end of a cube edge and why circles fuse or circles split; how to in-
terpret cube edges as cobordisms; how to attach a vector space to each resolution;
how to flatten the cube and make a complex.

This cube of resolutions is actually an example of something more gen-
eral: it is a Boolean lattice equipped with a local coefficient system. It can be
a convenient point of view so we now explain it. Let D be a diagram and
let XD be the set of crossings of D. We can form the poset B(XD) of sub-
sets of XD ordered by inclusion, which is to say the Boolean lattice on XD.

If you want to see a cube make the Hasse di-
agram of this poset which is the graph having
vertices the elements of the set XD and an edge

if and only if A < B and there is
no C such that A <C < B (in this case say B cov-
ers A). The convention adopted here will be that
if A < B then the Hasse diagram features A to the
left of B.

The poset B(XD) can be regarded as a category with a unique morphism A→ B
whenever A ≤ B. The process of decorating the cube seen in the Khovanov cube
(to vertices associate vector spaces; to edges associated linear maps) amounts to
defining a (covariant) functor

FD : B(Xd)→ VectF2

In fact the functor takes values in graded vector spaces: letting ||A|| denote the num-
ber of connected components in the resolution of A ⊂ XD, there is the associated
graded vector space VA defined by V⊗||A|| and the graded vector space FD(A) is a
shifted version of this, namely FD(A) =VA{||A||+n+−2n−} where n+ and n− are
the number of positive and negative crossings in the diagram D.

2.2. Extracting information from the cube

Having defined this decorated hypercube the task is to extract some computable
information from it. This comes in the form of a cochain complex. For a set S,
a functor F : B(S)→ VectF2 gives rise to a cochain complex by defining cochain
groups

Ci =
⊕

A⊂S,|A|=i

F(A)

with differential d : Ci→ Ci+1 given by the “matrix elements” dA,B : F(A)→ F(B)
where A and B range over subsets of size i and i+1 respectively and there is such a


