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matrix element whenever B covers A. It can easily be checked that d2 = 0 (remem-
ber we are working over F2). If F takes values graded objects we should require the
matrix elements to have grading zero and the resulting complex will be bigraded.

Definition 1. Let L be an oriented link and let D be a diagram representing L hav-
ing n crossings of which n− are negative. Let FD : B(XD)→VectF2 be the Khovanov
cube. Apply the above construction to give a bigraded cochain complex C∗,∗(D) and
define the Khovanov homology of L to be

Khi,∗(D) = Hi+n−((C∗,∗(D),d)

Remark 2. Gradings: for A ⊂ XD, the element v ∈VA of degree k defines a cochain
in bidegree

(|A|−n−,k+ |A|−2n−+n+)

This construction appears to depend on the diagram, but Khovanov’s result is
that it doesn’t.

Theorem 3. Up to isomorphism the definition above does not depend on the choice
of diagram representing the link.

If we are not working over F2 the construction above requires one modification
but otherwise everything remains the same. As it stands d2 is zero only mod 2 but
this can be rectified by introducing a signage function ε : {edges} → Z/2 which
satisfies ε(e1)+ ε(e2)+ ε(e3)+ ε(e4) = 1 mod 2 whenever e1, · · · ,e4 are the four
edges of a square. The required modification is to the matrix elements: we must
now take (−1)εdA,B which will give d2 = 0.

Exercise 4. Show that Kh(L1 �L2)∼= Kh(L1)⊗Kh(L2).

Exercise 5. Show that if L is presented by a diagram part of which is then
there is a short exact sequence of complexes

0 �� C∗−1( ) �� C∗( ) �� C∗( ) �� 0

In fact one need not go all the way to taking homology: the cochain complex
itself is an invariant up to homotopy equivalence of complexes.

2.3. Functoriality

The existence theorem asserts that there is a functor and the domain category has
link cobordisms as morphism. We therefore need to know how to define linear maps
associated to such cobordisms.

Exercise 6. Find out how link cobordisms are represented by movies and how to
associate maps in Khovanov homology to such things (by looking in the papers
given below).
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Because of the dependence on diagrams there are things to check. One can
show that up to an over all factor of ±1 there is no dependence of the maps on
the diagrams chosen. This is enough to give a functor over F2. The papers showing
functoriality up to ±1 are Jacobsson’s paper

0206303
– An invariant of link cobordisms from Khovanov homology

and Khovanov’s paper

0207264
– An invariant of tangle cobordisms

and then reproved by Bar-Natan

0410495
– Khovanov’s homology for tangles and cobordisms

It is hard work to remove the innocent looking “up to ±1” and something addi-
tional is needed to make it work. Using Bar-Natan’s local point of view (see below)
it is addressed in the paper by Clark,Morrison and Walker

0701339
– Fixing the functoriality of Khovanov homology

which requires working over Z[i]. A somewhat similar picture is given by Caprau

0707.3051
– An sl(2) tangle homology and seamed cobordisms

A different construction working over Z is given in Blanchet’s

1405.7246
– An oriented model for Khovanov homology

2.4. Another extraction technique

There is another, more abstract, way of extracting information from the cube. To
motivate this kind of approach think about the definitions of group cohomology
where one can either define an explicit cochain complex using the bar resolution
or use derived functors. Each approach has its uses and if the definition is taken to
be the explicit complex then the derived functors approach becomes an “interpreta-
tion”, but if the definition is in terms of derived functors then the explicit complex
becomes a “calculation”.

There is a way of defining cohomology of posets equipped with coefficient sys-
tems which is “well known” and with a small modification to the cube, it gives an
alternative way of getting Khovanov homology. Let Q be the poset formed from
B(X) by the addition of a second minimal element. Extend the functor FD to Q

1112.3460 by sending this new element to the trivial group. Everitt-Turner show that Kho-
vanov homology can be interpreted as the right derived functors of the inverse limit
functor:

Kh(D) = R∗ lim←−
Q

FD
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3. Tangles

The topology of the resolutions of a link diagram require knowledge of the whole
diagram and this is used in the construction of Khovanov homology (circles fuse
or split depending on global information). None the less diagrams are made up of
more basic pieces, namely tangles, and so it is natural to ask if Khovanov homology
may be defined more locally. The difficulty is that while piecing together geometric
data is easy, doing the same with algebraic data is never so simple.

3.1. Khovanov’s approach

0103190The first approach is due to Khovanov who studies (m,n)-tangles.

For such a diagram T there is a cube of resolutions as before. To A ⊂ XT one
associates

MA =
�

P[xγ | γ a circle ]/(x2
γ = 0)

where the direct sum is over all tangle closures of the type shown here.
This is an (Hm,Hn)-bimodule where {Hi} is a certain family
of rings. By the usual extraction of a complex from a cube
this yields a complex of bi-modules C(T ). When m = n = 0
one recovers the usual Khovanov complex. Isotopic tangles

0267264produce complexes that are homotopy equivalent and the
construction is functorial (up to ±1) with respect to tangle
cobordisms.

The key new property is that by using the bi-module structure tangle composi-
tion can be captured algebraically.

Proposition 6. Let T1 be a (m,n)-tangle and T2 a (k,m)-tangle. Then,

C( )� C(T2)⊗Hm C(T1)
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3.2. Bar-Natan’s approach

0410495 A different approach to locality is due to Bar-Natan as his viewpoint has turned
out to be very influential. The functor FD : B(XD) → Vect is a two step process:
firstly make a cube of resolutions (which are geometric objects) and secondly as-
sociate to to these some algebraic data. The first step requires defining a functor
from B(XD) to a cobordism category and the second step consists of applying a
1+1-dimensional TQFT to the first step. Bar-Natan’s central idea is to work with
the “geometric” cube (the first step) as long as possible delaying the application of
the TQFT until the last possible moment (or even not at all).

FD : B(XD) �� Cob1+1
TQFT �� Vect

Distilling the essential operations used to construct a cochain complex from the
functor FD one sees that we needed to 1) take direct sums of vector spaces (in the
step often referred to as “flattening the cube”), and 2) assemble a linear map out of
the matrix elements which involved taking linear combinations of maps between
vector spaces. In order to delay the passage to the algebra and to build some no-
tion of “complex” in the setting of a cobordism category we need some equivalent
of these two operations. What is done is to replace direct sum by the operation
of taking formal combinations of objects (closed 1-manifolds) and allowing linear
combinations of cobordisms. A typical morphism will be a matrix of formal linear
combinations of cobordisms. In this way it is possible to define a “formal” com-
plex [[D]] associated to D. It is no longer possible to take homology of such formal
complexes because we are working in a non-abelian category (the kernel of a lin-
ear combination of cobordisms makes no sense, for example) but one still has the
notion of homotopy equivalence of formal complexes and indeed if D ∼ D� then
[[D]]� [[D�]].

This approach works perfectly well for tangles too. Given a tangle T of the type
shown below a resolution will typically involved 1-manifolds with- and without-

boundary and the cobordism category must be
adapted appropriately but a formal complex [[T ]]
may be constructed as above. Things are as they
should be because given isotopic tangles T1 and
T2 then there is a equivalence of formal complexes
[[T1]] � [[T2]]. Moreover this construction is functo-
rial (up to ±1) with respect to tangle cobordisms.

But now comes the beauty of this approach: by
insisting on staying on the geometric side of the
street for so long, the composition of tangles is ac-

curately reflected at the level of formal complexes as well. The combinatorics of
tangle composition is captured by the notion of a planar algebra: to each d-input
arc diagram D like the one shown here
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there is an operation

D : Tang× · · ·×Tang → Tang

defined by plugging the holes. For example

These operations are subject to various composition criteria that make up the
structure of a planar algebra. The category Tang is very naturally a planar algebra,
but other categories may admit the structure of a planar algebra too - all that is
needed is operations of the type above. The category of formal complexes above
(the one in which [[T ]] lives) is an example - for the details of the construction read
Bar-Natan’s paper.

Proposition 7. The construction sending a tangle T to the associated formal com-
plex [[T ]] respects the planar algebra structures defined on tangles and formal com-
plexes. (In other words [[−]] is a morphism of planar algebras)

Using the planar algebra structure all tangles can be built out of single crossings.
What the proposition is telling us is that the same is true of the formal complex:
it is enough to specify [[−]] on single crossings and the rest comes from the planar
algebra structure.

The next question to ask about this approach is: how does the planar algebra
structure interact with link cobordisms? What is needed is an extension of the no-
tion of planar algebra to the situation where there are morphisms between the pla-
nar algebra constituents. The name given to the appropriate structure is a canopolis.
Again read Bar-Natan’s paper for details. Working with this local approach makes
far more digestible the proofs of invariance and functoriality.
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3.3. Further remarks on tangles

1. If one wishes to apply a TQFT to get something algebraic out of Bar-Natan’s

0606331geometric complex one needs something slightly different capable of handling
manifolds with boundary. The appropriate thing is an open-closed TQFT, and
these studied in the context of Khovanov homology by Lauda and Pfeiffer.

0606318 2. Bar-Natan explains the technique of de-looping which helps simplify the com-

0202199

plex at an early stage. His local point of view has sped up computer calculations
considerably.
Though very different in approach the de-looped complex is closely related to
the one given by Viro.

1304.0463

0410238

3. The question of algebraic gluing of tangle components has been carefully stud-
ied by Lawrence Roberts who draws inspiration from bordered Heegaard Floer
homology. He builds (considerably) on the work of Asaeda-Przytycki-Sikora
who study the skein module of tangles in a way very similar to Khovanov’s
original construction.

4. Variants

In Bar-Natan’s approach the construction of Khovanov homology was very clearly
divided into two steps: first construct the geometric cube, then apply a TQFT to
obtain something algebraic. This means that any TQFT satisfying certain properties
will give a link homology theory. Among these there is a universal example which
in terms of circle variables has multiplication given by

xαxβ = t +hxγ

where α and β fuse into γ . To ensure a bigraded theory the ground ring must also
be graded and contain h and t of degree −2 and −4 respectively. For Khovanov
homology we can take t = h = 0 and the bigrading of the ground ring can be con-
centrated in degree zero unproblematically. It should be noted that in Khovanov’s
original paper t = 0 but h is left in place as a formal variable in the ground ring.

4.1. Lee Theory

One special case is obtained by working over Q and setting h = 0 and t = 1. This

0210213 theory - the first variant of Khovanov homology to appear - is due to E.S. Lee. Since
Q is ungraded here this means that Lee theory is a singly graded theory.

The two most important facts about Lee theory are:

– it can be completely calculated
– it is filtered

Lee proves:
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Theorem 4. Let K be a knot. Then

Leei(K)∼=

�
Q⊕Q i = 0
0 else

Let L be a two component link. Then

Leei(K)∼=

�
Q⊕Q i = 0, or lk(the two components)
0 else

In general, for a k component link ∑dim(Leei(L)) = 2k and there is a formula for
the degrees of the generators in terms of linking numbers.

0606542Bar-Natan and Morrision obtain a new proof this result in the context of Bar-
Natan’s local theory.

The filtration leads to the following (implicit in Lee’s work, made explicit by
Rasmussen):

0210213

0402131

Theorem 5. Let L be a link and γ its number of components modulo two. There
exists a spectral sequence, the Lee-Rasmussen spectral sequence, which has the
form

E p,q
2 = Khp+q,2p+γ

Q =⇒ Lee∗(L).

The differentials have the form dr : E p,q
r → E p+q,q−r−1

r . Moreover, each page of the
spectral sequence is a link invariant.

Remark 3. 1. If one re-grades so that the differentials are expressed in terms of the
gradings of Khovanov homology (rather than the pages of the spectral sequence)
the differential dr is zero for r odd and has bigrading (1,2r) when r is even.

2. In all known examples this spectral sequence (over Q) collapses at the E2-page.
It is still an open question as to whether this is always the case or not.

The utility of this spectral sequence is that it puts considerable restrictions
on the allowable shape of Khovanov homology. As an example consider an at-
tempted calculation of the rational (unreduced) Khovanov homology of the right-
handed trefoil only using the skein long exact sequences. At some point you
will find that you need additional information (some boundary map may or
may not be zero and you have no way of telling without some further input).

You can conclude that the Khovanov
homology must be one of the two pos-
sibilities shown here. The existence of
the Lee-Rasmussen spectral sequence
tells you that the correct answer is on
the right: the two generators that sur-
vive to the E∞-page of the spectral se-
quence are the two in homological de-
gree zero and all the others must be
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killed by differentials; if the Khovanov homology were as given on the left, then a
quick look at the degrees of the differentials shows that the generator in bi-degree
(2,7) could never be killed, giving a contradiction.

Remark 4. Over other rings Lee theory behaves as follows:

1. over Fp for p odd it behaves as Lee theory over Q (i.e. it is “degenerate”)
2. over F2 it is isomorphic (as ungraded theories) to F2 Khovanov homology
3. over Z it has a free part of rank 2no. of components, no odd torsion, but a consider-

able amount of 2-torsion.

4.2. Bar-Natan Theory

0410495 Another interesting case is to take t = 0 and h = 1. This theory, known as Bar-
Natan theory, is quite similar to Lee theory: it is a “degenerate” theory requir-

0411275
ing only linking numbers for a full calculation; it is filtered and there is a Lee-
Rasmussen type spectral sequence. It has been studied by Turner. There are some
differences (which possibly make it a better theory than Lee theory): the integral
version also degenerates; there is a reduced version with a reduced Lee-Rasmussen
type spectral sequence.

5. Odd Khovanov homology

The construction of Khovanov homology makes no demands on the order of the
circles appearing in a resolution. At the algebraic level this is reflected in the com-
mutativity of the Frobenius algebra used. Put differently the vector space associated
to a resolution has a variable associated to each circle and these variables commute
among themselves. If one could impose a local ordering of strands near crossings
then one might hope that this commutativity requirement could be removed. The
subject of odd Khovanov homology is one approach to achieving this.

The defining paper is the one by Ozsváth, Rasmussen and Szabó

0710.4300 – Odd Khovanov homology

and there is also a nice expository article with many calculations by Alex Shu-
makovitch

1101.5607 – Patterns in odd Khovanov homology

While constructing the cube of resolutions we can retain some additional infor-
mation (the dotted arrow) given by the following two rules.
Negative crossing:
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Positive crossing:

If presented with a local piece around a crossing for which the two strands are
from different components we may now order these by the decree, tail before head.
The right-handed trefoil has typical resolution of the form below (the one shown is
for the subset A = {2}). Note that this does not give a global ordering on the circles
and indeed in the example below it is clear that this would not be possible with the
given rules.

The construction of a decorated cube now proceeds as follows. For A ⊂ X re-
solve the crossings as above and associate to A the exterior algebra (over some fixed
ring R)

ΛA = Λ [xγ | γ a component of the resolution]
This tells us what to do on cube vertices. On edges, if |B|= |A|+1 we must define
a map dA,B : ΛA →→B. In a neighbourhood of the additional crossing we see the
following local change.

There are now two cases.

– if α �= α � (in which case we also have β = β �) we define dA,B to be the algebra
map given by

1 �→ 1, xα ,xα � �→ xβ , xγ �→ xγ for γ �= α,α �

– if α = α � (in which case we also have β �= β �) we define dA,B to be the module
map given by

xα ∧ v �→ xβ ∧ xβ � ∧ v, v �→ (xβ − xβ �)∧ v

where xα is assumed not to appear in v. Thus 1 �→ xβ − xβ � and xα �→ xβ ∧ xβ � .
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The first of these makes no use of the local ordering, but in the second the asym-
metry is very clear.

Exercise 7. Check that if the underlying ring is the field F2 then the exterior algebra
is isomorphic to the truncated polynomial algebra and the maps dA,B agree with the
ones used in construction of (ordinary) Khovanov homology.

For ordinary Khovanov homology the construction gives a functor B(X) →
ModR without further trouble. Or, put differently, the square faces of the cube
commute. (Immediately afterwards a sign assignment is made, but that is to turn
commuting squares into anti-commuting ones which is only necessary because of
the particular extraction technique used to obtain a complex out of the functor.)
Here, for odd Khovanov homology things are not so simple and there is not ob-
viously functor B(X)→ ModR; some squares commute, others anti-commute and
others still produce maps which are zero. After a fair bit of digging into the possible
cases Ozsváth-Rasmussen-Szabó prove:

Proposition 8. There exists a signage making all squares commute.

This gives a functor Fodd
D : B(XD)→ Ab and by one of the extraction techniques

discussed previously this yields a complex whose homology defines odd Khovanov
homology, denoted Kh∗,∗odd(D;R).

Remark 5. The bigrading is as follows: for A ⊂ X , the element v ∈Λ k ⊂ΛA defines
a cochain with bigrading

(|A|−n,||A||+ |A|+n+−2n−−2k)

where ||A|| is the number of circles in the resolution defined by A.

Here is a summary of some of the properties of odd Khovanov homology.

– there are skein long exact sequences precisely as for ordinary Khovanov homol-
ogy (with the same indices).

– the Jones polynomial is obtained as

∑
i, j
(−1)iq jdim(Khi, j

odd(L))|q=−t
1
2
=−(t

1
2 + t−

1
2 )J(D)

– there is a reduced version, �Kh
∗,∗
odd, satisfying

Khi, j
odd

∼= �Kh
i, j+1
odd ⊕�Kh

i, j−1
odd

and which does not depend on the component of the base-point. So Khodd stands
in the same relationship to �Khodd as KhF2 to �KhF2 which is very different to the
relationship between KhZ and �KhZ.

– over F2 odd and ordinary Khovanov homology coincide (reduced and unre-
duced); this is courtesy of Exercise 7.


