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– �Kh
∗,∗
odd(alternating)∼= �Kh

∗∗
(alternating) but in general �Kh neither determines or

is determined by �Khodd.

Remark 6. 1. The is a spectral sequence with E2-page KhF2(L
!) converging to the

0309170 Heegaard-Floer homology of the double branched cover branched along L . To
lift this integrally the correct theory to put at E2 is (conjecturally) odd integral
Khovanov homology. Indeed this was one of the motivations for the invention
of that theory.

1205.22562. There are other interesting spectral sequences featuring odd Khovanov homol-
ogy at the E2-page. Beir has one starting with odd Khovanov homology and

1401.2093
converging to an integral version of a theory made by Szabo. Scaduto has one

1310.1895

starting with odd Khovanov homology and converging to the framed instanton
homology of the double cover.

3. Kris Putyra extends the Bar-Natan picture to 2-categories which gives a general

0910.5050

framework into which odd Khovanov homology fits.
A somewhat similar approach is taken in Beliakova-Wagner where 2-cateogries
consisting of links, cobordisms and diffeomorphisms play a role.

0903.3746

4. On seeing a typical resolution in the construction of odd Khovanov homology
it is tempting to convert it into a graph whose vertices are the circles and whose
directed edges are the dotted arrows. There is a description of of odd Khovanov
homology in terms of these arrow graphs due to Bloom.

6. Generalisations

There is a general procedure, due to Witten and Reshetikhin-Turaev, for the con-
struction of (quantum) link invariants using the representation theory of quantum
groups as input. Starting with a simple Lie algebra g, link components are labelled
with irreducible representations of the quantum group Uq(g) to produce a link in-
variant. From this point of view the Jones polynomial arises from the two dimen-
sional representation when g= sl(2).

An important and natural question in Khovanov homology is: are there link
homology theories associated to other Lie algebras which generalise Khovanov
homology in some appropriate sense.

6.1. Khovanov-Rozansky sl(N)-homology

An obvious place to start is g= sl(N); the case N = 2 is already done and the ana-
logue of the Jones polynomial, the sl(N)-polynomial has been extensively studied.

A very nice summary and possibly the best place to start is Rasmussen’s paper:

0508510– Khovanov-Rozansky homology of two-bridge knots and links

Details are contained in the original paper by Khovanov and Rozansky:

0401268– Matrix factorizations and link homology
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Theorem 6. (Existence of sl(N)-homology) There exists a (covariant) projective
functor

KR∗,∗
N : Links → VectQ

satisfying

1. If Σ : L1 → L2 is an isotopy then Σ∗ is an isomorphism.
2. KR∗,∗

N (L1 �L2)∼= KR∗,∗
N (L1)⊗KR∗,∗

N (L2).

3. KRi, j
N (unknot) =

�
Q i = 0 and j = 2k−N −1(k = 1, . . . ,N)

0 else
4. There are long exact sequences:

δ �� KRi−1, j+N
N

�� KRi, j
N

�� KRi, j+N−1
N

δ ��

δ �� KRi, j−N+1
N

�� KRi, j
N

�� KRi+1, j−N
N

δ ��

Immediately we see there is something fishy with this: the long exact se-
quences feature an as yet undefined object. In fact KR∗,∗

N assigns a bigraded vector
space to each singular link diagram (where crossing of the
form , and are allowed). Up to isomorphism
this assignment is invariant on deforming the diagram by
Reidemeister moves away from singularities. The situation
is not quite as good as for Khovanov homology because even
with perfect information about the long exact sequences, the

basic normalising set of object consists not of one single simple object (the unknot)
but an infinity of 4-valent planar graphs such as the one shown here.

Remark 7. If Σ is a cobordism then Σ∗ has bi-degree (0,(1−N)χ(Σ)).

Exercise 8. Attempt a computation of KR∗,∗
N (Hopf link) from the existence theo-

rem, carefully observing why this is much harder than when attempting the same
computation for Khovanov homology.

Proposition 9. Let PN(D) = Σi, j(−1)iq jdim(KRi, j
N (L)) . We have

q−NPN( )−qNPN( )+(q−q−1)PN( ) = 0

and

PN(unknot) =
qN −q−N

q−q−1 =
N

∑
k=1

q2k−N−1

We recognise these two properties as the ones characterising the sl(N)-
polynomial showing that PN is the sl(N)-polynomial.

Exercise 9. Prove this proposition using the long exact sequences and the fact that
the alternating sum of dimensions in a long exact sequence is always zero.
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The construction of sl(N)-homology (and the proof of the existence theorem
above) proceeds by resolving each crossing into either the singular resolution or
the oriented resolution giving 2n choices which may herded, as before, into a cube
of resolutions, this time each resolution being a planar singular graph. Given a
subset of crossings A ⊂ X the rules for making a resolution are:

c/∈A�� c∈A ��

c/∈A�� c∈A ��

Along cube edges we see local changes: �� or ��

and what is needed is a way of associating algebraic data to resolutions and maps
to cube edges. This would give a functor B(X) → VectQ from which a complex
and its homology can be extracted as before. For this to be worth anything it must
result in a link invariant and therein, of course, lies the difficulty.

Khovanov and Rozansky employ matrix factorizations in order to carry this
out. There are some guiding principles coming from the description of the sl(n)-
polynomial given by H. Murakami, Ohtsuki and Yamada who describe it in terms
of certain graphs which suitably interpreted are the ones considered here. One may
think of their construction as associating a Laurent polynomial MOY(γ) to each
planar singular graph γ and the sl(N)-polynomial is then expressed as a sum (over
resolutions) of such polynomials. Matrix factorizations can be used to make an
assignment

A∗
N(−) : Planar singular graphs → Graded vector spaces

such that ∑i qidimAi
N(Γ ) =MOY(Γ ). The local relations satisfied by MOY(−) are

lifted to A∗
N(−); for example

MOY( ) = (q+q−1) MOY( )

becomes

Ai
N( )∼= Ai−1

N ( )⊕Ai+1
N ( )

Moreover, there are maps

A∗
N( ) �� A∗

N( ) A∗
N( ) �� A∗

N( )

and applying A∗
N(−) to the cube of resolutions gives a functor B(X) → VectQ,

giving a complex whose homology defines sl(N)-homology.
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Remark 8. (on gradings for which we follow the conventions given in Rasmussen’s
paper cited above). Let A ⊂ X and let Γ be the associated resolution. If x ∈ Ak

N(Γ )
then the corresponding element of the (bi-graded) complex has bi-degree

(|A|−n+,k− i+(N −1)(n+−n−))

Calculations with sl(N)-homology are much harder than for Khovanov homol-
ogy. An understanding of why this is so can be obtained by attempting to compute
the sl(N)-homology of Hopf link and comparing it to the Khovanov homology cal-
culation. It simply gets worse from there on in. Despite this there are programs to
carry out computations which give a wealth of data and some interesting conjec-
tures and calculations. Here are some of these.

– Jake Rasmussen has completely determined the sl(N)-homology of two bridge

0508510 knots in terms of the HOMFLYPT polynomial and signature.

Proposition 10. Let K be a two bridge knot and T (K) its HOMFLYPT polyno-
mial. Then for N > 4 (working over C)

∑
i, j

t iq jdim(�KR
i, j
N (K)) = (−t)

σ
2 [T (K)]

a�→qNt−1,b�→iqt
1
2

1310.3100 Notice that this result computes the reduced sl(N)-homology. The reduced and
un-reduced theories are related by a spectral sequence studied by Lewark.

0505662
– A special case of the above is that of torus knots T (2,n) and the result in this

case was first conjectured by Dunfield-Gukov-Rasmussen.
– There are some very interesting conjectures concerning other torus knots:

1404.0623 – Gorsky and Lewark give explicit conjectures for the sl(N)-homology of 3
stranded torus knots,

– As n → ∞ the homology KR∗,∗
N (T (k,n)) stabilises in bounded degree and it

1206.2226 makes sense to consider the sl(N)-homology of T (k,∞). Gorsky-Oblomov-
Rasmussen give explicit conjectures for what this should be.

Here are some further remarks and comments.

1302.0331 1. KR∗∗
2 should be isomorphic to Kh∗∗ and indeed it is. Mark Hughes has written

this isomorphism down very explicitly.

1105.3985 2. One might hope that taken collectively the family of sl(N)-homologies are a
complete invariant. Not so: Andrew Lobb has found an infinite family of distinct
knots undistinguishable by KR∗,∗

N (all N).
3. What about Bar-Natan’s geometric approach? For simplicity we have been us-

ing the language of singular link diagrams which are allowed crossings looking
like . In fact the notation used by Khovanov and Rozansky is to elongate the

vertex into a thick edge (or double edge) This depiction more accurately
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reflects the viewpoint of Murakami, Ohtsuki and Ya-
mada. With this in mind Bar-Natan’s picture can be gen-
eralised, but the cobordism featuring their must be re-
placed by foams which take into account the existence
of thick edges. This program has been carried out by

0708.2228Mackaay-Stosic-Vaz.
4. The main new algebraic ingredient in the construction of sl(N)-homology is the

notion of a matrix factorization and these used locally: a matrix factorization is as-
sociated to a small neighbourhood of a resolved diagram. Locality of diagrams was

0610650best patched together (when incorporating link cobordisms too) using the formal-
ism of canopolis. Webster has shown that certain categories of matrix factorizations
can be given the structure of a canopolis and he describes sl(N)-homology in these
terms.

5. The construction of Khovanov homology can be modified to produced Lee the-

0402266

0612406

ory. In a similar way there are “degenerate” variants of sl(N) homology defined
by Gornik. Like Lee theory these are filtered theories and can be completely com-
puted in terms of linking numbers. There is also an analogue of the Lee-Rasmussen
spectral sequence for these theories which has been studied in depth by Wu.

6. Throughout this section we have been assuming that we are working over Q (or

0910.1790C). It is interesting to ask if there are also integral theories. These have been studied
by Krasner.

6.2. Khovanov-Rozansky HOMFLYPT-homology

For each N the (normalised) sl(N)-polynomial �PN is a specialisation of the follow-
ing version of the HOMFLYPT polynomial �P

a�P( )−a�P( )+(q−q−1)�P( ) = 0

and
�P(unknot) = 1

Note that when a = 1 this also gives the (Conway)-Alexander polynomial. A very
natural question in the context of link homology theories is: is there a link ho-
mology theory �H whose graded dimensions combine to give the polynomial �P and
which specialize to �KR

∗,∗
N ? (In asking this question it is not immediately clear

what “specialise” should mean.) There is such a theory constructed once again by
Khovanov and Rozansky. The main reference is their paper:

0505056– Matrix factorizations and link homology II

A good place to start might be the expository sections of Rasmussen’s

0607544– Some differentials on Khovanov-Rozansky homology

Khovanov and Rozansky’s HOMFLYPT homology (reduced version) assigns to
each braid closure diagram D a triply graded Q-vector space �H∗,∗,∗(D) such that
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1. D1 ∼ D2 =⇒ �H(D1)∼= �H(D2)
2. The HOMFLYPT polynomial is recovered

∑
r,s,t

(−1)
t−s

2 asqrdim( �Hr,s,t(D)) = �P(D)

3. �H(unknot)∼=Q in grading (0,0,0)
4. �H(L1 �L2)∼= �H(L1)⊗ �H(L2)⊗Q[x]
5. There are Skein long exact sequences.

Remark 9. 1. The notation and grading conventions we are following are Ras-
mussen’s. In fact Khovanov and Rozansky work with the unreduced theory H
which is related to reduced by H ∼= �H ⊗Q[x]. The reduced theory has the nice
property that for any connected sum we have �H(L1�L2)∼= �H(L1)⊗ �H(L2).

2. The construction of HOMFLYPT homology uses matrix factorizations (though
see section 6.3 below). They are graded matrix factorizations which is the grad-
ing which pushes through to ultimately give three gradings.

3. The theory is not as well behaved as previous theories. For one thing it is re-
stricted to braid closures (a priori this could be removed but is required for the
proof of Reidemeister invariance). Another drawback is that there is no functo-
riality.

HOMFLYPT-homology reproduces the polynomial �P but what about its re-

0607544 lationship to sl(N)-homology? Since �P specialises to the sl(N)-polynomial one
would hope there is a relationship. This question has been thoroughly investigated
in a wonderful paper by Jake Rasmussen in which he analyses a family of spectral
sequences relating these theories. His main result is:

Theorem 7. 1. For each N > 0 there exists a spectral sequence starting with �H
and converging to �KR

∗,∗
N . Moreover each page is a knot invariant.

2. There is a spectral sequence starting with �H and converging to Q.

Remark 10. 1. The existence of these spectral sequences gives information about
the form of HOMFLYPT-homology in much the same way as the Lee-
Rasmussen spectral sequence gives information about the form of Khovanov
homology. Here because there is a whole family of spectral sequences to be

0505662 considered there is a large amount of information given. Prior to Jake’s paper
a lot of this structure was predicted by Dunfield, Gukov, and Rasmussen where
particular attention was given to torus knots.

2. Rasmussen himself carries out low crossing number computations. A nice

0812.1957 worked example of how to glean information from the existence of the spec-
tral sequences is given by Mackaay and Vaz who calculate �H(Conway knot)
and �H(Kinoshita-Terasaka knot), showing the two to be isomorphic.

3. One can construct other theories similar to �KR
∗,∗
N and there are Rasmussen-type

0612406 spectral sequences starting with �H and converging to these. Some of these have
been studied in depth by Wu.

1108.0032
4. Manolescu proposes a spectral sequence converging to knot Floer homology

which has E1-page HOMFLPT-homology.
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6.3. Khovanov-Rozansky HOMFLYPT-homology using Hochschild homology

0510265There is another construction of triply-graded HOMFLYPT-homology which
uses Hochschild homology and is due to Khovanov.

There is a construction due to Rouquier that associates a cochain complex

0409593F∗(σ) to a word σ representing an element in the braid group. This assignment
is such that if two words represent the same group element then the associated
complexes are isomorphic. Khovanov uses this construction in the following way.
Suppose we have a link presented as the closure of an m-braid diagram D and let
σ be the corresponding braid word and F∗(σ) its Rouquier complex. Now apply
Hochschild homology HH(R,−) to this to get a complex

· · · �� HH(R,Fi(σ)) �� HH(R,Fi+1(σ)) �� HH(R,Fi+2(σ)) �� · · ·

where R is a certain ring (R =Q[x1 −x2, . . . ,xm−1 −xm]⊂Q[x1, . . . ,xm]). There are
internal gradings and each term in the sequence is in fact bigraded.

Theorem 8. The homology of this complex, denoted H
∗,∗,∗, is independent (up to

isomorphism) of the choices made and (module juggling grading conventions) is
isomorphic to Khovanov and Rozansky’s HOMFLYPT-homology.

6.4. Coloured link homologies

Coloured Jones polynomials arise from sl(2) using higher dimensional represen-
tations rather than the fundamental two dimensional one. Link homology theories
related to these have been studied. There is a similar story for sl(N).

Some papers:
Khovanov

0302060– Categorifications of the colored Jones polynomial

Beliakova-Wehrli

0510382– Categorification of the colored Jones polynomial and Rasmussen invariant of
links

Mackaay-Stosić-Vaz

0809.0193– The 1,2-colored HOMFLY-PT link homology

Webster-Williams

0905.0486– A geometric construction of colored HOMFLYPT homology

Wu

0907.0695– A colored sl(N) homology for links in S3

1110.2076– Colored sl(N) link homology via matrix factorizations
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6.5. Higher representation theory

This is now a vast and important subject providing the most comprehensive answers
to the question of how one should generalise Khovanov homology to other Lie
algebras. To get an idea you could read the introductory sections of:

Lauda-Queffelec-Rose

1212.6076 – Khovanov homology is a skew Howe 2-representation of categorified quantum
slm

Lauda

1106.2128 – An introduction to diagrammatic algebra and categorified quantum sl2
Webster

1309.3796 – Knot invariants and higher representation theory
The sl(2) case is treated separately in his:

1312.7357 – Tensor product algebras, Grassmannians and Khovanov homology
The paper by Lauda-Queffelec-Rose has a follow-up:

1405.5920 – The sln foam 2-category: a combinatorial formulation of Khovanov-Rozansky
homology via categorical skew How duality
The work of Rouquier has been of fundamental importance in this area. One

can get an idea of the vision from the introduction of his paper:

0812.5023 – 2-Kac-Moody algebras

7. Applications of Khovanov homology

7.1. Concordance invariants

The first paper to read on this subject is definitely Rasmussen’s

0402131 – Khovanov homology and the slice genus
Recall that for a knot the Lee-Rasmussen spectral sequence leaves only two gener-
ators on the E∞-page. If we use the grading conventions which impose the differ-
entials on the usual picture for Khovanov homology, then denoting the E∞ page by
K∗,∗

∞ , the statement that the spectral sequence converges to Lee theory means that

Ki, j
∞ =

F jLeei

F j+1Leei

where F∗Leei is the induced filtration on Lee theory. Since we are working over Q
this means that Leei ∼=

�
j Ki, j

∞ .
Usually the filtration grading (here the grading denoted by j) of the E∞-page of

a spectral sequence is not meaningful, but in this case the entire spectral sequence
from the second page onwards is a knot invariant and thus the filtration gradings of
the generators (two of them) surviving to the E∞-page are too.
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In fact their difference is always 2:

Proposition 11. For a knot K there exists an even integer s(K) such that the two
surviving generators in the Lee-Rasmussen spectral sequence have filtration degree
s(K)+1 and s(K)−1.

Definition 2. The integer s(K) is called the Rasmussen s-invariant of the knot K.

Exercise 10. Show that for an alternating knot, Rasmussen’s invariant agrees with
the signature.

By digging down a bit into the filtration, Rasmussen shows that his invariant has
the following properties:

1. s(unknot) = 0,
2. s(K1�K2) = s(K1)+ s(K2),
3. s(K!) =−s(K).

Rasmussen’s invariant provides a lower bound for the slice genus, but we begin
with the simpler:

Theorem 9. If K is a smoothly slice knot then s(K) = 0

Proof. Let Σ be a slice disc with another small disc removed. This can be viewed as
(connected) link cobordism Σ : K →U (the unknot). Since the Euler characteristic
of Σ is zero, this cobordism induces a filtered isomorphism of filtered degree zero
Σ∗ : Lee0(K) → Lee0(U). Thus for any α ∈ Lee0(K) we have s(Σ∗(α)) ≥ s(α).
But since Lee0(U) has two generators in filtration degrees ±1 (and since Σ∗ is an
isomorphism) we have −1≤ s(Σ(α))≤ 1 proving that s(α)≤ 1. Now s(K) is equal
to s(α)−1 for some α so s(K)≤ 0. Finally, a similar argument applies to K! giving
s(K!)≤ 0 and so s(K) =−s(K!)≥ 0.

Remark 11. This proof uses the fact that Lee theory is a functor.

Exercise 11. (a) Use the properties of s and the theorem above to prove that s is a
concordance invariant.
(b) Modify the proof of the theorem above to prove |s(K)|≤ 2gs(K), where gs(K)
denotes the smooth slice genus of K.

Remark 12. 1. Gompf gives a way of constructing non-standard smooth structures
on R4 from the data of a topologically slice but not smoothly slice knot. By
work of Freedman if the Alexander polynomial ∆K is 1 then K is topologically
slice. Thus a non-standard smooth structure on R4 can be inferred from a knot
K satisfying ∆K = 1 and s(K) �= 0. Example of such knots are readily found, for
example, the pretzel knot P(−3,5,7).

2. By studying the s-invariant for positive knots, Rasmussen gives a proof of the
Milnor conjecture: the slice genus of the torus knot T (p,q) is 1

2(p−1)(q−1).

0906.51773. For a short time it looked like Rasmussen’s invariant might help to find a
counter-example to the smooth 4-dimensional Poincaré conjecture as explained
by Freedman-Gompf-Morrsion-Walker.
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This hope was short lived and Akbulut showed (by other means) that the po-

0907.0136 tential counter-examples are standard spheres.
In fact Kronheimer and Mrowka have related Rasmussen’s invariant to a similar

1110.1297
invariant from instanton homology and draw the consequence that Rasmussen’s
invariant will never detect such counter-examples to the 4-dimensional Poincaré
conjecture.

0512348 4. There is a similar invariant to Rasmussen’s called τ coming from Heegaard-
Floer knot homology. While in many cases 2τ = s, Hedden and Ording show in
general s �= 2τ .

0602631 Livingston has found an example for which ∆K = 1 (so topologically slice) for
which s �= 2τ .

1012.2802

0612406

0703210

Replacing Khovanov homology by sl(N)-homology and Lee theory by Gornik’s
theory G∗

N and there is again a spectral sequence starting with the latter and con-
verging to the former which has dimension N concentrated in (homological) degree
0. From this one can get an invariant much like Rasmussen’s which has been stud-
ied by Lobb and independently by Wu.

Theorem 10. (1) Let K be a knot. There exists and integer sN(K) such that

∑q jG0, j
N (K) = qsN(K) qN −q−N

q−q−1

where the second grading on Gornik theory is the filtration grading.
(2) |sN(K)|≤ 2(n−1)gs(K).

1310.3100 Remark 13. The question of whether these invariants are related for various N has
been studied by Lukas Lewark who conjectures that the invariants {sN(K)}N≥2 are
linearly independent. Evidence for this is given by his results stating that s2(K) is
not a linear combination of {sN(K)}N≥3 and a similar result for s3(K).

Another way of obtaining Rasmussen type invariant is by using the spectral

0509692 sequence to Bar-Natan theory giving rise to invariants sBN
R (K) for a variety of rings

R. It was thought (incorrectly) that over Z, Q and finite fields that these invariants
always coincide with Rasmussen’s invariant (this was claimed in Mackaay-Turner-
Vaz) but Cotton Seed has done some calculations with K = K14n19265 showing
that in this case s(K) �= sBN

F2
(K).

1206.3532 These invariants have been further refined by Lipshitz and Sarkar (where a dis-
cussion of K14n19265 can also be found).

Remark 14. For links (rather than knots) there are various things one might try in

0510382 order to to obtain a Rasmussen-type invariant. The most direct analogue of Ras-
mussen’s work is the proposal of Beliakova and Wehrli.
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7.2. Unknot detection

Khovanov homology is a nice functorial invariant which is known not to be com-
plete - it is not hard to find distinct knots with the same Khovanov homology.
However, the question of whether or not Khovanov homology detects the unknot is
an important one.

The following is a result of Hedden and Watson:

0805.4423Theorem 11. The dimension of the reduced Khovanov homology of the (2,1)-cable
of a knot K is exactly 1 if and only if K is the unknot.

See also the paper by Hedden and that of Grigsby and Wehrli. These papers all

0805.4418

0807.1432

apply somewhat the same approach: make something else out of the knot and use
a spectral sequence to Heegaard-Floer homology to make a conclusion about the
minium size of the E2-page; there are subtleties dues to the existence of L-space
integer homology spheres.

It is now known that Khovanov homology itself detects the unknot by work of
Kronheimer and Mrowka.

1005.4346Theorem 12. Khovanov homology detects the unknot.

They also use a spectral sequence but this time using another theory defined (by

0806.1053them) using instantons. This is a deep result and the unsuspecting hitchhiker should
be aware that their two papers have lengths 124 pages and 119 pages respectively.

7.3. Other applications

Legendrian knots, Thurston-Bennequin bounds, transvers knots:
Let L be a link and let tb(L) be the maximum Thurston-Bennequin number over

all Legendrian representatives of L. A result of Ng is:

0508649Theorem 13.

tb(L)≤ min{k |⊕ j−i=kKhi, j(L) �= 0}
This bound is sharp for alternating links. Other, earlier related papers:

0411643– Shumakovitch

0412184– Plamenevskaya

Width of Khovanov homology and finite fillings.

0807.1341– Watson

1010.3051– Watson
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In another paper Watson builds a subtle (vector space-valued) invariant of tan-

1311.1085 gles using an natural inverse system of Khovanov homology groups and applies
this to strongly invertible knots (his result: a strongly invertible knot is the trivial
knot if and only if his invariant is trivial)

8. Geometrical interpretations and related theories

8.1. Symplectic geometry

Seidel-Smith

0405089
– A link invariant from the symplectic geometry of nilpotent slices

Manolescu

0601629
– Link homology theories from symplectic geometry

8.2. Instanton knot homology

Kronheimer-Mrowka

0806.1053
– Knot homology groups from instantons

1110.1290
– Filtrations on instanton homology

1110.1297
– Gauge theory and Rasmussen’s invariant

8.3. Derived categories of coherent sheaves

Cautis-Kamnitzer

0701194
– Knot homology via derived categories of coherent sheaves I, sl(2) case

8.4. Knot groups and representation varieties

Jacobsson-Rubinsztein

0806.2902
– Symplectic topology of SU(2)-representation varieties and link homology, I:

symplectic braid action and the first Chern class
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8.5. Physics

Gukov-Schwarz-Vafa

0412243 – Khovanov-Rozansky homology and topological strings

Gukov-Iqbal-Kozcaz-Vafa

0705.1368 – Link homologies and the refined topological vertex

Witten

1101.3216 – Fivebranes and knots

1108.3103 – Khovanov homology and gauge theory

1401.6996– Two lectures on the Jones polynomial and Khovanov homology

8.6. Factorization homology

Ayala-Francis-Tanaka

1206.5164– Structured singular manifolds and factorization homology

8.7. Homotopy theory

Lipshitz-Sarkar

1112.3932– A Khovanov homotopy type

Everitt-Turner

1112.3460– The homotopy theory of Khovanov homology


