The diagonal slice of $SL(2,\mathbb{C})\text{-character}$ variety of free group of rank two 1

Yasushi Yamashita

Nara Women's University

Nov. 9, 2012,

Aspects of representation theory in low-dimensional topology and 3-dimensional invariants

¹Part of this is a joint work with Caroline Series and Ser Peow Tan

- Σ : a one-holed torus
- $\pi = \pi_1(\Sigma) = F_2 = \langle X, Y \rangle$: free group of rank 2
- $G = SL(2, \mathbb{C})$
- *G* acts on $\operatorname{Hom}(\pi, G)$ by $g : \rho \mapsto \iota_g \circ \rho$. ($\rho \in \operatorname{Hom}(\pi, G), \iota_g : x \mapsto gxg^{-1}$)
- $X = \text{Hom}(\pi, G) / / G$: character variety
- X is identified with \mathbb{C}^3 . For $[\rho] \in X$,

$$[\rho] \mapsto (x, y, z) := (\operatorname{tr} \rho(X), \operatorname{tr} \rho(Y), \operatorname{tr} \rho(XY))$$

• κ -relative character variety ($\kappa \in \mathbb{C}$):

$$\begin{aligned} \mathcal{X}_k &:= \left\{ [\rho] \in \mathcal{X} \mid \operatorname{tr} \rho(XYX^{-1}Y^{-1}) = \kappa \right\} \\ &\cong \left\{ (x, y, z) \mid x^2 + y^2 + z^2 - xyz - 2 = \kappa \right\} \end{aligned}$$

Conditions for the characters

- discrete and faithful
- Bowditch's "Q-condision"
- primitive stability

We want to "see" and compare these conditions by computer experiments.

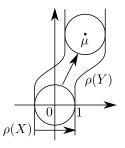
A 1-dimensional slice (Maskit)

• A 1-dimensional slice of X₋₂ where the generator X is pinched to a parabolic.

$$(x, y, z) \in \mathcal{X}_{-2} \mid x = 2$$

• Each ρ can be normalized as follows. ($-i\mu = y$)

$$\rho(X) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \quad \rho(Y) = \begin{pmatrix} -i\mu & -i \\ -i & 0 \end{pmatrix}.$$



Maskit slice

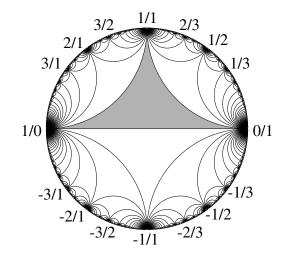
Maskit slice:

$$\mathcal{M} := \{(x, y, z) \in \mathcal{X}_{-2} \mid x = 2, \rho_{x, y, z} \text{ is discrete and faithful} \}$$

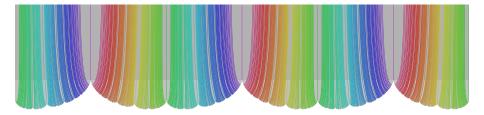
David Wright's method to plot Maskit boundary:

- Inumerate homotopy classes of simple closed curves on the once punctured torus. (↔ Q ∪ {∞})
- Pind representatives of these curves as elements in *F*₂ and compute their traces as functions of *µ*. (tr *W*_{*p*/*q*} = *φ*_{*p*/*q*}(*µ*) ∈ ℤ[*µ*])
- If ind points where the traces are ± 2 .
 - There are many points where an element is parabolic, but we cannot conclude that the group is on the boundary.
 - Keen and Series proposed plotting the branches of φ_{p/q} > 2, φ_{p/q} ∈ ℝ moving away from the cusp.

Farey diagram



Maskit slice



Maskit slice

Observation:

- they are pairwise disjoint
- they end in "cusps"
- they contain no critical points
- ${f 0}$ they are asymptotic to a fixed direction at ∞
- \bullet they appear to be dense in the presumed parameter space \mathcal{M} .
 - To understand the picture, the key was to study the action of $\rho(\pi)$ on hyperbolic 3-space \mathbb{H}^3 , in particular, on the boundary of the convex hull.
 - The real trace curves in the picture are exactly the "pleating rays" $P_{p/q}$ for $q \neq 0$.

Riley slice

• Groups generated by two parabolic transformations.

$$G_w = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ w & 1 \end{pmatrix} \right\rangle$$

Def (Riley slice)

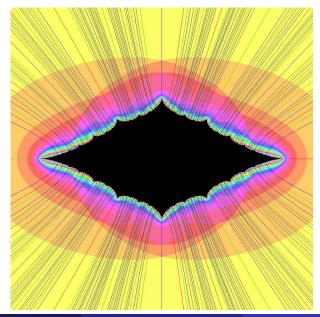
The *Riley slice of the Schottky space* is the subspace of \mathbb{C} consisting of those complex numbers *w* such that G_w is discrete and free and that the quotient $\Omega(G_w)/G_w$ of the domain of discontinuity is homeomorphic to the 4-times punctured sphere *S*.

• We will consider:

$$\mathcal{R} = \{(x, y, z) \in \mathcal{X}_{-2} \mid x = 0, \rho_{x, y, z} \text{ satisfies the above condition}\}$$

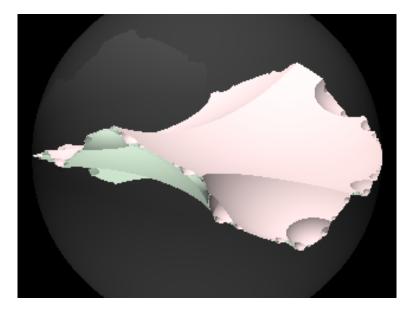
• G_w corresponds to (0, y, yi), where $w = -y^2$.

Riley slice

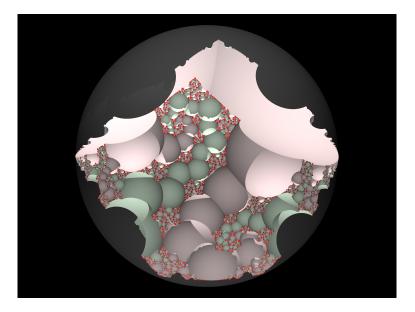


Yamashita (NWU)

Limit set and convex core



Limit set and convex core



Bowditch defined the following condition on $[\rho] \in X$, which Tan-Wong-Zhang called condition BQ:

- $\rho(x)$ is loxodromic for all primitive $x \in F_2$.
- 2 The number of conjugacy classes of primitive elements *x* such that $|tr(\rho(x))| \le 2$ is finite.

Conjecture (Bowditch)

 $BQ \cap X_{-2}$ = the set of quasi-fuchsian groups (punctured torus groups).

- One of the motivations was to study McShane's identity.
- Bowditch, Tan–Wong–Zhang gave an algorithm for showing that given representation is BQ.
- Ng and Tan gave an algorithm for showing that given representation in X₋₂ is not BQ.

Diagonal slice

We want to consider the "diagonal slice":

```
\mathcal{D} := \{(x, x, x) | x \in \mathbb{C}\} \subset \mathcal{X}
```

Set

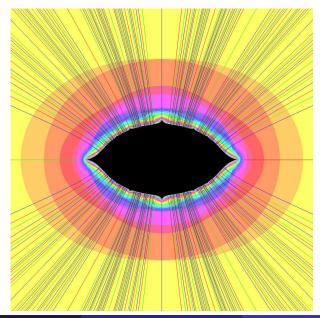
•
$$\mathcal{D}' = \{(1, 1, x) \mid x \in \mathbb{C}\}$$

• $\mathcal{R}' = \{(\sqrt{-x+2}, 0, \sqrt{x+1}) \mid x \in \mathbb{C}\} \subset \mathcal{X}_1:$

Then

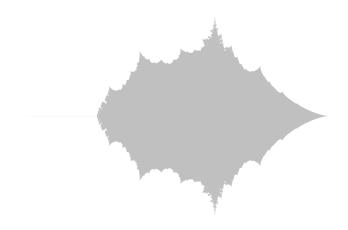
- $\mathcal{D}, \mathcal{D}'$ and \mathcal{R}' are "commensurable".
- \mathcal{R}' corresponds to (elliptic version of) "generalized Riley slice" and contained in a relative character variety.
- We are able to compute the Keen-Series pleating rays and thus fully determine the discreteness locus.

"generalized" Riley slice



Yamashita (NWU)

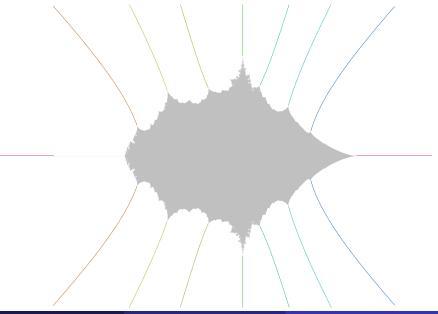
Diagonal slice (BQ condition)

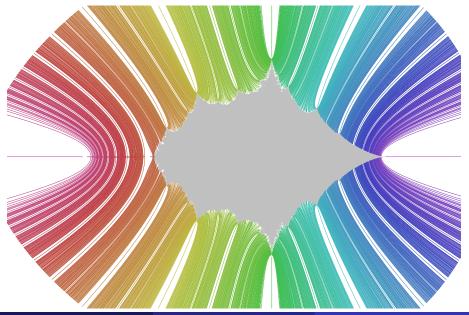


Can we describe the boundary by the rays?

- Inumerate homotopy classes of simple closed curves on the once punctured torus. (←→ Q ∪ {∞})
- **②** Find representatives of these curves as elements in *F*₂ and compute their traces as functions of *µ*. (tr *W*_{*p*/*q*} = $\varphi_{p/q}(\mu) \in \mathbb{Z}[\mu]$)
- Plotting the branches of $\varphi_{p/q} > 2$, $\varphi_{p/q} \in \mathbb{R}$ moving away from the cusp.

Yamashita (NWU)





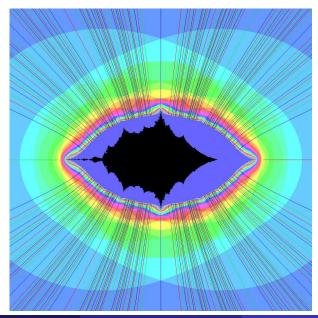
Observation:

- they are pairwise disjoint
- they end in "cusps"
- they contain no critical points
- ${f 0}$ they are asymptotic to a fixed direction at ∞
- \bullet they appear to be dense in the presumed parameter space \mathcal{M} .

The relation to...

The group generated by two elliptic elements of order 3.

"generalized" Riley slice and diagonal slice (Series-Tan-Y)



Yamashita (NWU)

Observations

Observation:

Our graphics indicate that the set BQ is both strictly larger than, and signicantly dierent from, the discreteness locus.

The action by the mapping class group

 $MCG(\Sigma)$ is generated by two Dehn twist maps and an involution:

$$T_X : X \mapsto X, Y \mapsto YX,$$

$$T_Y : X \mapsto XY^{-1}, Y \mapsto Y,$$

$$\iota : X \mapsto X^{-1}, Y \mapsto Y.$$

This induces the polynomial automorphisms of \mathbb{C}^3 .

$$\phi_X : (x, y, z) \mapsto (x, z, zx - y)$$

$$\phi_Y : (x, y, z) \mapsto (xy - z, y, x)$$

$$\phi_t : (x, y, z) \mapsto (x, y, xy - z)$$

- $Aut(\kappa)$: the group of polynomial automorphisms of \mathbb{C}^3 which leave invariant the fibers of $\kappa(x, y, z) = x^2 + y^2 + z^2 xyz 2 = \text{constant.}$
- $MCG(\Sigma)$ is commensurable with $Aut(\kappa)$.

Yamashita (NWU)

Minsky and Lubotzky introduced a decomposition of $X(F_n)$ by primitive stable ($\mathcal{P}S(F_n)$) and redundant ($\mathcal{R}(F_n)$) characters.

- $\mathcal{X}(F_n) \supset \mathcal{PS}(F_n) \cup \mathcal{R}(F_n)$, it is not known whether $\mathcal{X}(F_n) \setminus (\mathcal{PS}(F_n) \cup \mathcal{R}(F_n))$ has measure zero in $\mathcal{X}(F_n)$ or not.
- $Out(F_n)$ acts ergodically on $\mathcal{R}(F_n)$ and acts properly discontinuously on $\mathcal{P}S(F_n)$. (Gelander, Minsky).

Y. Minsky, On dynamics of $Out(F_n)$ on $PSL(2, \mathbb{C})$ characters, arXiv:0906.3491

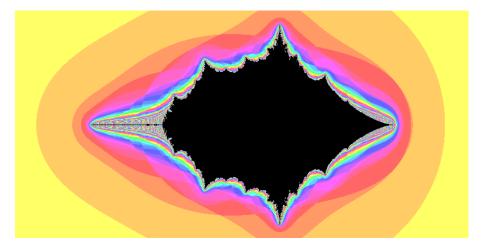
Minsky:

- If ρ is Schottky, then it is primitive-stable.
- Primitive-stability is an open condition in $X(F_n)$.
- $\mathcal{P}S(F_n)$ contains a point on the boundary of the Schottky space.
- The action of $Out(F_n)$ on $\mathcal{PS}(F_n)$ is properly discontinuous.
- $\mathcal{PS}(F_n)$ is strictly larger than the set of Schottky characters, which is $\operatorname{Out}(F_n)$ invariant, and on which $\operatorname{Out}(F_n)$ acts properly discontinuously.

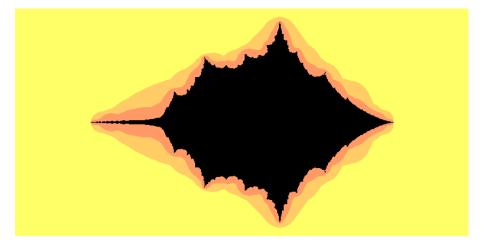
Question

- Is $\mathcal{P}S(F_2)$ dense in $\mathcal{X}(F_2)$?
- $2 BQ = \mathcal{P}S(F_2)?$
 - Solution 9 Solution 9 Solution 9 How do we produce computer pictures of $\mathcal{P}S(F_n)$

We produce computer pictures of $\mathcal{P}S(F_2)$.



Primitive stability



Extended rays

