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Abstract

We study SL2(F)-character varieties of knots over algebraically closed
fields F. We give a sufficient condition in terms of the double branched
cover of a 2-bridge knot (or, equivalently, of its Alexander polynomial)
on the characteristic of F, an odd prime, for the SL2(F)-character variety
to present ramification phenomena. Finally we provide several explicit
computations of character varieties to illustrate the result, exhibiting also
other types of ramification.

1 Introduction

Character varieties have turned out to be powerful tools in the comprehension
of 3-manifolds in general and knots in particular. In the case of knots, different
invariants are related or connected to character varieties. This is, for instance,
the case of the A-polynomial [5], and the algebraic and geometric properties of
the excellent component of a hyperbolic knot [10, 15, 22]. In this paper we are
interested in a far less explored type of invariants, namely the finite set of odd
prime numbers p for which the character variety ramifies in characteristic p.

Recall that for a finitely presented group Γ its SL2(C)-character variety,
noted X(Γ), is an algebraic set parameterizing, roughly speaking, the conjugacy
classes of representations of Γ into SL2(C). The algebraic set X(Γ) is determined
by a finite set of polynomial equations with integers coefficients. If p is a prime
number, one can consider the polynomial equations obtained from the previous
ones by reducing their coefficients mod p. It follows from work by González–
Acuña and Montesinos–Amilibia [8] that these new equations define the variety
of characters of representations of Γ into SL2(F), where F is an algebraically
closed field of characteristic p, provided that p is odd.

It is not hard to see that for almost every p several features of the structure
of the variety of characters of Γ over F coincide with those of X(Γ) over C: this
is for instance the case of the number of irreducible components of the algebraic
set and their dimensions. We shall say that p ramifies if there is a discrepancy
between the behaviour of X(Γ) and that of the character variety in characteristic
p. We are interested in understanding what types of ramification phenomena
can appear in character varieties of knots (i.e. when Γ is the fundamental group
of a knot exterior) and which primes ramify.
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The existence of two different types of ramification phenomena were pointed
out in previous papers by the authors. Both variations in the dimensions of
irreducible components and in their number can occur: the former phenomenon
appears for character varieties of orbifold structures of certain Montesinos knots
[20], and the latter for knots admitting symmetries of order p [21]. In both cases,
the appearance of ramification phenomena is related to the elementary fact that
a matrix in SL2(F) has order p if and only if it is parabolic (or unitary), i.e. has
trace equal to 2.

The present paper is devoted to exhibiting examples of yet another type
of ramification phenomena that we might describe as order-1 ramification in
contrast to the ramification observed so far that we might call of order 0.

To make this discussion more concrete, let us consider an explicit example:
the character variety of the figure-eight knot. It is well-known that this alge-
braic set can be defined by the equation (x− 2)(x2 + (1− t2)x+ t2 − 1) where
t represents the trace of a meridian, while x is the trace of the product of two
generators of the group: a meridian and a conjugate of its inverse (see for in-
stance [8, Section 6], with the variables z = t2 − x and y = t2). The character
variety consists of two 1-dimensional irreducible components: the first one is
the component of characters of abelian representations, while the second one is
Thurston’s excellent component containing the character of the lift to SL2(C) of
the hyperbolic holonomy of the knot. It is easy to convince oneself that, regard-
less of p, the variety of SL2(F) always consists of two 1-dimensional irreducible
components. However, although both components are smooth and intersect in
precisely two points over C, this is no longer the case for all p. Indeed, by
computing the partial derivatives of the second component one has 2x− t2 + 1
and −2t(x − 1) and one realises that, for p = 5, the second component is no
more smooth at the point t = 0 and x = 2: the point is a cuspidal point and the
two points of intersection between the two components collapse to this singular
one in characteristic 5. Observe that if one considers PSL2-characters instead
of SL2-characters, that is if we take T = t2 as a coordinate instead of t, then the
point of coordinates T = 0 and x = 2 is smooth even in characteristic 5 on each
of the components, but the intersection between both components is transverse
in characteristic zero or p 6= 5, and tangent in characteristic p = 5.

Definition 1. We say that X(Γ) has a ramification of order 1 type in character-
istic p if in the character variety in characteristic p either the type of intersec-
tion beteen two irreducible components changes (in particular, two transverse
components become tangent), or the singularity type of a point changes (in
particular, a singular point appears on a smooth component).

Note that ramifications of order 0 and 1 may appear at the same time if, for
instance, an irreducible component splits into two and they meet at a point.

The following result gives a conceptual explanation of the reason why 5 is a
ramified prime for the character variety of the figure-eight knot.

Theorem 1. Let K be a 2-bridge knot, ∆K(t) its Alexander polynomial, and
p a prime. We consider X(π1(K)). If p divides |∆K(−1)|, that is the order of
the homology of the 2-fold branched cover of K, then p ramifies.

The above is a special case of more technical result for whose statement we
need to introduce some notation first. Let K be a knot and Mn its n-fold cyclic
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branched cover. Let µ ∈ π1(K) be an element representing a meridian of K.
We have the following exact sequence of groups

1 −→ H −→ π1(K)/ << µ4 >>−→ Z/2Z −→ 1.

where H can be seen as the orbifold fundamental group of the orbifold whose
underlying topological space is M2 and whose singular locus is the lift of K with
order 2 singularity. The commutator subgroup H ′ of H is characteristic, so we
can consider the quotient Γ = (π1(K)/ << µ4 >>)/H ′.

Theorem 2. Let K be a knot, ∆K(t) its Alexander polynomial, and p a prime.
We consider X(Γ), where Γ is defined as above. If p divides |∆K(−1)|, that is
the order of H1(M2), then p ramifies for X(Γ).

Remark that, for 2-bridge knots, Γ is a binary dihedral group, extension of
Z/2Z by π1(M2) = H1(M2). In addition, SL2(C)-representations of Γ are lifts
of representations of π1(K)/ << µ2 >> to PSL2(C).

A natural question is to determine what ramification phenomena can appear
in the situation of Theorem 2 and if the ramification is for X(K) itself and not
just for its algebraic subset X(Γ). The easiest class of examples to consider
is that of torus knots (see Section 7). Over C the character variety of a torus
knot consists of a finite number of rational curves and the only ramification
phenomena that occur are when several irreducible components collapse onto a
single one. It follows that the character variety of the torus knot T (a, b) ramifies
for every odd prime p dividing ab, in particular whenever p divides |∆T (a,b)(−1)|.

Although torus knots show that the ramification phenomena that can be
observed in the situation of Theorem 2 is not always of the type seen for the
figure-eight knot, one might expect that this latter behaviour is generic, at least
for hyperbolic knots. The following corroborates this hypothesis.

Proposition 3. Let K be a hyperbolic 2-bridge knot with Alexander polynomial
∆K(t). Let p be a divisor of |∆K(−1)|. If all roots of ∆K are simple, then the
ramification phenomena occurring at p is of order 1.

By [9] the hypothesis that all roots of ∆K(t) are simple implies that the curve
of abelian characters intersects transversely the other components of X(K). In
Lemma 9 we show that the intersection is no more transverse but tangent in
characteristic p whenever p divides |∆K(−1)|. Furthermore, the arguments of [9]
can be used to argue that ramifications in the intersection of both components
will appear at most for primes that divide the discriminant of ∆K(t), provided
this discriminant does not vanish (namely, all roots of ∆K(t) are simple). See
Remark 2. Notice that ∆K(−1) divides the discriminant of ∆K(t).

Incidentally, the techniques of the proof yield the following fact which does
not seem to be stressed elsewhere in the literature.

Proposition 4. Let K be a hyperbolic 2-bridge knot with Alexander polynomial
∆K(t). Let α = |∆K(−1)|. If α and (α − 1)/2 are prime numbers, then the
character variety of K over C consists precisely of two irreducible components:
the one whose characters correspond to abelian representations and Thurston’s
excellent one.

At this point we do not know whether the condition (α− 1)/2 prime in the
above proposition is in fact necessary. On the other hand, there are examples of
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hyperbolic 2-bridge knots such that neither α nor (α− 1)/2 are prime numbers
and yet their character varieties consist of just two irreducible components.

To complete our analysis and to improve our understanding of ramification
phenomena, we provide explicit computations of character varieties for some
knots, notably for the tunnel number-one P (2, 2, 3)-pretzel knot 85 and for the
π-hyperbolic knot 818. We also study character varieties for some 2-bridge knots.
Among them, the knot 89 admits a ramified prime that does not come from the
situation of Theorem 2. Quite interestingly, in this case we observe a new type
of ramification, namely an irreducible component splitting into two irreducible
ones.

Note that the aforementioned examples cover all possible geometries of dou-
ble branched covers of hyperbolic knots, that is spherical, Seifert fibred, and
hyperbolic. As for the case of hyperbolic knots with double branched covers
admitting a non trivial JSJ-decomposition, their character varieties seem hard
to compute because of the “large number” of generators of their groups (none
of these is a tunnel number-one knot, for instance). Instead, we compute explic-
itly the character varieties of two tunnel number-one satellite knots, both with
companion the trefoil knot. The first is a cable knot whose double branched
cover is a graph manifold, while the second is a Whitehead double so the JSJ-
decomposition of its double branched cover contains a hyperbolic piece. As a
side remark, the double branched covers of these two knots are also the double
branched covers of hyperbolic knots. Of course, it is not clear if there might
be a relationship between the character varieties of two knots sharing the same
double cover.

The paper is organised as follows. In section 2 we recall basic facts about
character varieties. The proofs of Theorems 1 and 2 follow from the discussion
in Section 3, while Section 4 deals with the specificities of 2-bridge knots. This
latter section also contains detailed computations of character varieties for some
2-bridge knots and the primes for which they ramify. The character varieties
of the knots 85 and 818 are studied in Sections 5 and 6, respectively. Section 7
is dedicted to character varieties of torus knots, while in Section 8 we discuss
two examples of character varieties of satellite knots. Finally, some auxiliary
computations are provided in the Appendices.

The computations in this paper were performed by using MapleTM.

Acknowledgements The authors are indebted to Alan Reid for suggesting
the exploration of order 1 type ramification. L. Paoluzzi is also thankful to
UAB for hospitality during her visit when the contents of the present paper
were originally discussed.

2 Varieties of characters

In this section we recall relevant facts about character varieties and introduce
some notation.

Let Γ be a finitely presented group and F an algebraically closed field. Given
a representation ρ : Γ −→ SL2(F), one can define a map χρ : Γ −→ F by com-
posing with the trace function. Such map is called the character of the repre-
sentation ρ. We will denote X(Γ)F the set of all characters of representations of
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Γ. Note that each element γ of Γ induces an evaluation map τγ : X(Γ)F −→ F
defined as τγ(χ) = χ(γ).

For simplicity, when F = C we will usually write X(Γ) instead of X(Γ)C.

Proposition 5 ([6, 8]). The set of characters X(Γ) is an affine algebraic set
defined over Z, which embeds in CN with coordinate functions (τγ1 , . . . , τγN ) for
some γ1, . . . , γN ∈ Γ.

The affine algebraic set X(Γ) is called the character variety of Γ: it can be
interpreted as the algebraic quotient of the variety of representation of Γ into
SL2(C) by the conjugacy action of PSL2(C) = SL2(C)/Z(SL2(C)).

Note that the set {γ1, . . . , γN} in the above proposition can be chosen to
contain a generating set of Γ. For Γ the fundamental group of a knot exterior,
we will then assume that it always contains a representative of the meridian.

It is worth pointing out that the polynomial equations with integer coeffi-
cients of Proposition 5 only determine X(Γ) as an algebraic set and not as a
scheme.

A careful analysis of the arguments in [8] shows that Proposition 5 still holds
if C is replaced by any algebraically closed field F, provided that its characteristic
is different from 2. Let Fp denote the field with p elements and Fp its algebraic
closure. We have:

Proposition 6 ([8]). Let p > 2 be an odd prime number. The set of char-
acters X(Γ)Fp associated to representations of Γ into SL2(Fp) is an algebraic

set which embeds in Fp
N

with coordinate functions (τγ1 , . . . , τγN ) for the same
γ1, . . . , γN ∈ Γ seen in Proposition 5. Moreover, X(Γ)Fp is defined by the re-

ductions mod p of the polynomials with coefficients in Z which define X(Γ).

The key observation here is that, as in the case of complex numbers, the
algebraic set X(Γ)Fp can be again interpreted as the algebraic quotient of

the variety of representation of Γ into SL2(Fp) by the conjugacy action of
PSL2(Fp) = SL2(Fp)/Z(SL2(Fp)).

We will be mainly interested in the situation where Γ is the fundamental
group π1(S3 \K) of the exterior of a knot K. In this case we shall write X(K)F
or X(K) instead of X(π1(S3 \K))F or X(π1(S3 \K)) respectively.

Since the abelianisation of a knot group is infinite cyclic, for each element A
of SL2(F) there is precisely one abelian representation of π1(S3 \K) defined by
sending a meridian of K to A. The set of abelian representations projects onto
a rational, one dimensional component, of X(K)F.

If K is a hyperbolic knot, π1(S3 \K) admits a hyperbolic holonomy repre-
sentation into PSL2(C). It is not hard to see that such representation lifts to
a representation π1(S3 \ K) −→ SL2(C). It was proved by Thurston that the
character of this representation is a smooth point on a one-dimensional irre-
ducible component of X(K), known as the canonical or excellent component of
K. More generally, Thurston proved that every irreducible component of X(K)
has dimension at least one [13, 25].

3 Characters vanishing at the meridian

Consider the map
t = τµ : X(K)→ C,
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sending a character to the trace of the meridian. We are interested in its fiber
at 0:

Y := t−1(0) ⊂ X(K).

Note that if we choose the trace of the meridian to be one of the coordinates
of X(K), the map is just a projection onto a coordinate and the fibre the
intersection of X(K) with a hyperplane. The condition t(χρ) = 0 means that
χρ is the character of a representation ρ that maps µ to a matrix A such that
A2 = −Id. Consider the induced representation ρ̂ obtained by composing ρ with
the natural quotient SL2(C) −→ PSL2(C) : ρ̂ restricts to a representation ρ̂′ of
the double branched covering, M2, of K.

We decompose the set Y = t−1(0) into three (possibly empty) disjoint sub-
sets, according to the behaviour of ρ̂′

Y = Y triv(K) t Y ab(K) t Y nab(K),

where:

• χ ∈ Y triv(K) if there is a representation ρ with character χ such that ρ̂′

is trivial;

• χ ∈ Y ab(K) if there is a representation ρ with character χ such that ρ̂′ is
abelian, but no such abelian representation is trivial;

• Y nab(K) if every representation ρ with character χ is such that ρ̂′ is not
abelian.

Note that Y triv(K) = Xab(K) ∩ Y always consists of a single point, the
character of the abelian representation in t−1(0).

In characteristic zero, Y ab(K) is the set of binary dihedral representations
and also the set of metabelian (and non-abelian) representations (see [14, 17]).
As the cardinality of H1(M2,Z) is |∆K(−1)|, an odd integer, the cardinality of
Y ab(K) is

|Y ab(K)| = |∆K(−1)| − 1

2
.

Thus Y ab(K) = ∅ if and only if ∆K(−1) = ±1.
Note that the subset Y triv(K) ∪ Y ab(K) is a subvariety of Y (K) and thus

of X(K). Indeed, this set corresponds to the fibre t−1(0) of X(Γ), where Γ is
the quotient of π1(S3 \K) defined in the introduction.

Before describing the reduction mod p of Y ab(K) we need a lemma on finite
order elements of PSL2(K). Its proof is a straightforward consequence of the
structure of PSL2(Fpk) (see [7]).

Lemma 7. Let F be an algebraically closed field of characteristic p ≥ 3 and
A ∈ PSL2(F) an element of finite order. Then either order(A) is coprime with
p or order(A) = p. In addition:

• When order(A) is coprime with p, then A is diagonalisable.

• When order(A) = p, then A is conjugate to a matrix of the form ± ( 1 ∗
0 1 )

Corollary 8. For any prime p, write ∆K(−1) = ±pkm, with m ≥ 1 an integer
coprime with p. Then the reduction mod p of Y ab(K) has cardinality m−1

2 .
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The previous corollary is an example of collapse when reducing mod p. No-
tice that when m = 1, i.e. when ∆K(−1) = ±pk, the reduction mod p of
Y ab(K) collapses to a single point, the abelian character in Y triv(K). Note
that, in characteristic p, this is now also the character of a reducible dihedral
representation.

Regarding Y nab(K), we are interested in the following cases for K:

1. K a two bridge knot. Then Y nab(K) = ∅ because M2 is a lens space.

2. K is a Montesinos knot. Then, as M2 is Seifert fibred, Y nab(K) consists
of representations whose projections into PSL2(C) factor trough the base
2-orbifold of the Seifert fibration. In particular for pretzel knots Y nab(K)
is finite, because the variety of characters of triangle groups has finite
cardinality.

3. For π-hyperbolic knots Y nab(K) contains the lift of the holonomy of the
orbifold with cone angle π. This is an isolated point of Y (K) (Weil local
rigidity), but there may be more characters in Y nab(K).

4 Two-bridge knots

Let K be a 2-bridge knot. Recall that K is determined by its 2-bridge notation,
a rational number of the form β/α, with α odd: one can recover a four-plat
description of K from a continued fraction expansion for β/α, and the resulting
knot does not depend on the chosen expansion. Moreover the 2-fold branched
cover M2 of K is precisely the lens space L(α, β) (see [3, Ch 12]).

The fundamental group π1(S3\K) of a 2-bridge knotK admits a presentation
of the form 〈a, b | aw = wb〉, with a and b meridians and w a word in the
generators, a and b, and their inverses.

Since a and b are conjugate, the character variety X(K) of K is a plane
curve with coordinates t = τa = τb and x = τab−1 :

{(t, x) ∈ C2 | P (t, x)(x− 2) = 0},

where x = 2 is the set of characters of abelian representations, and its comple-
ment consists of characters of irreducible representations.

Notice that P is an even polynomial of the variable t (i.e. a polynomial in t2):
there is a natural action of H1(S3−K;Z/2) ∼= Z/2 on the variety of characters,
that maps a point with coordinates (t, x) to (−t, x). By taking T = t2 as a new
variable, this defines the variety of PSL2(C)-characters [8, 10].

Because of their simple structure, character varieties of 2-bridge knots have
been widely studied, see for instance [10, 19, 18, 15, 4], see also [12] for 2-bridge
links.

Here, again, we are interested in Y (K). We have:

P (0, x) = Φα(x), where Φα(λ+
1

λ
) =

λα − 1

λ− 1
λ

1−α
2 .

Namely, the factors of Φα define the intersection with R of the corresponding
cyclotomic extension.

Lemma 9. For p | α, write α = prα′, with α′ ∈ Z coprime with p.
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1. P (0, x) = 0 consists of α−1
2 smooth points in C.

2. The reduction mod p of P (0, x) = 0 consists of α′−1
2 points in Fp.

3. If pr 6= 3, then the intersection between P (t, x) = 0 and x = 2 mod p is
not transverse.

Proof. The assertions on the cardinality are proved in the previous corollary.
Smoothness is a consequence from the fact that the roots of Φα are simple. It
is also proved in [2, Lemmas 4.4 and 4.5].

In terms of the polynomial Φα we have:

Φα(x) ≡ (x− 2)
pr−1

2 (Φα(x))p
r

mod p

For assertion 3) use that

P (t, x) = Φα(x) + t2Q(t2, x)

and the previous congruence of Φα(x) mod p.

Remark 1. One may ask whether this order-1 ramification phenomenon is a
consequence of an order-0 ramification phenomenon that occurs at the level of
the character variety X(K), namely that different irreducible components of
{(t, x) ∈ C2 | P (t, x) = 0} get identified together.

More specifically, for α = p we may ask whether P (t, x) can be a power mod
p. As the characteristic p is odd, if P (t, x) were a power mod p, then it would
be the power of an even polynomial in t. However in [10, Proposition 5.2] it is
shown that the degree of P (t, x) in t2 is strictly less than the degree of P (0, x),
so this can never be the case.

Remark 2. Let D be discriminant of ∆K(t). Assume that D 6= 0. Then, in
characteristic zero, all roots of ∆K(t) are simple, and by [9] the intersection
of the abelian component x = 2 with P (t, x) = 0 is everywhere transverse. In
characteristic p, if p - D, then the intersection is still transverse, in particular the
points (t, 2) are smooth points of P (t, x) = 0. When p | D, new singularities or
tangencies with x = 2 may appear at those points. Notice also that ∆K(−1) | D.

In some instances, we may also count how many components X(K) has:

Lemma 10. If α is prime, then P (t, x) is irreducible over Q. If in addition
α−1

2 is also prime, then it is irreducible over C.

Proof. The curve of characters X(K) has no ideal points with t = 0, by [1,
Lemma A.1.1], hence every irreducible component of X(K) intersects the line
t = 0 in at least one point. Thus, to prove that P is irreducible (over Q or over
C) we need to check that all points in

Y ab(K) = {(0, x) | P (0, x) = 0}

are contained in the same irreducible component (recall that here Y nab(K) = ∅).
As P (0, x) = Φα(x) is irreducible over Q, because α is prime, P = 0 has only
one component over Q, so P is irreducible over Q.

For the second assertion, we notice first that at least two points of Y ab(K)
lie in the same component over C. Those points correspond to the lifts of
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the spherical holonomy of the orbifold with cone angle π. More precisely, the
universal covering of SO(4) is SU(2) × SU(2), and the lift of the holonomy
yields two different characters in Y ab(K), one for the projection to each factor
SU(2), see for instance [11]. In addition, there is a curve of smooth points that
joins both characters [1, 26, 24, 23], coming from holonomies of spherical and
Euclidean cone structures, hence they lie in the same irreducible component.

Once we know that two points of Y ab(K) lie in the same component, we
consider the action of the Galois group. If P decomposes in C, it decomposes
with coefficients in a number field K, that we may assume to contain the real cy-
clotomic field (containing the solutions of Φα(z)). The Galois group Gal(K | Q)
acts on P = 0 by preserving or permuting irreducible components, in particular
if P = 0 contains more than one irreducible component, then Y ab(K) has a
nontrivial partition induced by the components of P = 0. As Gal(K | Q) acts
transitively on Y ab(K), all subsets of this partition have the same cardinality,
which must be either 1 or (α − 1)/2, because (α − 1)/2 is prime. It cannot be
1 because we showed in the previous paragraph that the cardinality is at least
2. Hence it is (α− 1)/2 and there is a single component.

The reader should compare this result with [18] where a condition is provided
for the character variety of a 2-bridge knot to have at least two irreducible
components, besides the abelian one.

In the following we provide some examples of character varieties of 2-bridge
knots, for different values of α, notably α a prime number, a power of a prime
number, and a product of different primes, in order to cover potentially different
kinds of behaviour. In the first three instances, we also compute all ramified
primes.

Example: 61 = 7/9

From the presentation

π1(S3 \ 61) = 〈α, β | βα−1βαβ−1α−1βαβ−1 = α−1βαβ−1α−1βαβ−1α〉,

using coordinates
t = trα = trβ , x = trαβ−1 ,

and taking traces of the terms in the relation, we easily compute P (t, x):

t4x2 − 3 t4x− 2 t2x3 + 2 t4 + 2 t2x2 + x4 + 5 t2x+ x3 − 4 t2 − 3x2 − 2x+ 1

Even if 9 is not prime, P (t, x) is irreducible over C, as we will see in a while.
We give here a reason why it is irreducible over Q. We reproduce the argument
in the proof of Lemma 10: setting t = 0, we have

P (0, x) = Φ9(x) = Φ3(x)ψ(x),

where the solution of Φ3(x) = x+1 = 0 is −1, twice the real part of the primitive
roots of unity of order 3, and the solutions of ψ(x) = x3 − 3x+ 1 = 0 are twice
the real parts of primitive roots of unity of order 9, see (1). Thus, as there
is no ideal point with t = 0 [1, Lemma A.1.1], to prove irreducibly over Q we
must show that there are two points in the same component, with coordinates
(0,−1) and (0, x2), with ψ(x2) = 0. Following the argument of Lemma 10,
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those points are provided by the lift to SU(2) × SU(2) of the holonomy of the
spherical orbifold. Up to conjugation, the lift of the holonomy of π1(M2) is a
cyclic group generated by((

ei θ1/2 0
0 ei θ1/2

)
,

(
ei θ2/2 0

0 ei θ2/2

))
By the description of the action of SU(2) × SU(2) on SU(2) ∼= S3 [16], and as
M2
∼= L(9, 7), θ1 and θ2 must satisfy

θ2 − θ1 =
1

9
2π, θ1 + θ2 =

7

9
2π.

Hence

θ1 =
1

3
2π θ2 =

2

9
2π,

and x1 = 2 cos θ1 = −1 and x2 = 2 cos θ2 are the values we are looking for.
Observe also that the action of the Galois group permutes the points (0, x2)

with x3
2 − 3x2 + 1 = 0, while fixing the point (0,−1), so there is a single

component over C.
As just observed, for t = 0 we have:

P (0, x) = Φ3(x)ψ(x) = (x+ 1)
(
x3 − 3x+ 1

)
.

According to Theorem 1, Y (K) collapses to a single point mod 3, because

P (0, x) ∼= (x− 2)4 mod 3.

Note that the curve of irreducible characters meets the line of abelian ones
in two points with multiplicity 2: these are computed as the solutions of the
equation 0 = P (t, 2) = −2t2 + 9. The two components also have an intersection
at infinity, also of multiplicity 2. The two (finite) intersections collapse to a
single one in characteristic p = 3 (and in this characteristic only), and the two
components become tangent. The latter assertion is easily seen by rewriting
P (t, x) = t4[(x− 2)2 + (x− 2)] + t2[2(x− 2)3 − 10(x− 2)2 + 11(x− 2) + 42] +
(x + 1)[(x − 2)3 + 6(x − 2)2 + 9(x − 2) + 3] so that one also observes that the
component is not smooth at this point in characteristic p = 3.

We want to show that p = 3 is the only ramified prime for the character
variety of the knot 61. Clearly, for no prime the dimension of the variety can
decrease or increase and it will always consists of at least two irreducible com-
ponents. We will prove that the component defined by P (t, x) = 0 is smooth
over C, and so is the corresponding component in any characteristic p > 3.

The partial derivatives are

∂tP (t, x) = 2t[t2(2x2 − 6x+ 4)− 2x3 + 2x2 + 5x− 4]

and

∂xP (t, x) = t4(2x− 3) + t2(−6x2 + 4x+ 5) + 4x3 + 3x2 − 6x− 2.

Assume first that t = 0. In this case we need to find the common solutions
of P (0, x) = 0 and ∂xP (0, x) = 0: the discriminant of P (0, x) is 36 so these
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two polynomials have a common root only if p = 3 and we already know what
happens in that case.

We can thus assume that t 6= 0. Consider now the polynomial (2x2−6x+4):
its roots are 1 and 2. A computation shows that ∂tP (t, 1) and ∂tP (t, 2) cannot
be zero in characteristic 0 or odd.

We can thus multiply ∂xP (t, x) times (2x2 − 6x+ 4)2 in order to eliminate
t, and we get ∂xP (t, x)(2x2 − 6x+ 4)2 = 3x2 − 4x.

Assume x = 0. In this case t2 = 1 and P (1, 0) = −1, so this case cannot
arise.

If p = 3, then again we must have x = 0 and the preceding reasoning applies.
We can thus assume that p 6= 3 and x = 4/3 and t2 = 10/9 and again

P (4/3, 10/9) can never be 0 for any p.
We now will show that the variety consists of precisely two irreducible com-

ponents in every characteristic ( 6= 2). Obviously the abelian component, being
a line, can never split into more than one component. It is thus enough to
prove that P (t, x) is always irreducible. Assume by contradiction that curve
corresponding to P (t, x) = 0 is not irreducible. Its irreducible components must
intersect in the projective closure in some singular points, since we are consid-
ering algebraically closed fields. Similarly, every irreducible component must
meet the line at infinity. We now observe that our curve intersects the line at
infinity in two points, one with (homogeneous) coordinates equal to t = 1 and
x = 0 and a second one with coordinates t = 0 and x = 1. The first point has
multiplicity four and is smooth with tangent the line at infinity in any charac-
teristic 6= 2. The second one has multiplicity two and is a singular point, again
with tangent the line at infinity. Since the first point is smooth, it must belong
to a single irreducible component. If p 6= 3 this irreducible component must
also contain the second point at infinity, which is the only singular point of the
curve. Because of the multiplicities of intersection, this irreducible component
must be a curve of degree at least five. It follows that if there were a second
component it should be a line, passing through the second point and tangent
to the line at infinity. This is however absurd since the component cannot be
the line at infinity. If p = 3, the component containing the smooth point at
infinity might have degree 4, since there are two singular points. We consider
then its intersection with the line of equation x = 2. Because of its degree, this
component meets the line at the singular point (t = 0, x = 2). If the multiplicity
of intersection were 4, then the component could not intersect the line elsewhere
and thus it could not intersect the remaining irreducible component(s) since it
could not pass through the second singular point which is also on this line. This
shows that the component must pass through the second point at infinity even
in this case and the conclusion follows as in the previous one.

Example: 41 = 4/5

We already discussed the character variety of the figure-eight knot in the
introduction. It is well-known that it consists of just two irreducible compo-
nents: the abelian one and Thurston’s excellent one. This is also a consequence
of Proposition 4 since both α = 5 and (α− 1)/2 = 2 are prime numbers.

The same type of arguments and computations used in the previous example,
show that in this case, too, there is a single odd prime for which the character
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variety ramifies, that is p = 5. Recall that in this case we have

P (t, x) = (x2 + (1− t2)x+ t2 − 1)

while the partial derivatives are

∂tP (t, x) = 2t[x− 1]

and
∂xP (t, x) = 2x− t2 + 1.

We see that singular points can only occur for t = 0 or x = 1. The latter
case, is impossible as P (t, 1) = 1 for any t. In the former case we must have
2x + 1 = 0 or equivalently x = −1/2 since we are assuming p 6= 2. This gives
P (t, x) = −5/4, so we have singular points only for p = 5. This is precisely the
situation described by Theorem 1.

To see that the reduction mod p of the polynomial P (t, x) is irreducible for
all p ≥ 3, one observes that the points at infinity of P (t, x) are both smooth.
As a consequence, P (t, x) can only split if p = 5 and at most into two compo-
nents. Since the degrees of the two irreducible components must be 2 and 1,
the component of degree one is necessarily one of the tangents at the singular
point (t = 0, x = 1), however the two tangents do not meet the line at infinity
at the same points as P (t, x). The computational details are left to the reader.

Example: 74 = 11/15

The character variety of this twist knot was computed and studied in [4]
by Chu who was interested in understanding intersections between different,
non abelian, irreducible components. Indeed, in this case the variety has two
irreducible components, besides the abelian one, as shown by [18, 15].

Rewriting the equations in [4] using our notation, we have

P (t, x) = (−1 + 2x2 + x3 − x2t2)(1 + 4x− 4x2 − x3 + x4 − 2xt2 + 3x2t2 − x3t2).

Theorem 1 tells us that p = 3 and p = 5 are ramified primes for this variety.
We wish to show that these are the only primes that ramify.

We start by studying each irreducible component separately. We begin with

P1(t, x) = −1 + 2x2 + x3 − x2t2

whose partial derivatives are

∂tP1(t, x) = −2tx2

and
∂xP1(t, x) = −2xt2 + 4x+ 3x2.

We see that both derivatives are 0 if x = 0 but P1(t, 0) = −1, so we can
exclude the value x = 0. It follows that we must have t = 0 and 4 + 3x = 0.
If p = 3 there is no solution, so we can assume p 6= 3 and x = −4/3. We
get P1(0,−4/3) = −5/27 so, as expected, p = 5 is a ramified prime. Writing
P1(t, x) as −t2(x− 2)2− 4t2(x− 2)− 4t2 + (x− 2)3 + 8(x− 2)2 + 20(x− 2) + 50,
one sees that, in characteristic p = 5, the tangent at the singular point t = 0,
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x = −4/3 ≡ 2 has equation t2 − 2(x − 2)2 = 0, where coefficients are thought
mod 5.

To understand whether this component splits in some characteristic, we now
analyse its points at infinity. There are two such points, both intersecting the
line at infinity with multiplicity 2. One of them, with homogeneous coordinates
t = 0 and x = 1, is smooth with tangent the line at infinity, while the other, with
homogeneous coordinates t = 1 and x = 0, is singular with tangent of equation
−x2 = 0. Consider now the irreducible component containing the smooth point
at infinity. Since the curve only meets the line of equation x = 0 at infinity, such
irreducible component passes through both points at infinity and had degree at
least 3. If it had degree 3, the second irreducible component would have degree
one and would have to coincide with the tangent at the singular point, that is
the line of equation x = 0. This is clearly impossible, so this curve is irreducible
in all characteristics.

We pass now to the second component

P2(t, x) = 1 + 4x− 4x2 − x3 + x4 − 2xt2 + 3x2t2 − x3t2

whose partial derivatives are

∂tP2(t, x) = 2t(−2x+ 3x2 − x3)

and
∂xP2(t, x) = 4− 8x− 3x2 + 4x3 + t2(−2 + 6x− 3x2).

From the first derivative, we see that either x ∈ {0, 1, 2} or t = 0. For each
value of x in {0, 1, 2} we get P2(t, x) = 1, so we must have t = 0. Computing
the resultant of the polynomials 1 + 4x− 4x2 − x3 + x4 and 4− 8x− 3x2 + 4x3

one obtains 3253: as expected the curve has singular points in characteristics
p = 3 and p = 5.

As for the previous component, we show that this component as well is
always irreducible. As before we consider the points at infinity of the curve:
again we have two points. The first one has homogeneous coordinates t = 0
and x = 1, it is smooth with tangent the line at infinity, and the multiplicity
of intersection between the curve and the line at infinity at this point is 2. The
second point has homogeneous coordinates t = 1 and x = 0, it is a singular point
with tangent of equation x3 = 0 and multiplicity of intersection 3. The very
same argument seen in the previous case, shows that the irreducible component
containing the smooth point at infinity must pass through the second one as
well and have degree at least 3. If the curve splits in two or more irreducible
components, the component of degree at most two must be pass through the
singular point at infinity with tangent of equation x = 0. As a consequence
such component can only be the line x = 0, with multiplicity one or two. This
is however impossible.

We turn now our attention to the points of intersection between the two
components. Since x cannot be equal to 0, we can use the P1(t, x) to eliminate
t2 from P2(t, x). We obtain the polynomial x2 − 2x + 2 that always has two
roots in any characteristic different from 2 (cfr. [4]).

Example: 89 = 7/25
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From the presentation

π1(S3 \ 89) = 〈α, β | βα−1βαβ−1α−1βαβ−1 = α−1βαβ−1α−1βαβ−1α〉

by taking traces and using the coordinates t = trα = trβ , x = trαβ−1 with the
help of symbolic software we get

P (t, x) = t18x3−6 t18x2−9 t16x4+12 t18x+47 t16x3+36 t14x5−8 t18−66 t16x2−
160 t14x4−84 t12x6−12 t16x+115 t14x3+308 t12x5+126 t10x7+56 t16+273 t14x2+
35 t12x4 − 364 t10x6 − 126 t8x8 − 232 t14x − 928 t12x3 − 441 t10x5 + 266 t8x7 +
84 t6x9 − 140 t14 + 187 t12x2 + 1515 t10x4 + 763 t8x6 − 112 t6x8 − 36 t4x10 +
756 t12x+630 t10x3−1362 t8x5−679 t6x7+20 t4x9+9 t2x11+124 t12−1648 t10x2−
1755 t8x4 +647 t6x6 +345 t4x8 +2 t2x10−x12−725 t10x+1796 t8x3 +1964 t6x5−
108 t4x7 − 95 t2x9 − x11 + 42 t10 + 1744 t8x2 − 924 t6x4 − 1163 t4x6 − 27 t2x8 +
11x10 − 93 t8x − 2206 t6x3 + 76 t4x5 + 358 t2x7 + 10x9 − 118 t8 − 29 t6x2 +
1544 t4x4 + 120 t2x6 − 45x8 + 422 t6x + 225 t4x3 − 565 t2x5 − 36x7 + 25 t6 −
560 t4x2− 201 t2x4 + 84x6− 85 t4x+ 326 t2x3 + 56x5 + 25 t4 + 95 t2x2− 70x4−
46xt2 − 35x3 − 6 t2 + 21x2 + 6x− 1

It intersects t = 0 at

(
x2 + x− 1

) (
x10 − 10x8 + 35x6 + x5 − 50x4 − 5x3 + 25x2 + 5x− 1

)
(1)

Which corresponds to roots of order 5 and 25, respectively. This polynomial is
congruent to

(x− 2)12 mod 5

Thus the whole Y (K) collapses to a single point when reducing mod 5.
Unexpectedly, P (t, x) factors non trivially mod 7 (but not mod 5):

P (t, x) =(t12x2 + 3 t12x+ t10x3 + 4 t12 + 6 t10x2 + t8x4 + 6 t10x+ 2 t8x3 + t6x5 + 5 t10

+ 6 t8x2 + 5 t6x4 + t4x6 + 6 t8x+ 4 t6x3 + t4x5 + t2x7 + 2 t8 + t6x2 + 4 t2x6

+ x8 + 4 t6x+ 2 t4x3 + t2x5 + 5 t6 + 4 t4x2 + t4x+ 4 t4 + 4 t2x2 + 4x4 + 5xt2

+ 4x3 + 5 t2 + 5x2 + 2x+ 6)

× (t6x+ 5 t6 + 4 t4x2 + 3 t4x+ 3 t2x3 + 6 t4 + 6x4 + 4xt2 + 6x3

+ 4 t2 + 4x2 + 3x+ 1) mod 7

Using symbolic software again, we may check that in characteristic zero
P (t, x) = 0 has no singular points. In fact, besides characteristic p = 5 and
p = 7, in characteristic p = 23 one finds that (t, x) = (2,±6) is a singular
point of the variety. Notice that the discriminant of the Alexander polynomial
is 13225 = 52 232, which, by Remark 2, implies that there are singular points
with x = 2 in characteristic p at most for p = 5 and p = 23.

Example: 11/23

In this case the order of the homology of the double branched cover is a prime
number and moreover we have that 11 = (23 − 1)/2 is also prime. We mainly
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study this twist knot because its character variety appears as a subvariety of the
Whitehead double we study in Section 8. Indeed, there is a degree-one map from
the Whitehead double to this knot obtained by sending the trefoil companion
onto the trivial knot. Of course the map induces a surjection of fundamental
groups and so an injection of character varieties.

We give here a presentation obtained from a presentation of the Whitehead
link 52

1 by surgery on one of its two components. This will become handy when
studying the Whitehead double.

We have for the Whitehead link

π1(S3 \ 52
1) = 〈α, b | αb−1α−1bα−1b−1α = b−1αb−1α−1bα−1b−1αb〉,

and for the twist knot

π1(S3 \ 11/23) = 〈α, β | u = β−1α, b = u6, u = αb−1α−1bα−1b−1αb, u = b−1ub〉,

where the group of the twist knot is obtained by killing by Dehn surgery the slope
u6b−1, where u = αb−1α−1bα−1b−1αb, so that the relation of the Whitehead link
group becomes u = b−1ub which is redundant in the quotient group; finally one
can recover a standard 2-bridge presentation for the twist knot by observing
that β = αu−1 is conjugate to α hence a meridian that can be chosen as a
generator of the group.

Hence we take coordinates

t = trα = trβ , x = trα−1β ,

and by taking traces on the equality

α−1(βα−1)5βα(β−1α)5β = (βα−1)5(βα)(β−1α)5

we get
(x− 2)P (t, x) = 0

where

P (t, x) = t2x10 − t2x9 − x11 − 8 t2x8 − x10 + 7 t2x7 + 10x9 + 22 t2x6 + 9x8

− 16 t2x5 − 36x7 − 24 t2x4 − 28x6 + 13 t2x3 + 56x5

+ 9 t2x2 + 35x4 − 3 t2x− 35x3 − 15x2 + 6x+ 1.

with
P (0, x) ≡ −(x− 2)11 mod 23

An analysis similar to those seen for the first three examples shows that p = 23
is the only prime that ramifies for this knot.

5 A pretzel example

For a Montesinos knot K that is not a 2-bridge one, Y nab(K) 6= ∅, as it con-
tains irreducible representations of the double branched cover M2. Since M2 is
Seifert fibered, those representations from π1(M2) to PSL2(C) map the fibre to
the identity (the centre of PSL2(C) is trivial), hence they are irreducible repre-
sentations of the 2-orbifold, the space of fibres. For a Montesinos knot with k
tangles, this will yield components in Y nab(K) of dimension up to k− 3, see for
instance [20]. For a pretzel knot, we have k = 3.
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Example: 85 = P (3, 3, 2)

Here ∆K(−1) = 21, hence |Y ab(K)| = 10. If we restrict these characters to
M2, they are characters of ten cyclic representations H1(M2,Z)→ PSL2(C), one
of them has order 3, three have order 7, and six have order 21 (the cardinality
is one half of Euler’s φ).

Since K is the pretzel (2, 3, 3), elements in Y nab(K) are characters of repre-
sentations in SU(2).

We will consider reductions mod p for p = 3, 7.

α

β γ

Figure 1: The knot 85. The generators α, β and γ of its fundamental group and
a tunnel.

The group of 85 is generated by three meridians, α, β and γ in Figure 1.
Since it has tunnel number one, the group can also be generated by two ele-
ments. Those are γ and a = γ−1α−1(βγ)2, see Appendix A. Hence we choose
coordinates:

t = trγ

x = tra

y = trγa

With the help of symbolic software, there are 5 components:

1. Abelian component

x = t2 − 2

y = t3 − 3t,

because x and y correspond to traces of elements whose abelianisations
are 2 and 3 respectively.

2. A “trefoil” component:
y = x− 1 = 0

namely, a component that looks like the variety of irreducible characters
of the trefoil knot and which is induced by an epimorphism onto the trefoil
group.
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3. The canonical component.

tx3 − t2y − ty2 − x2y + 2 tx+ 2 yx− t− y = 0,

t2yx+ y2tx− 2 tx2 − ty2 − x2y − y3 − tx+ yx+ t+ 2 y = 0,

ty3x+ tx2y − y2x2 − y4 − 2 txy − 2x3 − xy2 − ty + 2x2 + 3 y2 + 4x− 2 = 0.

4. An exotic component:

x+ 1 = ty + y2 − 2 = 0

5. A second exotic component:

t2x2y − tx3 − 2 y2tx+ x2y + y3 + 2 tx− t− 3 y = 0,

t3yx+ t2xy2 + ty3x− t3y − t2x2 − 2 t2y2 − tx2y − ty3 − y2x2

−y4 + t2 + 4 ty + 4 y2 = 0,

tx5y + tx4y − x6 − x4y2 + 2 t2xy2 − 4 tyx3 + 2 ty3x− x5 − x3y2

−t3y − t2y2 − 7 tx2y − 2 ty3 + 6x4 + y2x2 − 2 y4 + t2x+ 6x3

+3xy2 + t2 + 8 ty − 8x2 + 7 y2 − 8x− 1 = 0

Next we describe the intersection of each component with t = 0:

1. Abelian: x = −2, y = 0. This is the point in Y triv(K)

2. Trefoil: y = 0, x = 1. This point lies in Y ab(K) (it corresponds to the
element of order 3).

3. Canonical: it is the union of two sets:

• y = x3 − x2 − 2x + 1 = 0 that lies in Y ab(K) (3 points of order 7),
and

• x− 1 = y2 − 2 = 0, two points in Y nab(K).

4. Exotic: x+ 1 = y2 − 2 = 0, two points in Y nab(K).

5. Second Exotic: y = −x6− x5 + 6x4 + 6x3− 8x2− 8x− 1 = 0. Six points
in Y ab(K) (of order 21).

Notice that the 4 points in Y nab(K) correspond to two non conjugate represen-
tations in PSL2(C) (x is already a variable of the characters in PSL2(C) but y
is not).

This knot is π-spherical, so the lift of its holonomy in SU(2)×SU(2) projects
to the tetrahedral group in one SU(2) factor (for the basis 2-orbifold), and to
the binary dihedral group of order 28 in the other SU(2) factor. This dihedral
group in one of the factors corresponds to an action of S1 that is preserved up
to orientation, yielding the orbifold Seifert fibration.

Regarding the ramifications, we obviously have the collapses of Y ab(K) mod
3 and mod 7:

• When reducing mod 3, the point of order 3 becomes trivial (in Y triv(K)).
The 6 points of order 21 are identified to some of the 3 points of order 7.

• When reducing mod 7, the points of order 7 become also trivial (in
Y triv(K)). The 6 points of order 21 become the point of order 3.
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6 A π-hyperbolic knot

The knot 818 is π-hyperbolic, that is its double branched cover is hyperbolic.
Here the canonical component splits into two irreducible components in charac-
teristic 3.

γ

β

α

σ1

φ

Figure 2: The knot 818. The period φ, the axis of the strong inversion σ1 and
the fixed points of the orientation reversing involution σ2 marked as thick red
dots

The knot 818 has a period φ, corresponding to the rotation of order four in
Figure 2. The symmetry group of the knot is generated by the rotation together
with two involutions σ1 and σ2. The orientation preserving involution σ1 is a
rotation of angle π about an axis represented as a blue line in Figure 2: it is a
strong inversion of the knot. The orientation-reversing involution σ2 is reflection
with two fixed points belonging to the knot (after a suitable conformal change
of coordinates of S3 = R3 sending one of the two fixed points to ∞ and the
other to the origin, σ2 can be seen as the linear map with matrix minus the
identity).

Here |∆K(−1)| = 45, and H1(M2) = Z/5⊕ Z/3⊕ Z/3.
We sketch the computation of X(818) in Appendix B, here we just describe

it. We use the following coordinates for X(818):

t = trα = trβ = trγ
x = trαβ−1

y = trβ−1γ

z = trαγ
w = trαβ−1γ

We next list the 11 components of X(818).

Abelian component

〈−t+ w, x− 2, y − 2,−t2 + z + 2〉 (2)
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The symmetries act trivially here. When t = 0 we get the character that is
trivial on M2, the double branched covering.

The canonical component

〈tw + y2 +
(
−t2 − 1

)
y + 1,−t2 + y + z, 5 t2 − 4 tw + w2 − 6,−t2 + x+ y − 1〉

(3)
It can also be written as

tw + y2 +
(
−t2 − 1

)
y + 1 = 0

z = t2 − y
x = z + 1

5 t2 − 4 tw + w2 = 6

It is a double branched covering of the curve described in [12] obtained by
considering only the variables t and y (we can get rid of x and z, the projection
is the elimination of w).

This component is fixed point-wise by the period φ and by σ1. The invo-
lution σ2 preserves the component but permutes the holonomy of the complete
structure with its complex conjugate.

The intersection with t = 0 yields precisely the 4 lifts of the hyperbolic
holonomy of the orbifold (t = 0, y = (1 ±

√
−3)/2, w = ±

√
6). The 4 points

correspond to complex conjugation (y = (1 ±
√
−3)/2) and a choice of sign

(w = ±
√

6) as the abelianisation of the orbifold group is Z/2 (it only concerns
the variable w because t = 0). When reducing mod 3, these 4 points become a
single point.

It should be noticed that the last equation

5 t2 − 4 tw + w2 = 6

factors mod 3 as the product of two lineal equations, hence this component
splits into 2 components when reducing mod 3.

Four “trefoil-like” components There are four components that look like
the the variety of characters of the trefoil:

〈−1 + z,−t+ w, x− 2,−t2 + y + 1〉 (4)

〈−1 + z,−t+ w, y − 2,−t2 + x+ 1〉 (5)

〈−1 + z,−t3 + 2 t+ w,−t2 + x+ 1,−t2 + y + 1〉 (6)

〈−t3 + 2 t+ w,−t2 + x+ 1,−t2 + y + 1,−t2 + z + 2〉 (7)

They come from a surjection from π1(S3 \ 818) to the group of the trefoil.
Namely, if we add the relation α = β then we get the group of the trefoil, and
this corresponds to the component (4).

For computational purposes, it is useful to give a parameterisation of these
components:

x = 2, y = t2 − 1, z = 1, w = t, (4)
x = t2 − 1, y = 2, z = 1, w = t, (5)
x = t2 − 1, y = t2 − 1, z = 1, w = t3 − 2t, (6)
x = t2 − 1, y = t2 − 1, z = t2 − 2, w = t3 − 2t, (7)
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The period (the symmetry of order 4) permutes (4) with (6), and (5) with
(7). The square of the period fixes point-wise these components.

The involution σ1 preserves (4) and (6) and permutes (5) with (7).
The involution σ2 permutes (4) and (5) and preserves the components (6)

and (7). Thus the group of symmetries acts transitively on these components.
The intersection of the 4 components is the point x = y = 2, z = 1, w =

t = ±
√

3, which also lies in the abelian component (the discriminant of the
Alexander polynomial vanishes).

When t = 0, we get the conjugacy classes of 4 representations of order 3 of
M2, as H1(M2) ∼= Z/3⊕ Z/3⊕ Z/5.

The figure eight knot component This component looks like the character
variety of the figure eight knot and comes from a surjection of fundamental
groups. The figure eight knot is in fact the quotient of the 818 by φ2, the square
of the period. The ideal is:

〈−t+ w, y2 +
(
−t2 + 1

)
y + t2 − 1,−t2 + y + z,−t2 + x+ y + 1〉 (8)

It can also be presented as

w = t
(y − 1)t2 = y2 + y − 1

z = t2 − y
x y = x+ y

It is point-wise invariant by the period and by the involution σ1 and preserved
by σ2, but σ2 permutes x and y. In particular σ2 swaps the holonomy of the
figure eight knot with its complex conjugate.

When t = 0, y2 + y − 1 = 0 corresponds to the two conjugacy classes of
nontrivial representations of Z/5.

Four more components When t = 0, there are still 16 conjugacy classes of
representations of M2 of order 15. They belong to 4 components. The first one
is:

〈x2 +
(
−t2 + 1

)
x+ t2 − 1,(

t2 − 1
)
x+ y − z − t4 + 3 t2 − 1,(

−t2 + 1
)
xz +

(
t2 + 1

)
x+ z2 +

(
t4 − 4 t2 + 1

)
z − t4 + 3 t2 − 1,

− t3 + xt− zt+ 3 t+ w〉 (9)

The second one is:

〈y2 +
(
−t2 + 1

)
y + t2 − 1,

w − xt+
(
−t3 + 2 t

)
y + t5 − 4 t3 + 4 t,

x2 +
(
t2 − 1

)
xy +

(
−t4 + 2 t2 − 1

)
x+

(
−t4 + 2 t2 + 1

)
y + t6 − 4 t4 + 4 t2 − 1,

xy +
(
−t2 + 1

)
x+

(
−t4 + 3 t2 − 1

)
y + z + t6 − 5 t4 + 6 t2 − 1〉 (10)
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The third one

〈z2 +
(
−t2 − 1

)
z + 2 t2 − 1,

w + xzt− 2xt+
(
−t5 + 4 t3 − 4 t

)
z + 2 t5 − 7 t3 + 5 t,

x2 +
(
−t2 + 1

)
xz +

(
t2 − 1

)
x+

(
t4 − 2 t2 − 1

)
z − 2 t4 + 5 t2 − 1,

xz − x+ y +
(
−t4 + 3 t2 − 1

)
z + 2 t4 − 6 t2 + 1〉 (11)

The last component is:

〈t2 − y − z,
− zx2 + xy2 + xyz + xz2 + x2 − 4xy − xz − 2 y2 − yz − z2 + 5 y + 2 z − 1,

x2yz − x2y − zx2 − 4xyz − xz2 + 4xy + 6xz + 3 yz + z2 − x− 2 y − 5 z,

− x2z2 + xz3 + 2 zx2 + yz2 − z3 − x2 + xy − 4xz − 2 yz + x− 2 y + 4 z + 1,

z2yx−4xyz−2xz2 +y2z−yz2 +3xy+6xz−2 y2 +2 yz+2 z2−2x+2 y−5 z−1,

−x2z2 +z2y2 +2 z3y+z4 +2 zx2−2xyz+xz2−y2z−7 yz2−5 z3−x2 +3xy+xz

− 2 y2 + 5 yz + 6 z2 − 2x+ 4 y − z − 1,

2x2z2+zy3−3 z3y−2 z4−4 zx2+3xyz−3xz2−2 y3−8 y2z+6 yz2+9 z3+2x2−5xy

+ 16 y2 + 10 yz − 5 z2 + 5x− 22 y − 10 z + 4,

xz2t− ty2z−2 z2yt−z3t−2xzt+2 ty2 +10 zyt+5 z2t−12 ty−10 zt+7 t+w〉
(12)

Each component intersects t = 0 in 4 points, corresponding to representations
of M2 or order 15. The action of the symmetry group on the components is:

σ1

(9) 7→ (9)
(10) 7→ (11)
(11) 7→ (10)
(12) 7→ (12)

σ2

(9) 7→ (10)
(10) 7→ (9)
(11) 7→ (12)
(12) 7→ (11)

φ
(9) 7→ (12)

(10) 7→ (11)
(11) 7→ (10)
(12) 7→ (9)

So the four components are equivalent.

Characters of Y (818) = Y triv(818) ∪ Y ab(818) ∪ Y nab(818)

• Y triv(818) has a single point, with coordinates t = w = 0, x = y = 2, and
z = −2.

• Y ab(818) has |∆(−1)|−1
2 = 22 points. When looking at the order of the

induced representation of π1(M2) in PSL2(C), they are distributed as
follows: the 2 points of order 5 lie in the figure eight knot component,
the 4 points of order 3 lie in trefoil components, one per component, and
the 16 points of order 15 on the exotic components (4 per component).
In characteristic 3, Y ab(818) has (5− 1)/2 = 2 points, in characteristic 5,
(9− 1)/2 = 4 points.

• Y nab(818) has 4 points, all of them in the canonical component: two lifts
of the orbifold holonomy and their complex conjugate.
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When reducing mod 3: The 4 points of Y ab(818) in the trefoil components
collapse to Y triv(818). The 2 points in the figure eight knot component remain
as different points. On each exotic component, the 4 points become (the same)
2 points, that are also the 2 points for the figure eight component. The four
points in Y nab(818) become a single one, but different from the previous ones.

When reducing mod 5: The 4 points of Y ab(818) in the trefoil components
remain as 4 different points. The four points of Y ab(818) in each exotic com-
ponent become a single one, in fact the same as a point in one of the trefoil
components, and points in different exotic components go to different trefoil
components. The 2 points in the figure eight component collapse to Y triv(818).
The 4 points in Y nab(818) remain as different points.

7 Torus Knots

For m ≤ n ∈ N coprime, the (m,n)-torus knot is denoted by T (m,n). Since

π1(S3 \ T (m,n)) ∼= 〈a, b | am = bn〉,

irreducible representations map the central element am = bn to the centre {± Id}
(and only to − Id for m = 2). Thus, besides the abelian one, the components of
the variety of characters are determined by the conjugacy classes of elements in
SL2 to which a and b are mapped. Therefore, when p divides either m or n, the
reduction mod p ramifies, so that some components get identified. To describe
precisely this ramification, we introduce the following polynomials:

Definition 2. For k ∈ Z, k ≥ 1, we define Φk,Ψk ∈ Z[x] to be the polynomials
determined by the condition:

Φk(λ+
1

λ
) =


λk − 1

λ− 1
λ(−k+1)/2 k odd

λk − 1

λ2 − 1
λ−k/2+1 k even

and

Ψk(λ+
1

λ
) =


λk + 1

λ+ 1
λ(−k+1)/2 k odd

(λk + 1)λ−k/2 k even

for every λ ∈ C∗.

Remark 3. These polynomials satisfy the following property: for A ∈ SL2(K)
with K an algebraically closed field of characteristic 0 or coprime with k:

• Φk(tr(A)) = 0 if and only if Ak = Id and A 6= ± Id;

• Ψk(tr(A)) = 0 if and only if Ak = − Id and A 6= − Id.

This remark follows easily from viewing λ in Definition 2 as an eigenvalue
of a matrix with determinant 1. The following formulae are going to be useful
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later:

Ψ2k(tr(A)) = tr(Ak) ∀A ∈ SL2 (13)

Ψ2k(x)− 2 =

{
(x− 2)Φk(x)2 k odd

(x2 − 4)Φk(x)2 k even
(14)

Ψ2k(x) + 2 =

{
(x+ 2)Ψk(x)2 k odd

Ψk(x)2 k even
(15)

The proofs of these formulae and other properties of Φk and Ψk are provided in
Appendix C.

We describe now X(T (m,n)). Using coordinates

x = tra
y = trb
z = trab−1

we have

X(T (2, n)) = Xab(T (2, n)) ∪ {(x, y, z) ∈ C3 | x = Ψn(y) = 0},

and, for m > 2,

X(T (m,n)) = Xab(T (m,n)) ∪ {(x, y, z) ∈ C3 | Φm(x) = Φn(y) = 0}
∪ {(x, y, z) ∈ C3 | Ψm(x) = Ψn(y) = 0}

In both cases there are (m−1)(n−1)/2+1 components, including Xab(T (m,n)).
The components other thanXab(T (m,n)) are lines in the coordinates (x, y, z),

as they are defined by x = x0 and y = y0, for some values x0, y0 ∈ C.
To understand ramifications we use the following lemma, which is straight-

forward keeping in mind that the map sending each element of a field of char-
acteristic p to its pth power is a morphisms of the field:

Lemma 11. For a prime p > 2, if p | k and k = prk′ with r maximal we have:

Φk(u) ≡

Φk′(u)p
r

(u− 2)(pr−1)/2 for k odd,

Φk′(u)p
r

(u2 − 4)(pr−1)/2 for k even,
mod p,

and

Ψk(u) ≡

Ψk′(u)p
r

(u+ 2)(pr−1)/2 for k odd.

Ψk′(u)p
r

for k even,
mod p.

In the statement of the lemma, notice that Φ1 = Ψ1 = 1.
Notice that in characteristic p an element has trace ±2 precisely when its

p-th power is equal to ± Id. In our situation, when x or y is ±2 mod p, the
representation can still be irreducible. Thus:

Corollary 12. Let F be an algebraically closed field of characteristic p > 2. If
p | n, then the (m−1)(n−1)/2 components of X(T (m,n)) containing irreducible
characters collapse to (m−1)(n′+1)/2 components in X(T (m,n))F, all of them
containing irreducible characters, where n′ is coprime with p satisfying n = prn′.
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More specifically, among the (m− 1)(n− 1)/2 components present in char-
acteristic zero, (m− 1)(n− pr)/2 collapse to (m− 1)(n′ − 1)/2 components in
groups of pr, and (m − 1)(pr − 1)/2 collapse to (m − 1)/2 components (that
contain irreducible characters, as z may take arbitrary values).

The components with irreducible characters are pairwise disjoint, but we
may ask how they intersect Xab(T (m,n)).

Lemma 13. In characteristic 0 or p coprime with m and n, Xab(T (m,n))
intersects each other irreducible component of X(T (m,n)) transversely in two
distinct points.

When reducing mod p, if p | n then Xab(T (m,n)) intersects the components
with y = ±2 tangentially at single point.

Proof. A necessary and sufficient condition for a representation to be abelian
or reducible is that the trace of the commutator of the generators a and b is 2;
namely, that the coordinates satisfy

x2 + y2 + z2 − xyz − 4 = 0.

The discriminant in z of this equation is (x−2)(x+2)(y−2)(y+2). This implies
that the intersection with a line given by x = x0 and y = y0 is transverse and
consists precisely of two points if and only if x0 6= ±2 and y0 6= ±2. This holds
in characteristic 0 or coprime with m and n.

When p | n, if y0 6= ±2 then the discriminant does not vanish and the
previous discussion applies. So assume y0 = 2. Notice that the abelianisation
π1(S3 \ T (m,n)) → Z maps a to n and b to m. Hence, for any element γ ∈
π1(S3 \ T (m,n)) whose abelianisation generates Z, if τ = trγ , then by (13)
Xab(T (m,n)) is parametrised by:

x = trγn = Ψ2n(τ), y = trγm = Ψ2m(τ), z = trγ−m+n = Ψ2|m−n|(τ).

We are going to show that the derivatives of x and y with respect to τ vanish
at any intersection point with coordinates (x0, 2, z0) (this yields tangency with
the component defined by x = x0 and y = y0). Since p | n, by Lemma 11
x = Ψ2n(τ) ∼= (Ψ2n(τ))p and its derivative mod p with respect to τ vanishes
for any τ . For the derivative of y, write y = 2 + (Ψ2m(τ)− 2) and use (14):

y(τ) = 2 +

{
(τ − 2)Φm(τ)2 for k odd,

(τ2 − 4)Φm(τ)2 for k even.

As x0 6= ±2 mod p, then τ0 6= ±2, hence Φm(τ0) = 0 and the derivative of y
with respect to τ at τ = τ0 vanishes.

When y = −2, the proof is similar, using (15).

8 Satellite knots

We will study in detail two examples, both with companion the trefoil knot.
Recall from the section on torus knots that the fundamental group of the trefoil
knot 31 is

π1(S3 \ T (2, 3)) ∼= 〈β, γ | β2 = γ3〉,
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where the fibre of the Seifert fibration is β2 = γ3 and γ−1β represents a meridian.
From this presentation, the character variety of the trefoil has coordinates

(trβ , trγ , trγ−1β). It has two components. Both components correspond to char-
acters of representations of quotients of the group: the characters of the first
component correspond to representations where the centre is sent to minus the
identity

Xirr(31) = {(trβ , trγ , trγ−1β) ∈ C3 | trβ = 0, trγ = 1},

the characters of the second component correspond to abelian representations

Xab(31) = {(trβ , trγ , trγ−1β) ∈ C3 | trβ = tr3
γ−1β −3 trγ−1β , trγ = tr2

γ−1β −2},

as γ−1β represents a meridian. Because every representation of the satellite
knots we will be considering induces a representation of the trefoil knot, one
way to determine the representations, and hence the characters, of the satellite
knots is to establish which representations of the patterns (in our case the T (2, 4)
torus link, and the Whitehead link) can be glued along the common boundary
to representations of the trefoil knot to give global representations.

Example: a cable knot Kc

This knot exterior is obtained by gluing the exterior of the trefoil knot to the
exterior of the T (2, 4)-torus link in such a way that the fibre of the trefoil knot is
identified to the meridian of one of the components of T (2, 4) while the meridian
of the trefoil knot is glued to the longitude: this ensures that the resulting knot
has tunnel number one. A presentation for the torus link is

π1(S3 \ T (2, 4)) ∼= 〈α, b | bαb−1α = αb−1αb〉.

Here α and b represent meridians of the two components of T (2, 4). One easily
observes that the longitude associated to b is αb−1αb, so that the exterior of the
cable knot has the following presentation:

π1(S3 \Kc) ∼= 〈α, β | b = β2, γ−1β = αb−1αb, β2 = γ3, bαb−1α = αb−1αb〉.

The variety of characters of T (2, 4) has coordinates (trα, trb, trαb−1) and two
components. One that maps the centre to the identity:

Xirr(T (2, 4)) = {(trα, trb, trαb−1) ∈ C3 | trαb−1 = 0}

and the abelian component

Xab(T (2, 4)) = {(trα, trb, trαb−1) ∈ C3 | tr2
α + tr2

b + tr2
αb−1 − trα trb trαb−1 −4 = 0}.

To compute X(Kc) we use coordinates

t = trα, z = trβ , x = trαβ−1 .

We start with X(31) and X(T (2, 4)) and we add the relations:

trb = trβ2 = z2 − 2
trαb−1 = trαβ−2 = z x− t
trγ = trβ−1α−1β2α−1 = tz2x− t2z − z3 − zx2 + tx+ 3 z
trβγ−1 = trαb−1αb = tz3x− t2z2 − z4 − z2x2 + t2 + 4 z2 − 2

(16)
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We assume first that the restriction to π1(S3 \31) lies in Xirr(31). This imposes
the conditions z = 0 and trγ = 1, which in (16) yield

trb = −2, trαb−1 = −t, 1 = t x, trβγ−1 = t2 − 2

These equalities are incompatible with tαb−1 = 0, hence the intersection with
Xirr(T (2, 4)) is empty. On the other hand, these equalities imply that

tr2
α + tr2

b + tr2
αb−1 − trα trb trαb−1 −4 = 0,

that defines Xab(T (2, 4)). Thus we get a first component

X1(Kc) = {(t, z, x) ∈ C3 | z = 0, t x = 1}.

Next we suppose that the restriction to π1(S3 \ 31) lies in Xab(31), namely it
is abelian. Therefore the corresponding representations factor through a Dehn
filling on T (2, 4). One way to compute the Dehn filling is to add a generator η
and the relations

β = η3, γ = η2,

as those are the relations that abelianize the trefoil. The quotient of π1(S3 \Kc)
by these relations is

π1(S3 \Kc)/〈β = η3, γ = η2〉 ∼= 〈α, η | (α−1η6)2 = η11〉.

Thus we get the group of the torus knot T (2, 11), and therefore

X(Kc) ∼= X1(Kc) ∪X(T (2, 11)).

The six components of X(T (2, 11)) in the coordinates (t, z, x) become:

X2(Kc) = {(t, z, x) ∈ C3 | t = x z, z5 − z4 − 4 z3 + 3 z2 + 3 z − 1 = 0},

for the five curves of irreducible representations, and

Xab(Kc) = {(t, z, x) ∈ C3 | x = t5 − 5 t3 + 5 t, z = t6 − 6 t4 + 9 t2 − 2}.

This last component is the abelian one. Notice that the polynomial equation
says that x equals the trace of α5 and z that of α6. Also notice that the five
components in X2(Kc) collapse to a single one mod 11, because(

z5 − z4 − 4 z3 + 3 z2 + 3 z − 1
)
≡ (z − 2)5 mod 11.

Example: a Whitehead double Kw

In this example, the cable space S3−T (2, 4) is replaced with the exterior of
the Whitehead link, with presentation

π1(S3 \ 52
1) = 〈α, b | αb−1α−1bα−1b−1α = b−1αb−1α−1bα−1b−1αb〉,

where α and b are meridians, see Figure 3. The gluing is as in the previous
example, thus giving the following presentation

π1(S3 \Kw) ∼= 〈α, β | b = β2, γ−1β = αb−1α−1bα−1b−1αb, β2 = γ3,

αb−1α−1bα−1b−1α = b−1αb−1α−1bα−1b−1αb〉.
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Claim 14. There is no character in X(Kw) whose restriction to the trefoil lies
in Xirr(31).

Proof. Assume there is such a character χρ. The gluing requires that a meridian
of the Whitehead link, b, is glued to the fibre of the trefoil. Hence, ρ(b) = − Id,
i.e. it is trivial in PSL2(C). We notice that the image by ρ of the longitude that
commutes with b must also be trivial in PSL2(C), because each component of
the Whitehead link is a trivial knot and the linking number between the two
components vanishes. As there is no representation inXirr(31) whose restriction
to the peripheral subgroup is trivial in PSL2(C), we get a contradiction.

Hence all characters in X(Kw) restrict to abelian characters in Xab(31).
Therefore, we obtain the same representations we get by replacing the trefoil
knot exterior by a solid torus. In other terms, these representations correspond
to representations of the knot obtained by Dehn-filling one of the two compo-
nents of the Whitehead link (52

1)r:

X(Kh) ∼= X((52
1)r),

where r ∈ Q is the slope of the filling. To determine r, we add the generator η
and the relations

β = η3, γ = η2,

to the presentation of π1(S3 \Kw) as in the previous example, because those are
precisely the abelianisation relations of the trefoil. In particular η is a longitude
that commutes with b (i.e. they are in the same component and in the same
choice of peripheral group in the conjugacy class). Thus, we get the presentation

π1(S3 \ (52
1)r) = 〈α, b, γ | b = γ6, γ = αb−1α−1bα−1b−1αb, bγ = γb〉.

Hence, the filling meridian is bγ−6, i.e. the filling slope is r = −1/6.

a

b

γ

Figure 3: The meridians a and b and the longitude u.

To understand the manifold from the Dehn filling with slope bγ−6, the stan-
dard procedure is to cut open along a disc bounded by the component of the
link with meridian b, apply 6 turns, glue back again, so that the new filling
slope becomes 1/0 =∞. This leads to a twist knot with twelve half-twists, that
would not be alternate, and simplifies to 11 half-twists as in Figure 4. This is
the two-bridge knot 11/23. The variety of characters of this two-bridge knot
has been discussed in Section 4. It ramifies for p = 23.
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11
12

Figure 4: The projection on the left has 12 half-twists but it is not alternate,
it simplifies to the projection on the right, which is a diagram of the 2-bridge
knot 11/23.

Appendix A Computations for the 85

From Figure 1, using Wirtinger presentation we compute:

π1(S3 \ 85) ∼= 〈α, β, γ | [α−1, γ−1]α[β−1, α] = γ, [β−1, α]β[γ, β] = γ〉

Next we perform elementary changes to obtain a presentation with two gener-
ators. Firstly we introduce the elements w = αγ and z = βγ and we eliminate
α and β:

π1(S3 \ 85) ∼= 〈γ,w, z | w−1γ−1w2z−1wγ−1zw−1

= z−2wγ−1zw−1z2γ−1z−1 = 1〉

Setting a = w−1z2 and eliminating w we get:

π1(S3 \ 85) ∼= 〈γ, a, z | az−2γ−1z2a−1z2a−1z(a−1γ−1za)z−2 =

a−1γ−1zaγ−1 = 1〉

The second relation allows to write z = γaγa−1 and to simplify the bracket in
the first one:

az−2γ−1z2a−1z2a−1zγz−2 = 1.

From this relation we get

az−2γ−1z2a−1 = z2γ−1z−1az−2,

which tells that γ−1z−1a is conjugate to γ−1. Taking traces it yields the equa-
tion

t2x2y + t
(
−x3 − 2xy2 + 2x− 1

)
+ x2y + y3 − 3 y = 0 (17)

Next taking traces on the relation

γ−1z2a−1z2a−1zγ = z2az2
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gives

(t2x3y2 − 2 tx4y − 2 tx2y3 − y2xt2 + x5 + 2x3y2 + xy4 + 6 tx2y + ty3

− txy − 5x3 − 5xy2 − 2 ty + x2 + y2 + 5x− 2)

× (t3x4y3 − 3 t2x5y2 − 3 t2x3y4 − y3x2t3 + 3 tx6y + 6 tx4y3 + 3 tx2y5

+ 9 t2x3y2 + 2 t2xy4 − x7 − 3x5y2 − 3x3y4 − xy6 − 15 tx4y

− 16 tx2y3 − ty5 − 4 y2xt2 + 7x5 + 14x3y2 + 7xy4

+ 18 tx2y + 4 ty3 − 14x3 − 14xy2 − 3 ty + 7x+ 1) = 0 (18)

We consider the ideal of the polynomials generated by (17) and (18). We
then use symbolic software to look for its prime decomposition (namely, the
decomposition of its radical) and we get the five components we described.
This gives an algebraic set that contains X(85). We check that it is precisely
X(85) exploiting the fact that each component intersects t = 0 in one of the
points described in Section 5.

The equations are invariant by the symmetry (t, x, y) 7→ (−t, x,−y), because
t and y are traces of elements whose projections to Z/2Z are nontrivial, and x
is the trace of an element that projects to zero in Z/2Z.

Appendix B Computations for the 818

To obtain a presentation of its fundamental group, we start with three meridians
α, β and γ in Figure 2. We apply the map induced by the period φ±1

∗ on these
generators, which is equivalent to moving right and left in Figure 5.

γ

β

α α−1βα

γ

γ−1αγβ

β−1γβαβ−1γ−1β

β−1γβ α

β

γ

Figure 5: The generators α, β and γ and their image by φ±1
∗

If we iterate this process once in each direction, we obtain the same elements
in the fundamental group, yielding to relations. More precisely, the upper and
lower strands yield

β−1γβα−1β−1γ−1βγβαβ−1γ−1β = α−1β−1αγα−1βα

β−1γβαβ−1γ−1β = γαγ−1α−1βαγα−1γ−1

Since one relation is redundant, we skip the relation of the middle strand, for it
is longer. As they are written, these relations establish that the meridians α, β
and γ are conjugate, so that by taking traces we would get the equality t = t.
Instead, by modifying them slightly, we derive other equivalent relations, from
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which we compute and equate traces:

βγαγ−1α−1βαγ = γβαβ−1γ−1βγα (19)

γβα−1β−1γ−1βγβαβ−1 = βα−1β−1αγα−1βαβ−1γ (20)

γ−1βγαγ−1α−1βαγ = βαβ−1γ−1βγα (21)

γαγ−1α−1βαγα−1 = β−1γβαβ−1γ−1βγ (22)

Taking traces to (19) and writing them as polynomials in our coordinates yields:

− t6z + t6 + t4xz + 2 t4yz + t4z2 − 2 t4y − t3wz − 2 t2xyz − t2xz2

− t2y2z − t2yz2 − t4 + t3w − t2x2 + t2xz + t2y2 + twxz + twyz + twz2

+ xy2z + t2y − 2 t2z − twy − twz − w2z + x2y + yz2 − z3 + t2 − y + 3 z = 0

We do the same for (20):

t6x+ t5wx− t4x2y− t6− t5w+ t4w2− t4x2− t4xy− 2 t4xz− t3wx2− 3 t3wxy

−t3wxz+t2x3y+2 t2x2y2+t2x2yz+t4x+2 t4y+t4z+3 t3wx+t3wy+t2w2x−t2w2y

− t2x2y+2 t2x2z+2 t2xyz+ t2xz2− twx2y+ twx2z+2 twxy2−x3yz−x2y3 + t4

− t3w − 3 t2w2 − t2xz − t2y2 − t2yz + 3 twxy − 2 twxz + 2 twyz − x2y2 − x2z2

− 2xy2z − 2 t2x− t2y − twx+ twz + x2y − yz2 − t2 + tw + xz + y + 2 = 0

For (21): (
t2 − y − z

) (
t3z − t3 − t2w − txz + xt+ ty − zt+ wx

)
= 0

And for (22):

−
(
t2 − y − z

)
(t4z − 2 t4 − t2xz − t2z2 + 2 t2x− twy + twz + xy2 − xyz

+ xz2 + 3 t2 − tw + yz − 2x− 1) = 0

According to [8] for instance, since the presentation of the group has three
generators, there is an additional polynomial relation between the coordinates
of the character variety. In our situation, since t = trα = trβ = trγ the equation
reads:

w2 +(t3−t x−t y−t z)w−t2x−t2y−t2z+xyz+3 t2 +x2 +y2 +z2−4 = 0 (23)

It turns out that these five polynomials still do not generate the ideal. To see
that, we consider again the action of the period φ. The induced action on the
characters is given by χ 7→ χ ◦ φ−1

∗ , where φ∗ is the action on the fundamental
group, By Figure 5 (right) φ−1

∗ is given by

α
β
γ
7→

α−1βα
γ
γ−1αγ

We consider the ideal generated by taking the trace in Equations (19), (20), (21)
and (22), their image by φ∗, and Equation (23), thus a total of 9 polynomials.
We then use symbolic software to look for its prime decomposition (namely, the
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decomposition of its radical) and we get the eleven components we described.
This gives an algebraic set that contains X(818). We check that it is precisely
X(818) because each component intersects t = 0 in one of the points described
in Section 3.

We now describe the action of the involutions σ1 and σ2 on the variety of
characters.

From Figure 2 the action of σ1 on the fundamental group is

α
β
γ
7→

α−1β−1α
α−1β−1α−1βα
α−1β−1γ−1βα

Up to inner homomorphisms, it can be simplified as:

α
β
γ
7→

β−1

α−1

γ−1

Hence σ∗1 : X(818)→ X(818) writes as:
t
x
y
z
w

 7→


t
x

t2 − z
t2 − y

t3 − t y − t z + w


From Figure 2, on the fundamental group σ2 acts as

α
β
γ
7→

γ
γβγ−1

γβαβ−1γ−1

and on the variety of characters
t
x
y
z
w

 7→


t
y
x

t2 + t w − x y − z
w


The map induced by the period φ on the variety of characters is
t
x
y
z
w

 7→


t
−t4 + t2x+ t2y + zt2 + t2 − tw − xz − y

t2 − z
−t4z + t4 + t2xz + yzt2 + z2t2 − t2x− t2y − zwt− xz2 + tw − yz + x

−t5 + t3x+ t3y + zt3 + 2 t3 − wt2 − xzt− xt− 2 ty − z


From this we may derive the description of the action of the symmetry group
on the variety of characters given in Section 6.
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Appendix C The polynomials Φk and Ψk

Here we provide the proof of some of the results stated in Section 7 for the
polynomials Φk and Ψk of Definition 2. First of all we rewrite Definition 2 to
make computations simpler. The polynomials are determined by the conditions

Φk(λ+ λ−1) =


λk/2 − λ−k/2

λ1/2 − λ−1/2
k odd

λk/2 − λ−k/2

λ− λ−1
k even

and

Ψk(λ+ λ−1) =


λk/2 + λ−k/2

λ1/2 + λ−1/2
k odd

(λk/2 + λ−k/2) k even

for every λ ∈ C∗. As Ψ2k(λ+λ−1) = λk+λ−k, by viewing λ±1 as the eigenvalues
of a matrix, (13) is clear.

Now we give the proof of (14), but we skip the proof of (15) as it is analogous.

Proof of (14). Set u = λ+ λ−1. For every k we have

Ψ2k(u)− 2 = λk + λ−k − 2 = (λk/2 − λ−k/2)2 (24)

When k is odd, (24) gives:

Ψ2k(u)− 2 = (λ1/2 − λ−1/2)2

(
λk/2 − λ−k/2

λ1/2 − λ−1/2

)2

= (u− 2)Φk(u)2.

When k is even:

Ψ2k(u)− 2 = (λ− λ−1)2

(
λk/2 − λ−k/2

λ− λ−1

)2

= (u2 − 4)Φk(u)2,

which concludes the proof of (14).

Proof of Lemma 11. Let k = prk′ be as in the statement of the lemma. The
main idea is to use the identity

λk/2 ± λ−k/2 ≡ (λk
′/2 ± λ−k

′/2)p
r

mod p

and to adapt it to each case. For instance for k odd:

Φk(u) =
λk/2 − λ−k/2

λ1/2 − λ−1/2
≡ (λk

′/2 − λ−k′/2)p
r

(λ1/2 − λ−1/2)pr
(λ1/2 − λ−1/2)p

r−1

= Φk′(u)p
r

(u− 2)(pr−1)/2.

A similar trick applies to Φk for k even and to Ψk for k either even or odd.

Other properties are deg(Φk) = deg(Ψk) = (k−1)/2 for k odd, and deg(Φk) =
k/2− 1 and deg(Ψk) = k/2 for k even.
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These polynomials are easy to compute if we take into account the recursive
relations, as polynomials in Z[x]:

Φk = xΦk−2 − Φk−4 and Ψk = xΨk−2 −Ψk−4,

or:{
Φ2k = Φ2k−1 − Φ2k−2

Φ2k+1 = (x+ 2)Φ2k − Φ2k−1

and

{
Ψ2k = (x+ 2)Ψ2k−1 −Ψ2k−2

Ψ2k+1 = Ψ2k −Ψ2k−1

with Φ1 = Φ2 = Ψ1 = 1 and Ψ2 = x. Here are the polynomials for k up to 10:

Φ1 = 1 Ψ1 = 1

Φ2 = 1 Ψ2 = x

Φ3 = x+ 1 Ψ3 = x− 1

Φ4 = x Ψ4 = x2 − 2

Φ5 = x2 + x− 1 Ψ5 = x2 − x− 1

Φ6 = x2 − 1 Ψ6 = x3 − 3x

Φ7 = x3 + x2 − 2x− 1 Ψ7 = x3 − x2 − 2x+ 1

Φ8 = x3 − 2x Ψ8 = x4 − 4x2 + 2

Φ9 = x4 + x3 − 3x2 − 2x+ 1 Ψ9 = x4 − x3 − 3x2 + 2x+ 1

Φ10 = x4 − 3x2 + 1 Ψ10 = x5 − 5x3 + 5x
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