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Abstract. We construct compact hyperbolic 3-manifolds with totally geodesic boundary, arbitrarily 
many of the same volume. The fundamental groups of these 3-manifolds are groups with one 
defining relation. Our main result is a classification of these manifolds up to homeomorphism, resp. 
isometry. 

Mathematics Subject Classifications (1991): Primary: 57M50; Secondary: 20F32. 

Key words: Hyperbolic 3-manifolds, totally geodesic boundary, fundamental polyhedron, 1-relator 
group. 

1. Introduction 

For each pair of integers n, k such that n _> 3, 0 _< k < n and (n, 2 - k) = 1, we 
construct a compact orientable hyperbolic 3-manifold Mn,k with totally geodesic 
boundary (a surface of genus n - 1) by identifying faces of a certain hyperbolic 
polyhedron 79n. For fixed n, the manifolds M~,k have the same volume. The 
fundamental group 7rl (Mn,k) of Mn,k is a group with n generators and one defining 
relation in which each generator occurs exactly three times, with exponent sum 
+ 1; the abelianized group is isomorphic to Z '~-1 . Note that the fundamental group 
of a closed hyperbolic 3-manifold can never be a group with one defining relation 
because the cohomological dimension of a torsion-free 1-relator group is 2 whereas 
for the fundamental group of a closed aspherical 3-manifold it is 3. 

Our main result is a classification of these manifolds: Mn,k and M~,k, are 
homeomorphic (or equivalently, isometric) if and only if k = k t mod n. The 
manifold M33 is the manifold constructed by Thurston ([8, §3.4]) by identifying 
faces of 2 truncated tetrahedra which was shown by Kojima and Miyamoto ([4]) 
to be one of the six compact manifolds which have minimal volume among all 
compact hyperbolic 3-manifolds with totally geodesic boundary. Our methods of 
classification apply more generally for classes of hyperbolic 3-manifolds (closed or 
with totally geodesic boundary) which are cyclic branched coverings of hyperbolic 
links in the 3-sphere S3 with two or more components (or of two or more arcs 
in the 3-ball B 3) if one has enough information about the symmetry group of the 
link. For example, if DM,~,k denotes the double of M~,k along the boundary then 
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Fig. 1. 

it can be shown by our methods that the classification of the closed hyperbolic 
3-manifolds DM~,k is also given by the above conditions. What remains open 
is the classification up to isomorphism of the fundamental groups 7rl (M~,k). We 
suppose it corresponds to the classification of the manifolds up to homeomorphism 
but have no proof at the moment. As these are groups with one defining relation 
maybe some algebraic methods apply; however, a purely algebraic classification 
seems to be difficult to us. 

2. The Construction 

We start with the polyhedron P~ shown in Figure 1; it is a double pyramid (or 
double cone) whose base is a regular n-gon. 

We shall denote by P~ the polyhedron P~ with deleted vertices and by 
Pn the polyhedron P~ truncated at all vertices (as indicated in Figure 1), 
so 79~ C 79~ C P~. Figure 2 shows the boundary of the polyhedron 79~ flat- 
tened out on the 2-sphere where one of the two cone points is at infinity. 

We identify the faces of P~ in pairs as indicated in Figure 2: chosen 0 _< k < n, 
the face aibi+lbi gets identified with the face ci+kai+kci+k+l by a transformation 
(homeomorphism of faces) which we shall denote by :ci (for fixed n and k). These 
identifications induce identifications also of the polyhedron with deleted vertices 

! 79~ resp. the truncated polyhedron 79~; we denote the resulting identification spaces 
I !  I by M~,k, M',k resp. M~,k. 
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Fig. 2. 

If d = (n, 2 - k) denotes the greatest common divisor, then the edges of 79~ 
resp. 79~ get identified to exactly d edges in M~l,k resp. M~,k (we get d edge cycles). 
We shall only consider the case d = 1 in the following; then all edges of 79~ or P~ 
and all vertices of 7 ~  become identified to a single edge resp. vertex, and the edge 
cycle relation is as follows 

o r  

n - 1  
H -1  -1  _ 

X i ( 2 _ k ) X i ( 2 _ k ) + l X ( i + l ) ( 2 _ k ) _ l  - -  1, 
i=0  

where we take indices mod n (see [5] for the notion of an edge cycle or edge cycle 
relation); note that in the present paper, products of maps will be always read from 
left to right. 

For the Euler characteristic of M¼~,k one has x (  M~' ,k  ) = 1 - 1 + n - 1 = n - 1 

therefore M¼',k is not a manifold (see [6]). Note that M~, k and M~,k are manifolds; 
M n , k  is compact and its boundary is a closed orientable surface of genus n - 1. 

3. Geometric Realization 

We want to realize Pin and 79~ as hyperbolic polyhedra in hyperbolic 3-space 
H 3 such that Poincarf's theorem on fundamental polyhedra can be applied ([5]) 
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realizing M'~, k resp. Mn,k as hyperbolic manifolds: the first one complete and open, 
the second one compact with totally geodesic boundary. 

We shall denote the dihedral angles of P~ at the 2n edges emanating from the 
two cone points by 2a and at the n edges of the base of the two pyramids by 2/5 
(see Figure 1). The angles along the single edge cycle have to sum up to 27r, so we 
get the condition n(2a  +/5) = 7r. 

Note that all faces of P~ are triangles with deleted vertices so the identifications 
can be obtained by hyperbolic isometries. The truncation of P~ will be by hyper- 
bolic planes intersecting the faces of P~ in fight angles, so all remaining dihedral 
angles of 79n will be equal to 7r/2. Then the faces of Pn which get identified are 
right-angled hexagons. We divide each of the two truncated pyramids into n partial- 
ly truncated tetrahedra T~ indicated in Figure 3. The identifying transformations of 
79n can be chosen as hyperbolic isometries in H 3 if and only if A = B and C = C, 
where the letters in Figure 3 denote the hyperbolic lengths of the corresponding 
edges. 

Applying the formula for fight-angled hexagons in [2, §7.19], we get 

cosh B = 
cosh  2 C + cosh  

sinh 2 C 

cosh A = 
cosh C' cosh C + cosh C 

sinh C sinh C' 

We note that C = C implies A = B. Applying the cosine rule for hyperbolic 
triangles ([2, §7.12]) we get 

c o s  c o s  
cosh C - 

sin a sin/5 ' 
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cosh C' = 
COS 20~ q- cos(27r/n) 

sin2c~ 

Imposing cosh C = cosh C' we get 

cos(27r/n) 
cot/3 = cot ~x + 

cos a sin a 
2 cos(27r/n) 

= cot ct -t- 
sin 2a  

We want to find a ,  fl such that n(2a + fl) = 7r. There is a unique solution for 
each n > 3. For n = 3 resp. n = 4 one has 2a  = /3  = 7r/6 (the case considered 
by Thurston in [8, ~3.4]) resp. a = /3  = 7r/12. If n _> 5 then/3 < a < 7r/12 and, 
letting a tend to 0, we again get a unique solution. 

Finally, Andreev's theorem ([1]; [8, Ch. 5]) applies showing that 79~ (with the 
above angles) can be realized as a hyperbolic polyhedron; we also gave a short 
direct construction of 7>n using continuity arguments but do not include it here (see 
[3] for some similar constructions). 

PROPOSITION 1, For exactly one pair of angles a, /3 the polyhedra 73~ and 7>n 
can be realized as hyperbolic polyhedra (which we denote again by P~ resp. 79n) 
such that all identifying transformations xi can be realized as hyperbolic isometries 
and such that the cycle condition n( 2a +/3) = 7r holds. 

Now Poincar6's theorem ([5]) applies to 79~. We denote by G~,k the group generated 
by the identifying transformations xi. Then Gn,k is a properly discontinuous or 
discrete group of isometries of H 3 which has 7Y n as a fundamental polyhedron, 
and the quotient H3/G~,k realizes our manifold M~n,k as a complete hyperbolic 
manifold. Truncating 79~ (or equivalently, M' ,k  ) we realize also M~,k as a compact 
hyperbolic manifold with totally geodesic boundary. The preimage of M~,k C M~, k 

in H 3 which we shall denote by H 3 is invariant under G~,k, and H3t/G~,k = M~,k. 
( M , ~ )  ~ ( M " )  ~ Gn,k, and by Poincar6's theorem We have ~rl ,k = ~1 ,k = 

~ I  1 -1  -1  : 1 /  
G n ,  k = xo ,  . . . ,  Zn--1 X i ( 2 - k ) X i ( 2 _ k ) + l X ( i T 1 ) ( 2 _ k ) _ l  • 

i=0 

4. A Hyperbolic 3-Orbifold 

In the following, we shall denote by h = h~ the rotational symmetry (clockwise 
direction in Figure 2) of order n of 79~ resp. 79~ around the central axis connecting 
the two cone points; obviously, this is a hyperbolic isometry (elliptic transforma- 
tion). 
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Then we have xi = h-lxi+lh therefore h normalizes Gn,k; we denote by E= 
the group generated by G~,k and h (note that En does not depend on k). We have 
an exact sequence 

1 ~ Gn,k '--+ En ~k>Zn = (hk> ---+ 1, 

where we denote by hk = h~,k = Try(hi the projection of h to Mn,k = H3t/Gn,k. 
We denote by On the hyperbolic 3-orbifold with totally geodesic boundary On := 
H~/E,~ = Mn,k/(hk). 

A picture of the manifold M3,1 is given by Thurston in [8, §3.4] and reproduced 
here in Figure 4; analogously, one finds a picture of Mn,1. 

The elliptic transformation h projects to the transformation hi indicated in 
Figure 4, therefore the orbifold On = H 3/En = Mn,1/(hi) is as shown in Figure 
5. The underlying topological space of On is the 3-ball, the singular set consists 
of two arcs: one is (part of) a trefoil, the other one is unknotted (see [7], [8] for 
basic definitions about orbifolds). Let I+(On) resp. I(0~) denote the orientation- 
preserving resp. full isometry group of On. Then we have 

LEMMA 1. I(On) = I+((Q=) = (7- [ T 2 : 1) = Z2 where -r is the rotation 
indicated in Figure 5. 

Proof Any isometry of On must preserve the singular set of On and does 
not interchange its components. Otherwise such an isometry would extend to a 
homeomorphism of the 3-sphere interchanging the trefoil and the unknot, which 
is impossible. Let A be an isometry in I+(On), There are two possibilities: A can 
fix or interchange the two endpoints of the trefoil. Suppose A fixes them. Then A 
is the identity on the trefoil (since every point on the trefoil is determined by its 
distance from the endpoints). Now I(On) is a finite group (taking the double of On 
this follows as in the case of closed hyperbolic 3-manifolds). Therefore A has finite 
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order and, by the positive solution of the Smith conjecture (in the very special case 
of the trefoil), A is the identity. 

It follows that there exists at most one orientation-preserving nontrivial iso- 
metry. Such an isometry interchanges the two endpoints of the trefoil and has order 
2: this is shown in Figure 5. 

Finally there do not exist orientation-reversing isometries because the trefoil is 
not amphicheiral. 

Finally we derive a presentation of the group E~. A fundamental polyhedron 
of En consists of two copies of the tetrahedron T~ (a slice of an angle 27r/n of 
Pn). We have two sidepairing transformations: one is the rotation h, the other 
one, denoted by x, identifies the two other faces (which are right-angled hexagons 
when truncated). We have two edge cycles which give the relations h n = 1 and 
(hxhx-2) n = 1. The axes of the two elliptic elements h and hxhx -2 of order n 
project to the two components of the singular set of the orbifold On = H3/En (the 
axis of h to the trefoil part), therefore the subgroups (h) and (hxhx -2} generated 
by these elements are not conjugate in En and every maximal finite (elliptic, cyclic) 
subgroup of En is conjugate to one of these two subgroups. 
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LEMMA 2. The group En has exactly two conjugacy classes of maximal elliptic 
subgroups represented by the subgroups (h) and (hxhx-2).  The elliptic elements 
h and hxhx  -2 are rotations of  minimal angle 27r/n in these subgroups. For every 
hyperbolic isometry tr which normalizes En, conjugation by a fixes both conjugacy 
classes. So, up to conjugation, we can assume that it fixes both subgroups ( h ) and 
(hxhx-2);  then conjugation by a fixes both generators h and hxhx  -2 or maps 
them to their inverses. 

Proof We still have to prove that conjugation by a does not exchange the two 
conjugacy classes. But this follows from the preceding lemma because a projects 
to an isometry of On = H3/E,~ which cannot exchange the two components of 
the singular set. 

By Poincar6's theorem, we have the presentation 

En = (x, h lh  n = (hxhx-2)  n = 1). 

On the other hand, using the above exact sequence, we get 

I r I  1 -1 -1 
En = XO, ..., Xn-1, h Zi(2_k)Xi(2_k)+lX(i+l)(Z_k)_l = 1, 

i=0 

h n = 1, hxih -1 = xi+l ) .  

The connection between the two presentations is given by 

xi = hixh - i -~ ,  i = 0 ~ . . . , n - 1 ,  

x = xo hk. 

For the projection 

7rk: E~ -+ Z~ = (hk) 

we have 

= 1 ,  = =  k(hxhx = - k  

5. The Classification 

The main result of the paper is the following 

THEOREM 1. The manifolds Mn,k and Mn',k' are homeomorphic (or equivalently, 
isometric) if and only if  n = nt and k -- U mod n. 

The fact that homeomorphism and isometry are equivalent notions for these mani- 
folds is due to the following consequence of Mostow's rigidity theorem. 
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PROPOSITION 2. Let M and M'  be compact hyperbolic 3-manifolds with totally 
geodesic boundary. Then M and M ~ are homeomorphic if and only if  they are 
isometric. The isometry groups I ( M )  resp. I ( M ' )  of  M resp. M '  are finite. 

Proof Suppose f "  M --+ M'  is a homeomorphism. Let D M  = M UOM M 
be the double of M along the boundary. Then D M  is a closed hyperbolic 3- 
manifold which admits an isometric involution ~- interchanging the two copies 
of M. Let D f  • D M  ~ D M  ~ be the 'double' of the homeomorphism f .  Then 
( D f ) r ~ ( D f ) - 1  = r, where r ~ is the corresponding involution of the double D M  ~ 
of M ~. By Mostow rigidity, the homeomorphism D f  is homotopic to an isometry 
I" D M  --+ D M  ~. Then I 'Y1-1 is homotopic and therefore equal to r ,  and I 
maps the fixed point set OM of 7- to the fixed point set OM ~ of r/. Therefore I 
splits along OM restricting to an isometry between M and M ~. For the remaining 
assertion, note that, by doubling isometries, the isometry group I ( M )  of M can 
be considered as subgroup of the isometry group I ( D M )  of the closed hyperbolic 
3-manifold D M  which is finite ([7, §5.7]). 

PROOF OF THEOREM 1. Suppose Mn,k and Mn,,k, are isometric; then n = n ~. 
Let 5 : Mn,k --+ M~,k, be an isometry. We distinguish two cases: 

Case 1. The isometry 6" Mn,k --+ Mn,k, can be chosen such that 6(hk,)6 -1 = 

(h~:). Let 5 be a lift of 6 to H~. We have a commutative diagram 

1 > Gn,k ~ En ~rk Zn = (hk) ' 1 

1 > G~,k, ~ G ~'~ Z ~ = ( h k , )  ~ 1 

where the isomorphisms 6. resp. 6. are induced by conjugation with 6 resp. 6. By 
Lemma 2, up to conjugation, we have 

5.(h) = h e, ~ . (hxhx  -2) = (hxhx-2)  ~, 5.(hk) = h~,, 

where e = :k 1. Then 

= = 
k l  

= 7rk,(6,(hxhx-2)) = 7rk,(hxhx-2) ~ = h~(2.k) 
k I 

therefore k _= k I mod n and the theorem is proved in this case. 

It remains the following 
Case 2. The subgroups 6-1(hk,)6 and (hk) are not conjugate in I ( M ) .  We 

want to show that this case really does not occur considering again three cases: 

(i) n = p~, p prime, p ~ 2. We need the following 

LEMMA 3. Let G be a finite p-group and let H be a proper subgroup of  G. The 
normalizer N(H) of  H in G contains H as a proper subgroup. 
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Proof Let Z(G)¢ 1 be the center of the p-group G. We can assume Z(G)CH 
because otherwise the lemma is certainly true. Now the Lemma follows by divid- 
ing out Z(G) and applying the induction hypothesis to the subgroup H/Z(G) of 
6/Z(G). 

Now, because (hk) and 6(hk,)5 -1 are not conjugate, (hA) is a proper subgroup 
of some p-Sylow subgroup Y;v of I(M,~,k). By Lemma 3 we find an isometry 
in P,p which normalizes (hk) and does not lie in (hk). This isometry projects to 
an isometry of On = Mn,k/(hk) of order some nontrivial power of p which is 
impossible because I(  0~ ) ~- Z2. 

~,~1,,~2 ,,~d a product of at least two different primes. (ii) n = ~'1 e2 ...ed , 

T h e n ( h k ) ~ Z n ~ ( ~ d  Zv ; j = l  J" 

LEMMA 4. (a) An element y E I(  Mn,k ) which normalizes a nontrivial subgroup 
of ( hk ) lies in the no rmalizer of the whole group ( hk ). 

(b) If  some nontrivial subgroups of (hk) and ~(hk,)~ -~ are conjugate, then the 
whole group is conjugate. 

Proof The fixed point set of hk and of all of its nontrivial powers consists of 
two axes and is invariant under y; therefore y is in the normalizer of the whole 
group (hk). The second part follows similarly. 

By Lemma 4(b) the pj-Sylow subgroups of (hk} and ~5(hk,)~5 -1 are not con- 
jugate, therefore the pj-Sylow subgroup of (hk) is properly contained in some 
pj-Sylow subgroup P'v~ of I(Mn,k). By Lemma 3 and Lemma 4(a), there exists an 
element y E P,p~ which lies in the normalizer of (hk) but not in (hk). This projects 
to an isometry of On and we get a contradiction as in case (i). 

There remains the last case 

(iii) n = 2  ~ , c r > 2 .  

We can assume that (hkl and ~(hk,)~ -1 are proper subgroups of the same 2- 
Sylow subgroup }]2 of I(Mn,k). If the index of (hk) in its normalizer N((hk)) in 
P'2 is larger than 2 we get a contradiction as in the previous cases, so by Lemma 3 
we can assume that the index is exactly 2. Let y be an element in the normalizer 
of N((hk)) in }]2. Then yhZky -1 C (hk) (because (hk) has index 2 in N((hk)) 
therefore y normalizes a nontrivial subgroup of (hk) and by Lemma 4(a) also the 
whole group (hk). Then y EN((hk)); by Lemma 3 applied to N((hk))C }]2, one 
has N((hk))= }]2. Then, by symmetry, also the index of ~(hk,)~ -1 in }]2 is 2. But 

1 then the index of (hk) N 6(hk, )5- in }]2 is at most 4 and therefore (hA) N 5(hk, )6-1 
is nontrivial. By Lemma 4(b), (hA) and ~ (hA,) 6-1 are conjugate and we have again 
a contradiction. This finishes the proof of the Theorem. 
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